Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.881
Filtrar
Más filtros

Intervalo de año de publicación
1.
Blood ; 143(7): 641-650, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37992228

RESUMEN

ABSTRACT: Hereditary angioedema (HAE) is associated with episodic kinin-induced swelling of the skin and mucosal membranes. Most patients with HAE have low plasma C1-inhibitor activity, leading to increased generation of the protease plasma kallikrein (PKa) and excessive release of the nanopeptide bradykinin from high-molecular-weight kininogen (HK). However, disease-causing mutations in at least 10% of patients with HAE appear to involve genes for proteins other than C1-inhibitor. A point mutation in the Kng1 gene encoding HK and low-molecular weight kininogen (LK) was identified recently in a family with HAE. The mutation changes a methionine (Met379) to lysine (Lys379) in both proteins. Met379 is adjacent to the Lys380-Arg381 cleavage site at the N-terminus of the bradykinin peptide. Recombinant wild-type (Met379) and variant (Lys379) versions of HK and LK were expressed in HEK293 cells. PKa-catalyzed kinin release from HK and LK was not affected by the Lys379 substitutions. However, kinin release from HK-Lys379 and LK-Lys379 catalyzed by the fibrinolytic protease plasmin was substantially greater than from wild-type HK-Met379 and LK-Met379. Increased kinin release was evident when fibrinolysis was induced in plasma containing HK-Lys379 or LK-Lys379 compared with plasma containing wild-type HK or LK. Mass spectrometry revealed that the kinin released from wild-type and variant kininogens by PKa is bradykinin. Plasmin also released bradykinin from wild-type kininogens but cleaved HK-Lys379 and LK-Lys379 after Lys379 rather than Lys380, releasing the decapeptide Lys-bradykinin (kallidin). The Met379Lys substitutions make HK and LK better plasmin substrates, reinforcing the relationship between fibrinolysis and kinin generation.


Asunto(s)
Angioedemas Hereditarios , Bradiquinina , Humanos , Lisina , Angioedemas Hereditarios/genética , Fibrinolisina , Metionina , Células HEK293 , Quininógenos , Calicreínas/genética , Racemetionina
2.
J Allergy Clin Immunol ; 153(4): 1073-1082, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38300190

RESUMEN

BACKGROUND: Angioedema is a rare but potentially life-threatening adverse drug reaction in patients receiving angiotensin-converting enzyme inhibitors (ACEis). Research suggests that susceptibility to ACEi-induced angioedema (ACEi-AE) involves both genetic and nongenetic risk factors. Genome- and exome-wide studies of ACEi-AE have identified the first genetic risk loci. However, understanding of the underlying pathophysiology remains limited. OBJECTIVE: We sought to identify further genetic factors of ACEi-AE to eventually gain a deeper understanding of its pathophysiology. METHODS: By combining data from 8 cohorts, a genome-wide association study meta-analysis was performed in more than 1000 European patients with ACEi-AE. Secondary bioinformatic analyses were conducted to fine-map associated loci, identify relevant genes and pathways, and assess the genetic overlap between ACEi-AE and other traits. Finally, an exploratory cross-ancestry analysis was performed to assess shared genetic factors in European and African-American patients with ACEi-AE. RESULTS: Three genome-wide significant risk loci were identified. One of these, located on chromosome 20q11.22, has not been implicated previously in ACEi-AE. Integrative secondary analyses highlighted previously reported genes (BDKRB2 [bradykinin receptor B2] and F5 [coagulation factor 5]) as well as biologically plausible novel candidate genes (PROCR [protein C receptor] and EDEM2 [endoplasmic reticulum degradation enhancing alpha-mannosidase like protein 2]). Lead variants at the risk loci were found with similar effect sizes and directions in an African-American cohort. CONCLUSIONS: The present results contributed to a deeper understanding of the pathophysiology of ACEi-AE by (1) providing further evidence for the involvement of bradykinin signaling and coagulation pathways and (2) suggesting, for the first time, the involvement of the fibrinolysis pathway in this adverse drug reaction. An exploratory cross-ancestry comparison implicated the relevance of the associated risk loci across diverse ancestries.


Asunto(s)
Angioedema , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , Estudio de Asociación del Genoma Completo , Angioedema/inducido químicamente , Angioedema/genética , Bradiquinina
3.
J Allergy Clin Immunol ; 154(1): 179-183, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38494092

RESUMEN

BACKGROUND: Angioedema due to acquired C1-inhibitor deficiency is a very rare but serious disease, with an estimated prevalence of 1 per 500,000 persons. There are no approved therapies to treat or prevent angioedema swelling in patients with this condition. Deucrictibant is a specific, orally bioavailable, competitive antagonist of the bradykinin B2 receptor currently under investigation for hereditary angioedema. OBJECTIVE: Our aim was to assess the efficacy and safety of deucrictibant as acute and prophylactic treatment for angioedema due to acquired C1-inhibitor deficiency. METHODS: A 2-part, randomized, double-blind, placebo-controlled crossover study was conducted. In Part 1, 4 consecutive angioedema attacks were treated with 3 doses of deucrictibant (10 mg, 20 mg, and 30 mg) or placebo. In Part 2, deucricibant, 20 mg, or placebo was administered twice daily for 2 treatment periods of 8 weeks. RESULTS: Three patients were enrolled; of those 3 patients, 1 completed both study parts and 2 completed only Part 2. In Part 1, a reduction in attack severity was observed in the 3 attacks treated with deucrictibant as opposed to an increase in severity of the attack treated with placebo. In Part 2, the individual mean monthly attack rates were 2.0, 0.6, and 1.0 during the placebo period and 0.0 across all patients during treatment with deucrictibant. There were no severe adverse events and 1 self-limiting treatment-emergent adverse event (abdominal pain). CONCLUSIONS: Deucrictibant has the potential to effectively and safely treat and prevent angioedema attacks due to acquired C1-inhibitor deficiency.


Asunto(s)
Angioedema , Estudios Cruzados , Humanos , Femenino , Masculino , Persona de Mediana Edad , Angioedema/tratamiento farmacológico , Método Doble Ciego , Anciano , Proteína Inhibidora del Complemento C1/uso terapéutico , Adulto , Resultado del Tratamiento , Antagonistas del Receptor de Bradiquinina B2/uso terapéutico , Bradiquinina/análogos & derivados , Bradiquinina/uso terapéutico
4.
Stroke ; 55(8): 2193-2197, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38939926

RESUMEN

Angioedema without concomitant urticaria is a well-known complication of treatment with the recombinant tissue-type plasminogen activator (r-tPA) alteplase and its genetically modified variant tenecteplase. It is potentially lethal when causing airway obstruction and can require intubation. The latest guideline for the early management of patients with acute ischemic stroke from the American Heart Association/American Stroke Association advises to treat this complication initially by interfering with the histamine pathway. This article aims to clarify the pathophysiological mechanism of r-tPA-induced angioedema and provides several arguments that this condition is primarily bradykinin-mediated and hence should be treated initially by intervening with the bradykinin pathway. Second, other-less frequently reported-adverse symptoms after r-tPA therapy and their proposed pathophysiological mechanisms leading to specific treatment are described. This manuscript describes the need for an update of the section "3.5 IV alteplase" from the American Heart Association/American Stroke Association guideline to treat this r-tPA-induced angioedema adequately and prevent potentially fatal outcomes.


Asunto(s)
Angioedema , Fibrinolíticos , Accidente Cerebrovascular , Activador de Tejido Plasminógeno , Humanos , Angioedema/inducido químicamente , Activador de Tejido Plasminógeno/efectos adversos , Activador de Tejido Plasminógeno/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Fibrinolíticos/efectos adversos , Fibrinolíticos/uso terapéutico , Bradiquinina/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico
5.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G188-G201, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38915279

RESUMEN

The intestinal barrier plays a crucial role in homeostasis by both facilitating the absorption of nutrients and fluids and providing a tight shield to prevent the invasion by either pathogen or commensal microorganisms. Intestinal barrier malfunction is associated with systemic inflammation, oxidative stress, and decreased insulin sensitivity, which may lead to the dysregulation of other tissues. Therefore, a deeper understanding of physiological aspects related to an enhanced barrier function is of significant scientific and clinical relevance. The naked mole-rat has many unusual biological features, including attenuated colonic neuron sensitivity to acid and bradykinin and resistance to chemical-induced intestinal damage. However, insight into their intestinal barrier physiology is scarce. Here, we observed notable macroscopic and microscopic differences in intestinal tissue structure between naked mole-rats and mice. Moreover, naked mole-rats showed increased number of larger goblet cells and elevated mucus content. In measuring gut permeability, naked mole-rats showed reduced permeability compared with mice, measured as transepithelial electrical resistance, especially in ileum. Furthermore, intestinal ion secretion induced by serotonin, bradykinin, histamine, and capsaicin was significantly reduced in naked mole-rats compared with mice, despite the expression of receptors for all these agonists. In addition, naked mole-rats exhibited reduced prosecretory responses to the nonselective adenylate cyclase activator forskolin. Collectively, these findings indicate that naked mole-rats possess a robust and hard-to-penetrate gastrointestinal barrier that is resistant to environmental and endogenous irritants. Naked mole-rats may therefore provide valuable insights into the physiology of the intestinal barrier and set the stage for the development of innovative and effective therapies.NEW & NOTEWORTHY This is the first study to characterize the intestinal function of naked mole-rats. We found that these animals show a robust gut tissue structure, displaying thicker intestinal layers, longer villi, and larger crypts. Naked mole-rats showed more and larger goblet cells, with increased mucus content. Intestinal permeability, especially in the ileum, was substantially lower than that of mice. Finally, naked mole-rats showed reduced intestinal anion secretion in response to serotonin, bradykinin, histamine, capsaicin, and forskolin.


Asunto(s)
Mucosa Intestinal , Ratas Topo , Permeabilidad , Animales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Ratones , Masculino , Células Caliciformes/metabolismo , Células Caliciformes/efectos de los fármacos , Capsaicina/farmacología , Bradiquinina/farmacología , Bradiquinina/metabolismo , Serotonina/metabolismo , Ratones Endogámicos C57BL , Funcion de la Barrera Intestinal
6.
Anal Chem ; 96(16): 6106-6111, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38594830

RESUMEN

This study explores the innovative field of pulsed direct current arc-induced nanoelectrospray ionization mass spectrometry (DCAI-nano-ESI-MS), which utilizes a low-temperature direct current (DC) arc to induce ESI during MS analyses. By employing a 15 kV output voltage, the DCAI-nano-ESI source effectively identifies various biological molecules, including angiotensin II, bradykinin, cytochrome C, and soybean lecithin, showcasing impressive analyte signals and facilitating multicharge MS in positive- and negative-ion modes. Notably, results show that the oxidation of fatty acids using a DC arc produces [M + O - H]- ions, which aid in identifying the location of C═C bonds in unsaturated fatty acids and distinguishing between isomers based on diagnostic ions observed during collision-induced dissociation tandem MS. This study presents an approach for identifying the sn-1 and sn-2 positions in phosphatidylcholine using phosphatidylcholine and nitrate adduct ions, accurately determining phosphatidylcholine molecular configurations via the Paternò-Büchi reaction. With all the advantages above, DCAI-nano-ESI holds significant promise for future analytical and bioanalytical applications.


Asunto(s)
Nanotecnología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Citocromos c/química , Citocromos c/análisis , Bradiquinina/química , Bradiquinina/análisis , Angiotensina II/química , Angiotensina II/análisis , Fosfatidilcolinas/química , Fosfatidilcolinas/análisis , Glycine max/química
7.
Blood ; 139(18): 2816-2829, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35100351

RESUMEN

Patients with hereditary angioedema (HAE) experience episodes of bradykinin (BK)-induced swelling of skin and mucosal membranes. The most common cause is reduced plasma activity of C1 inhibitor, the main regulator of the proteases plasma kallikrein (PKa) and factor XIIa (FXIIa). Recently, patients with HAE were described with a Lys311 to glutamic acid substitution in plasminogen (Plg), the zymogen of the protease plasmin (Plm). Adding tissue plasminogen activator to plasma containing Plg-Glu311 vs plasma containing wild-type Plg (Plg-Lys311) results in greater BK generation. Similar results were obtained in plasma lacking prekallikrein or FXII (the zymogens of PKa and FXIIa) and in normal plasma treated with a PKa inhibitor, indicating Plg-Glu311 induces BK generation independently of PKa and FXIIa. Plm-Glu311 cleaves high and low molecular weight kininogens (HK and LK, respectively), releasing BK more efficiently than Plm-Lys311. Based on the plasma concentrations of HK and LK, the latter may be the source of most of the BK generated by Plm-Glu311. The lysine analog ε-aminocaproic acid blocks Plm-catalyzed BK generation. The Glu311 substitution introduces a lysine-binding site into the Plg kringle 3 domain, perhaps altering binding to kininogens. Plg residue 311 is glutamic acid in most mammals. Glu311 in patients with HAE, therefore, represents reversion to the ancestral condition. Substantial BK generation occurs during Plm-Glu311 cleavage of human HK, but not mouse HK. Furthermore, mouse Plm, which has Glu311, did not liberate BK from human kininogens more rapidly than human Plg-Lys311. This indicates Glu311 is pathogenic in the context of human Plm when human kininogens are the substrates.


Asunto(s)
Angioedemas Hereditarios , Angioedemas Hereditarios/genética , Angioedemas Hereditarios/patología , Animales , Bradiquinina/metabolismo , Factor XIIa/metabolismo , Fibrinolisina , Ácido Glutámico , Humanos , Quininógenos/metabolismo , Lisina , Mamíferos/metabolismo , Ratones , Calicreína Plasmática , Plasminógeno/genética , Plasminógeno/metabolismo , Activador de Tejido Plasminógeno
8.
Heart Fail Rev ; 29(3): 729-737, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38381277

RESUMEN

Heart failure (HF) is a pervasive clinical challenge characterized by compromised cardiac function and reduced quality of life. The kinin-kallikrein system (KSS), a multifaceted peptide cascade, has garnered substantial attention due to its potential role in HF. Through activation of B1 and/or B2 receptors and downstream signaling, kinins modulate various physiological processes, including inflammation, coagulation, pain, blood pressure control, and vascular permeability. Notably, aberrations in KKS components have been linked to HF risk. The elevation of vasodilatory bradykinin (BK) due to kallikrein activity reduces preload and afterload, while concurrently fostering sodium reabsorption inhibition. However, kallikrein's conversion of prorenin to renin leads to angiotensinsII upregulation, resulting in vasoconstriction and fluid retention, alongside increased immune cell activity that fuels inflammation and cardiac remodeling. Importantly, prolonged KKS activation resulting from volume overload and tissue stretch contributes to cardiac collagen loss. The conventional renin-angiotensin-aldosterone system (RAAS) inhibitors used in HF management may inadvertently intensify KKS activity, exacerbating collagen depletion and cardiac remodeling. It is crucial to balance the KKS's role in acute cardiac damage, which may temporarily enhance function and metabolic parameters against its detrimental long-term effects. Thus, KKS blockade emerges as a promising strategy to impede HF progression. By attenuating the link between immune system function and tissue damage, KKS inhibition can potentially reduce cardiac remodeling and alleviate HF symptoms. However, the nuanced roles of BK in various acute conditions necessitate further investigation into the sustained benefits of kallikrein inhibitors in patients with chronic HF.


Asunto(s)
Insuficiencia Cardíaca , Sistema Calicreína-Quinina , Calicreínas , Cininas , Sistema Renina-Angiotensina , Humanos , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Sistema Calicreína-Quinina/fisiología , Cininas/metabolismo , Calicreínas/metabolismo , Sistema Renina-Angiotensina/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal , Bradiquinina/metabolismo
9.
Cytokine ; 180: 156673, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857562

RESUMEN

Host proteins released by the activated endothelial cells during SARS-CoV-2 infection are implicated to be involved in coagulation and endothelial dysfunction. However, the underlying mechanism that governs the vascular dysfunction and disease severity in COVID-19 remains obscure. The study evaluated the serum levels of Bradykinin, Kallikrein, SERPIN A, and IL-18 in COVID-19 (N-42 with 20 moderate and 22 severe) patients compared to healthy controls (HC: N-10) using ELISA at the day of admission (DOA) and day 7 post-admission. The efficacy of the protein levels in predicting disease severity was further determined using machine learning models. The levels of bradykinins and SERPIN A were higher (P ≤ 0.001) in both severe and moderate cases on day 7 post-admission compared to DOA. All the soluble proteins studied were found to elevated (P ≤ 0.01) in severe compared to moderate in day 7 and were positively correlated (P ≤ 0.001) with D-dimer, a marker for coagulation. ROC analysis identified that SERPIN A, IL-18, and bradykinin could predict the clinical condition of COVID-19 with AUC values of 1, 0.979, and 1, respectively. Among the models trained using univariate model analysis, SERPIN A emerged as a strong prognostic biomarker for COVID-19 disease severity. The serum levels of SERPIN A in conjunction with the coagulation marker D-dimer, serve as a predictive indicator for COVID-19 clinical outcomes. However, studies are required to ascertain the role of these markers in disease virulence.


Asunto(s)
Biomarcadores , Bradiquinina , COVID-19 , Interleucina-18 , SARS-CoV-2 , Humanos , COVID-19/sangre , COVID-19/diagnóstico , Biomarcadores/sangre , Femenino , Masculino , Persona de Mediana Edad , Pronóstico , Interleucina-18/sangre , Bradiquinina/sangre , Adulto , Anciano , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Índice de Severidad de la Enfermedad , Endotelio Vascular/metabolismo , Calicreínas/sangre , alfa 1-Antitripsina/sangre
10.
Cell Commun Signal ; 22(1): 118, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347539

RESUMEN

BACKGROUND: Disruption of Ca2+ homeostasis after calcium electroporation (CaEP) in tumors has been shown to elicit an enhanced antitumor effect with varying impacts on healthy tissue, such as endothelium. Therefore, our study aimed to determine differences in Ca2+ kinetics and gene expression involved in the regulation of Ca2+ signaling and homeostasis, as well as effects of CaEP on cytoskeleton and adherens junctions of the established endothelial cell lines EA.hy926 and HMEC-1. METHODS: CaEP was performed on EA.hy926 and HMEC-1 cells with increasing Ca2+ concentrations. Viability after CaEP was assessed using Presto Blue, while the effect on cytoskeleton and adherens junctions was evaluated via immunofluorescence staining (F-actin, α-tubulin, VE-cadherin). Differences in intracellular Ca2+ regulation ([Ca2+]i) were determined with spectrofluorometric measurements using Fura-2-AM, exposing cells to DPBS, ionomycin, thapsigargin, ATP, bradykinin, angiotensin II, acetylcholine, LaCl3, and GdCl3. Molecular distinctions were identified by analyzing differentially expressed genes and pathways related to the cytoskeleton and Ca2+ signaling through RNA sequencing. RESULTS: EA.hy926 cells, at increasing Ca2+ concentrations, displayed higher CaEP susceptibility and lower survival than HMEC-1. Immunofluorescence confirmed CaEP-induced, time- and Ca2+-dependent morphological changes in EA.hy926's actin filaments, microtubules, and cell-cell junctions. Spectrofluorometric Ca2+ kinetics showed higher amplitudes in Ca2+ responses in EA.hy926 exposed to buffer, G protein coupled receptor agonists, bradykinin, and angiotensin II compared to HMEC-1. HMEC-1 exhibited significantly higher [Ca2+]i changes after ionomycin exposure, while responses to thapsigargin, ATP, and acetylcholine were similar in both cell lines. ATP without extracellular Ca2+ ions induced a significantly higher [Ca2+]i rise in EA.hy926, suggesting purinergic ionotropic P2X and metabotropic P2Y receptor activation. RNA-sequencing analysis showed significant differences in cytoskeleton- and Ca2+-related gene expression, highlighting upregulation of ORAI2, TRPC1, TRPM2, CNGA3, TRPM6, and downregulation of TRPV4 and TRPC4 in EA.hy926 versus HMEC-1. Moreover, KEGG analysis showed upregulated Ca2+ import and downregulated export genes in EA.hy926. CONCLUSIONS: Our finding show that significant differences in CaEP response and [Ca2+]i regulation exist between EA.hy926 and HMEC-1, which may be attributed to distinct transcriptomic profiles. EA.hy926, compared to HMEC-1, displayed higher susceptibility and sensitivity to [Ca2+]i changes, which may be linked to overexpression of Ca2+-related genes and an inability to mitigate changes in [Ca2+]i. The study offers a bioinformatic basis for selecting EC models based on research objectives.


Asunto(s)
Acetilcolina , Calcio , Calcio/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacología , Angiotensina II/farmacología , Bradiquinina/farmacología , Ionomicina/metabolismo , Ionomicina/farmacología , Tapsigargina/metabolismo , Línea Celular , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Perfilación de la Expresión Génica , Electroporación , Adenosina Trifosfato/metabolismo
11.
Eur J Neurol ; 31(4): e16173, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38155474

RESUMEN

BACKGROUND AND PURPOSE: Orolingual angioedema (OA) represents a rare but life-threatening complication among patients with acute ischemic stroke treated with intravenous thrombolysis with alteplase. Novel agents, including icatibant, are recommended in resistant patients with alteplase-induced OA who have failed to respond to first-line therapies including corticosteroids, antihistamines, and/or adrenaline. METHODS: We present a patient with alteplase-induced OA who showed substantial clinical improvement following the administration of icatibant. RESULTS: We describe a 71-year-old woman with known arterial hypertension under treatment with angiotensin-converting enzyme inhibitor, who presented with acute ischemic stroke in the territory of the right middle cerebral artery and received intravenous alteplase. During intravenous thrombolysis, the case was complicated with OA without any response to standard anaphylactic treatment including corticosteroids, dimetindene, and adrenaline. Thirty minutes after symptom onset, icatibant, a synthetic selective bradykinin B2-receptor antagonist, was administered subcutaneously. Substantial symptomatic resolution was observed only following the icatibant administration. CONCLUSIONS: This case highlights the effectiveness of icatibant in the acute management of alteplase-induced OA. In particular, icatibant administration, following first-line therapies including corticosteroids, antihistamines, and/or adrenaline, may avert tracheostomy and intubation in resistant and refractory cases with OA following intravenous thrombolysis for acute ischemic stroke.


Asunto(s)
Angioedema , Bradiquinina/análogos & derivados , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Femenino , Humanos , Anciano , Activador de Tejido Plasminógeno/uso terapéutico , Bradiquinina/efectos adversos , Respiración Artificial , Angioedema/inducido químicamente , Angioedema/tratamiento farmacológico , Epinefrina/efectos adversos , Corticoesteroides/uso terapéutico , Antagonistas de los Receptores Histamínicos/efectos adversos , Accidente Cerebrovascular/tratamiento farmacológico , Fibrinolíticos/uso terapéutico
12.
Mol Biol Rep ; 51(1): 499, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598121

RESUMEN

INTRODUCTION: Aerobic physical training (APT) reduces eosinophilic airway inflammation, but its effects and mechanisms in severe asthma remain unknown. METHODS: An in vitro study employing key cells involved in the pathogenesis of severe asthma, such as freshly isolated human eosinophils, neutrophils, and bronchial epithelial cell lineage (BEAS-2B) and lung fibroblasts (MRC-5 cells), was conducted. Additionally, an in vivo study using male C57Bl/6 mice, including Control (Co; n = 10), Trained (Exe; n = 10), house dust mite (HDM; n = 10), and HDM + Trained (HDM + Exe; n = 10) groups, was carried out, with APT performed at moderate intensity, 5x/week, for 4 weeks. RESULTS: HDM and bradykinin, either alone or in combination, induced hyperactivation in human neutrophils, eosinophils, BEAS-2B, and MRC-5 cells. In contrast, IL-10, the primary anti-inflammatory molecule released during APT, inhibited these inflammatory effects, as evidenced by the suppression of numerous cytokines and reduced mRNA expression of the B1 receptor and ACE-2. The in vivo study demonstrated that APT decreased bronchoalveolar lavage levels of bradykinin, IL-1ß, IL-4, IL-5, IL-17, IL-33, TNF-α, and IL-13, while increasing levels of IL-10, klotho, and IL-1RA. APT reduced the accumulation of polymorphonuclear cells, lymphocytes, and macrophages in the peribronchial space, as well as collagen fiber accumulation, epithelial thickness, and mucus accumulation. Furthermore, APT lowered the expression of the B1 receptor and ACE-2 in lung tissue and reduced bradykinin levels in the lung tissue homogenate compared to the HDM group. It also improved airway resistance, tissue resistance, and tissue damping. On a systemic level, APT reduced total leukocytes, eosinophils, neutrophils, basophils, lymphocytes, and monocytes in the blood, as well as plasma levels of IL-1ß, IL-4, IL-5, IL-17, TNF-α, and IL-33, while elevating the levels of IL-10 and IL-1RA. CONCLUSION: These findings indicate that APT inhibits the severe asthma phenotype by targeting kinin signaling.


Asunto(s)
Asma , Bradiquinina , Humanos , Animales , Ratones , Masculino , Interleucina-10 , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-17 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Factor de Necrosis Tumoral alfa
13.
Cell ; 139(6): 1143-56, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005807

RESUMEN

Platelets play a central role in thrombosis, hemostasis, and inflammation. We show that activated platelets release inorganic polyphosphate (polyP), a polymer of 60-100 phosphate residues that directly bound to and activated the plasma protease factor XII. PolyP-driven factor XII activation triggered release of the inflammatory mediator bradykinin by plasma kallikrein-mediated kininogen processing. PolyP increased vascular permeability and induced fluid extravasation in skin microvessels of mice. Mice deficient in factor XII or bradykinin receptors were resistant to polyP-induced leakage. PolyP initiated clotting of plasma via the contact pathway. Ablation of intrinsic coagulation pathway proteases factor XII and factor XI protected mice from polyP-triggered lethal pulmonary embolism. Targeting polyP with phosphatases interfered with procoagulant activity of activated platelets and blocked platelet-induced thrombosis in mice. Addition of polyP restored defective plasma clotting of Hermansky-Pudlak Syndrome patients, who lack platelet polyP. The data identify polyP as a new class of mediator having fundamental roles in platelet-driven proinflammatory and procoagulant disorders.


Asunto(s)
Plaquetas/metabolismo , Mediadores de Inflamación/metabolismo , Polifosfatos/metabolismo , Animales , Bradiquinina/metabolismo , Factor XII/genética , Factor XII/metabolismo , Fibrina/metabolismo , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Ratones , Péptido Hidrolasas/metabolismo , Plasma , Receptores de Bradiquinina/metabolismo , Trombosis/metabolismo
14.
J Nat Prod ; 87(4): 820-830, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38449376

RESUMEN

Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.


Asunto(s)
Aorta , Bothrops , Oligopéptidos , Péptidos , Serpientes Venenosas , Animales , Ratas , Brasil , Aorta/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Bradiquinina/farmacología , Masculino , Venenos de Crotálidos/farmacología , Venenos de Crotálidos/química , Ratas Wistar , Venenos de Serpiente/farmacología , Vasodilatadores/farmacología , Vasodilatadores/química , Estructura Molecular
15.
Am J Emerg Med ; 79: 33-37, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38340480

RESUMEN

BACKGROUND: Angiotensin converting enzyme inhibitors (ACE-Is) prevent the breakdown of bradykinin and can lead to life threatening angioedema. Tranexamic acid is an antifibrinolytic that inhibits formation of precursors involved in bradykinin synthesis and, in case reports, has been described as a potential treatment for ACE-I angioedema. METHODS: This retrospective study included patients who presented to the emergency department (ED) from January 2018 to August 2021 with angioedema while taking an ACE-I. Patients who received tranexamic acid (treatment group) were compared with patients who did not receive tranexamic acid (control group). Primary outcome was length of stay (LOS). Secondary outcomes evaluated included ICU admissions, intubations, and safety events. RESULTS: A total of 262 patients were included in this study (73 treatment; 189 control). Overall, the median ED LOS was longer in the treatment group than controls (20.9 h vs 4.8 h, p < 0.001). ICU admission rates were higher in the treatment group (45% vs 16%, p < 0.001). More patients were intubated in the treatment group (12% vs 3%, p = 0.018). No difference was seen between the treatment group and the controls for return within 7 days, complications related to thrombosis, and death. In patients presenting with severe angioedema symptoms who were admitted to the hospital, median LOS was not different between the two groups (58.7 h vs 55.7 h, p = 0.61). CONCLUSIONS: Patients who received tranexamic acid had increased ED LOS, rates of ICU admission, and need for intubation. This finding may be related to the severity of presentation. Administration of tranexamic acid appears safe to use in ACE-I angioedema. Prospective randomized controlled studies should be considered to determine whether tranexamic acid is an effective treatment for ACE-I angioedema.


Asunto(s)
Angioedema , Ácido Tranexámico , Humanos , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , Ácido Tranexámico/uso terapéutico , Estudios Retrospectivos , Bradiquinina/uso terapéutico , Estudios Prospectivos , Angioedema/inducido químicamente , Angioedema/tratamiento farmacológico
16.
Nanomedicine ; 57: 102744, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460653

RESUMEN

We recently prepared pH-responsive HPMA copolymer conjugates of bradykinin (P-BK), which release BK in response to the acidic tumor microenvironment, and found that administration of P-BK increased the tumor accumulation and therapeutic efficacy of nanomedicine. Because the release of BK from P-BK determines its onset of action, P-BKs with different release rates were prepared, and their properties were evaluated. The release kinetics were significantly altered by substitution proximal to hydrazone bond, release constant of methyl-substituted P-BK (P-MeBK) was approximately 4- and 80-fold higher than that of cyclopropyl-substituted P-BK (P-CPBK) and phenyl-substituted P-BK (P-PhBK). None of the P-BKs were active, but the release of BK restored their BK-like activity. Pre-administration of the P-BKs increased the tumor accumulation of nanomedicine in C26 tumor-bearing mice by 2- and 1.4-fold for P-MeBK and P-PhBK at 3 and 6 h. Altogether, this study provides insights into the design of pH-responsive nanodrugs with the desired release properties to target acidic lesions such as cancer and inflammation.


Asunto(s)
Neoplasias , Polímeros , Animales , Ratones , Polímeros/química , Doxorrubicina/química , Bradiquinina , Nanomedicina , Concentración de Iones de Hidrógeno , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
17.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33397811

RESUMEN

Kallikrein (PKa), generated by activation of its precursor prekallikrein (PK), plays a role in the contact activation phase of coagulation and functions in the kallikrein-kinin system to generate bradykinin. The general dogma has been that the contribution of PKa to the coagulation cascade is dependent on its action on FXII. Recently this dogma has been challenged by studies in human plasma showing thrombin generation due to PKa activity on FIX and also by murine studies showing formation of FIXa-antithrombin complexes in FXI deficient mice. In this study, we demonstrate high-affinity binding interactions between PK(a) and FIX(a) using surface plasmon resonance and show that these interactions are likely to occur under physiological conditions. Furthermore, we directly demonstrate dose- and time-dependent cleavage of FIX by PKa in a purified system by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and chromogenic assays. By using normal pooled plasma and a range of coagulation factor-deficient plasmas, we show that this action of PKa on FIX not only results in thrombin generation, but also promotes fibrin formation in the absence of FXII or FXI. Comparison of the kinetics of either FXIa- or PKa-induced activation of FIX suggest that PKa could be a significant physiological activator of FIX. Our data indicate that the coagulation cascade needs to be redefined to indicate that PKa can directly activate FIX. The circumstances that drive PKa substrate specificity remain to be determined.


Asunto(s)
Bradiquinina/metabolismo , Factor IX/metabolismo , Factor XII/metabolismo , Fibrina/metabolismo , Calicreínas/metabolismo , Trombina/metabolismo , Coagulación Sanguínea/fisiología , Bradiquinina/química , Calcio/química , Calcio/metabolismo , Cationes Bivalentes , Factor IX/química , Factor XI/química , Factor XI/metabolismo , Factor XII/química , Fibrina/química , Humanos , Calicreínas/química , Cinética , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Unión Proteica , Trombina/química
18.
J Allergy Clin Immunol ; 152(4): 961-971.e7, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37399947

RESUMEN

BACKGROUND: We examined how prekallikrein (PK) activation on human microvascular endothelial cells (HMVECs) is regulated by the ambient concentration of C1 inhibitor (C1INH) and prolylcarboxypeptidase (PRCP). OBJECTIVE: We sought to examine the specificity of PK activation on HMVECs by PRCP and the role of C1INH to regulate it, high-molecular-weight kininogen (HK) cleavage, and bradykinin (BK) liberation. METHODS: Investigations were performed on cultured HMVECs. Immunofluorescence, enzymatic activity assays, immunoblots, small interfering RNA knockdowns, and cell transfections were used to perform these studies. RESULTS: Cultured HMVECs constitutively coexpressed PK, HK, C1INH, and PRCP. PK activation on HMVECs was modulated by the ambient C1INH concentration. In the absence of C1INH, forming PKa on HMVECs cleaved 120-kDa HK completely to a 65-kDa H-chain and a 46-kDa L-chain in 60 minutes. In the presence of 2 µM C1INH, only 50% of the HK became cleaved. C1INH concentrations (0.0-2.5 µM) decreased but did not abolish BK liberated from HK by activated PK. Factor XII did not activate when incubated with HMVECs alone for 1 hour. However, if incubated in the presence of HK and PK, factor XII became activated. The specificity of PK activation on HMVECs by PRCP was shown by several inhibitors to each enzyme. Furthermore, PRCP small interfering RNA knockdowns magnified C1INH inhibitory activity on PK activation, and PRCP transfections reduced C1INH inhibition at any given concentration. CONCLUSIONS: These combined studies indicated that on HMVECs, PK activation and HK cleavage to liberate BK were modulated by the local concentrations of C1INH and PRCP.


Asunto(s)
Factor XII , Precalicreína , Humanos , Células Endoteliales , Bradiquinina/farmacología , Quininógeno de Alto Peso Molecular , ARN Interferente Pequeño/genética
19.
Drug Dev Res ; 85(2): e22178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528652

RESUMEN

The wingless/integrase-1 (WNT) pathway involved in the pathogenesis of inflammatory airway diseases has recently generated considerable research interest. Montelukast, a leukotriene receptor antagonist, provides therapeutic benefits in allergic asthma involving eosinophils. We aimed to investigate the role of the WNT pathway in the therapeutic actions of montelukast (MT) in a mixed type of allergic-acute airway inflammation model induced by ovalbumin (OVA) and lipopolysaccharide (LPS) in mice. Female mice were sensitized with intraperitoneal OVA-Al(OH)3 administration in the initiation phase and intranasal OVA followed by LPS administration in the challenge phase. The mice were divided into eight groups: control, asthmatic, and control/asthmatic treated with XAV939 (inhibitor of the canonical WNT pathway), LGK-974 (inhibitor of the secretion of WNT ligands), or MT at different doses. The inhibition of the WNT pathway prevented tracheal 5-HT and bradykinin hyperreactivity, while only the inhibition of the canonical WNT pathway partially reduced 5-HT and bradykinin contractions compared to the inflammation group. Therefore, MT treatment hindered 5-HT and bradykinin hyperreactivity associated with airway inflammation. Furthermore, MT prevented the increases in the phosphorylated GSK-3ß and WNT5A levels, which had been induced by airway inflammation, in a dose-dependent manner. Conversely, the MT application caused a further increase in the fibronectin levels, while there was no significant alteration in the phosphorylation of the Smad-2 levels in the isolated lungs of the mice. The MT treatment reversed the increase in the mRNA expression levels of interleukin-17A. An increase in eosinophil and neutrophil counts was observed in bronchoalveolar lavage fluid samples obtained from the mice in the inflammation group, which was hampered by the MT treatment. The inhibition of the WNT pathway did not alter inflammatory cytokine expression or cell infiltration. The WNT pathway mediated the therapeutic effects of MT due to the inhibition of GSK-3ß phosphorylation as well as the reduction of WNT5A levels in a murine airway inflammation model.


Asunto(s)
Acetatos , Asma , Ciclopropanos , Lipopolisacáridos , Quinolinas , Sulfuros , Ratones , Femenino , Animales , Ovalbúmina , Vía de Señalización Wnt , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Serotonina/metabolismo , Bradiquinina/metabolismo , Asma/tratamiento farmacológico , Pulmón/metabolismo , Inflamación/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Citocinas/metabolismo
20.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397016

RESUMEN

The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the coagulation system is not fully understood. SARS-CoV-2 penetrates cells through angiotensin-converting enzyme 2 (ACE2) receptors, leading to its downregulation. Des-arginine9-bradykinin (DA9B) is degraded by ACE2 and causes vasodilation and increased vascular permeability. Furthermore, DA9B is associated with impaired platelet function. Therefore, the aim of this study was to evaluate the effects of DA9B on platelet function and coagulopathy in critically ill coronavirus disease 2019 (COVID-19) patients. In total, 29 polymerase-positive SARS-CoV-2 patients admitted to the intensive care unit of the University Hospital of Giessen and 29 healthy controls were included. Blood samples were taken, and platelet impedance aggregometry and rotational thromboelastometry were performed. Enzyme-linked immunosorbent assays measured the concentrations of DA9B, bradykinin, and angiotensin 2. Significantly increased concentrations of DA9B and angiotensin 2 were found in the COVID-19 patients. A negative effect of DA9B on platelet function and intrinsic coagulation was also found. A sub-analysis of moderate and severe acute respiratory distress syndrome patients revealed a negative association between DA9B and platelet counts and fibrinogen levels. DA9B provokes inhibitory effects on the intrinsic coagulation system in COVID-19 patients. This negative feedback seems reasonable as bradykinin, which is transformed to DA9B, is released after contact activation. Nevertheless, further studies are needed to confirm our findings.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Bradiquinina/farmacología , Bradiquinina/metabolismo , Enzima Convertidora de Angiotensina 2 , Enfermedad Crítica , Angiotensinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA