Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem B ; 128(2): 429-439, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38179652

RESUMEN

The KCNA5 gene provides the code for the α-subunit of the potassium channel Kv1.5. The genetic variant H463R in the Kv1.5 channel has been reported to cause a functional loss in atrial fibrillation (AF) patients. Understanding the mutations at a molecular level is key to developing improved therapeutics concerning cardiac hKv1.5 and hKv1.4 channels. Molecular dynamics and umbrella sampling free energy simulations are an effective tool to understand the mutation's effect on ion conduction, which we have employed and found that the hKv1.5[H463R] mutation imposes an energy barrier on the ion conduction pathway compared to the wild-type channel's ion free energy and pore structure. These results imply that the arginine mutation associated with the AF disease in particular modulates the inactivation process of hKv1.5. Kv1.4, encoded by the KCNA4 gene, is also present in the heart. Therefore, we considered simulation studies of the equivalent H507R mutation in the hKv1.4 channel and found that the mutation slightly reduces the ion conduction barrier in the ion conduction pathway, making it insignificant.


Asunto(s)
Simulación de Dinámica Molecular , Canales de Potasio , Humanos , Mutación , Canales de Potasio/metabolismo , Corazón , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo
2.
FEBS Lett ; 598(8): 889-901, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38563123

RESUMEN

BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.


Asunto(s)
Arginina , Canal de Potasio ERG1 , Simulación de Dinámica Molecular , Venenos de Escorpión , Animales , Humanos , Arginina/química , Arginina/metabolismo , Canal de Potasio ERG1/química , Canal de Potasio ERG1/metabolismo , Células HEK293 , Simulación del Acoplamiento Molecular , Mutación , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Venenos de Escorpión/química , Venenos de Escorpión/genética , Venenos de Escorpión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA