Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.781
Filtrar
Más filtros

Intervalo de año de publicación
1.
Methods ; 228: 1-11, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38759909

RESUMEN

The necessity of animal-free performance tests for novel ophthalmic formulation screening is challenging. For this, we developed and validated a new device to simulate the dynamics and physical-chemical barriers of the eye for in vitro performance tests of topic ophthalmic formulations. The OphthalMimic is a 3D-printed device with an artificial lacrimal flow, a cul-de-sac area, a support base, and a simulated cornea comprised of a polymeric membrane containing poly-vinyl alcohol 10 % (w/v), gelatin 2.5 % (w/v), and different proportions of mucin and poloxamer, i.e., 1:1 (M1), 1:2 (M2), and 2:1 (M3) w/v, respectively. The support base is designed to move between 0° and 50° to replicate the movement of an eyelid. We challenged the model by testing the residence performance of poloxamer®407 16 % and poloxamer®407 16 % + chitosan 1 % (PLX16CS10) gels containing fluconazole. The test was conducted with a simulated tear flow of 1.0 mL.min-1 for 5 min. The OphthalMimic successfully distinguished PLX16 and PLX16C10 formulations based on their fluconazole drainage (M1: 65 ± 14 % and 27 ± 10 %; M2: 58 ± 6 % and 38 ± 9 %; M3: 56 ± 5 % and 38 ± 18 %). In conclusion, the OphthalMimic is a promising tool for comparing the animal-free performance of ophthalmic formulations.


Asunto(s)
Soluciones Oftálmicas , Poloxámero , Poloxámero/química , Soluciones Oftálmicas/química , Administración Oftálmica , Fluconazol/administración & dosificación , Impresión Tridimensional , Córnea/efectos de los fármacos , Córnea/metabolismo , Animales , Quitosano/química , Alternativas a las Pruebas en Animales/métodos , Lágrimas/química , Humanos , Gelatina/química
2.
Am J Physiol Cell Physiol ; 326(5): C1482-C1493, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38525537

RESUMEN

Corneal fibroblasts maintain homeostasis of the corneal stroma by mediating the synthesis and degradation of extracellular collagen, and these actions are promoted by transforming growth factor-ß (TGF-ß) and interleukin-1ß (IL-1ß), respectively. The cornea is densely innervated with sensory nerve fibers that are not only responsible for sensation but also required for physiological processes such as tear secretion and wound healing. Loss or dysfunction of corneal nerves thus impairs corneal epithelial wound healing and can lead to neurotrophic keratopathy. The sensory neurotransmitter substance P (SP) promotes corneal epithelial wound healing by enhancing the stimulatory effects of growth factors and fibronectin. We have now investigated the role of SP in collagen metabolism mediated by human corneal fibroblasts in culture. Although SP alone had no effect on collagen synthesis or degradation by these cells, it promoted the stimulatory effect of TGF-ß on collagen type I synthesis without affecting that of IL-1ß on the expression of matrix metalloproteinase-1. This effect of SP on TGF-ß-induced collagen synthesis was accompanied by activation of p38 mitogen-activated protein kinase (MAPK) signaling and was attenuated by pharmacological inhibition of p38 or of the neurokinin-1 receptor. Our results thus implicate SP as a modulator of TGF-ß-induced collagen type I synthesis by human corneal fibroblasts, and they suggest that loss of this function may contribute to the development of neurotrophic keratopathy.NEW & NOTEWORTHY This study investigates the role of substance P (SP) in collagen metabolism mediated by human corneal fibroblasts in culture. We found that, although SP alone had no effect on collagen synthesis or degradation by corneal fibroblasts, it promoted the stimulatory effect of transforming growth factor-ß on collagen type I synthesis without affecting that of interleukin-1ß on the expression of matrix metalloproteinase-1.


Asunto(s)
Fibroblastos , Interleucina-1beta , Sustancia P , Factor de Crecimiento Transformador beta , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Sustancia P/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Células Cultivadas , Interleucina-1beta/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/biosíntesis , Receptores de Neuroquinina-1/metabolismo , Córnea/metabolismo , Córnea/efectos de los fármacos , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Colágeno/metabolismo , Colágeno/biosíntesis , Transducción de Señal/efectos de los fármacos , Sustancia Propia/metabolismo , Sustancia Propia/efectos de los fármacos , Queratocitos de la Córnea/metabolismo , Queratocitos de la Córnea/efectos de los fármacos
3.
Small ; 20(29): e2310461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38396201

RESUMEN

Bacteria-induced keratitis is a major cause of corneal blindness in both developed and developing countries. Instillation of antibiotic eyedrops is the most common management of bacterial keratitis but usually suffers from low bioavailability (i.e., <5%) and frequent administration, due to the existence of corneal epithelial barrier that prevents large and hydrophilic drug molecules from entering the cornea, and the tear film on corneal surface that rapidly washes drug away from the cornea. Here, a self-implantable core-shell microneedle (MN) patch with programmed drug release property to facilitate bacterial keratitis treatment is reported. The pH-responsive antimicrobial nanoparticles (NPs), Ag@ZIF-8, which are capable of producing antibacterial metal ions in the infected cornea and generating oxidative stress in bacteria, are loaded in the dissolvable core, while the anti-angiogenic drug, rapamycin (Rapa), is encapsulated in the biodegradable shell, thereby enabling rapid release of Ag@ZIF-8 NPs and sustained release of Rapa after corneal insertion. Owing to the programmed release feature, one single administration of the core-shell MN patch in a rat model of bacterial keratitis, can achieve satisfactory antimicrobial activity and superior anti-angiogenic and anti-inflammation effects as compared to daily topical eyedrops, indicating a great potential for the infectious keratitis therapy in clinics.


Asunto(s)
Liberación de Fármacos , Queratitis , Agujas , Animales , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Ratas , Sirolimus/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/uso terapéutico , Ratas Sprague-Dawley , Córnea/metabolismo , Córnea/efectos de los fármacos , Plata/química , Sistemas de Liberación de Medicamentos
4.
Cytokine ; 179: 156626, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38678810

RESUMEN

PURPOSE: To determine the antifungal, anti-inflammatory and neuroprotective effects of resveratrol (RES) in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Cytotoxicity assay and Draize eye assay were performed to assess the toxicity of RES. The antifungal effect of RES was assessed by minimal inhibitory concentration, scanning or transmission electron microscopy, propidium iodide uptake assay, and Calcofluor white staining. Phosphorylation of p38 MAPK, mRNA and protein levels of Dectin-1 and related inflammatory factors were measured by qRT-PCR, ELISA and Western blot in vitro and in vivo. Clinical score, HE staining, plate count, and myeloperoxidase test were used to observe the progress of fungal keratitis. IF staining, qRT-PCR, and the Von Frey test were selected to assess the neuroprotective effects of RES. RESULTS: RES suppressed A. fumigatus hyphae growth and altered hyphae morphology in vitro. RES decreased the expression of Dectin-1, IL-1ß and TNF-α, as well as p38 MAPK phosphorylation expression, and also decreased clinical scores, reduced inflammatory cell infiltration and neutrophil activity, and decreased fungal load. RES also protected corneal basal nerve fibers, down-regulated mechanosensitivity thresholds, and increased the mRNA levels of CGRP and TRPV-1.. CONCLUSION: These evidences revealed that RES could exert antifungal effects on A. fumigatus and ameliorate FK through suppressing the Dectin-1/p38 MAPK pathway to down-regulate IL-1ß, IL-6, etc. expression and play protective effect on corneal nerves.


Asunto(s)
Antiinflamatorios , Aspergillus fumigatus , Queratitis , Lectinas Tipo C , Fármacos Neuroprotectores , Resveratrol , Proteínas Quinasas p38 Activadas por Mitógenos , Aspergillus fumigatus/efectos de los fármacos , Lectinas Tipo C/metabolismo , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Resveratrol/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Fármacos Neuroprotectores/farmacología , Antiinflamatorios/farmacología , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Antifúngicos/farmacología , Masculino , Transducción de Señal/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Córnea/efectos de los fármacos , Córnea/metabolismo
5.
Exp Eye Res ; 243: 109902, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641196

RESUMEN

Nitrogen mustard (NM) is a potent vesicating chemical warfare agent that is primarily absorbed through skin, inhalation, or ocular surface. Ocular exposure of NM can cause acute to chronic keratopathy which can eventually lead to blindness. There is a current lack of effective countermeasures against ocular exposure of NM despite their imperative need. Herein, we aim to explore the sustained effect of Dexamethasone sodium phosphate (DSP)-loaded polymeric nanoparticles (PLGA-DSP-NP) following a single subconjunctival injection in the management and prevention of corneal injury progression upon exposure to NM. DSP is an FDA approved corticosteroid with proven anti-inflammatory properties. We formulated PLGA-DSP-NP with zinc chelation ion bridging method using PLGA polymer, with particles of approximately 250 nm and a drug loading of 6.5 wt%. Under in vitro sink conditions, PLGA-DSP-NP exhibited a sustained drug release for two weeks. Notably, in NM injured cornea, a single subconjunctival (SCT) injection of PLGA-DSP-NP outperformed DSP eyedrops (0.1%), DSP solution, placebo NP, and saline, significantly mitigating corneal neovascularization, ulceration, and opacity for the two weeks study period. Through PLGA-DSP-NP injection, sustained DSP release hindered inflammatory cytokine recruitment, angiogenic factors, and endothelial cell proliferation in the cornea. This strategy presents a promising localized corticosteroid delivery system to effectively combat NM-induced corneal injury, offering insights into managing vesicant exposure.


Asunto(s)
Dexametasona , Mecloretamina , Nanopartículas , Dexametasona/análogos & derivados , Animales , Mecloretamina/toxicidad , Modelos Animales de Enfermedad , Lesiones de la Cornea/prevención & control , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/patología , Lesiones de la Cornea/tratamiento farmacológico , Glucocorticoides , Sustancias para la Guerra Química/toxicidad , Ratones , Quemaduras Químicas/prevención & control , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/prevención & control , Conejos , Córnea/efectos de los fármacos , Córnea/patología , Córnea/metabolismo
6.
Exp Eye Res ; 243: 109914, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685338

RESUMEN

A-scan ultrasonography enables precise measurement of internal ocular structures. Historically, its use has underpinned fundamental studies of eye development and aberrant eye growth in animal models of myopia; however, the procedure typically requires anaesthesia. Since anaesthesia affects intra-ocular pressure (IOP), we investigated changes in internal ocular structures with isoflurane exposure and compared measurements with those taken in awake animals using optical coherence tomography (OCT). Continuous A-scan ultrasonography was undertaken in tri-coloured guinea pigs aged 21 (n = 5), 90 (n = 5) or 160 (n = 5) days while anaesthetised (up to 36 min) with isoflurane (5% in 1.5L/min O2). Peaks were selected from ultrasound traces corresponding to the boundaries of the cornea, crystalline lens, retina, choroid and sclera. OCT scans (Zeiss Cirrus Photo 800) of the posterior eye layers were taken in 28-day-old animals (n = 19) and compared with ultrasound traces, with choroid and scleral thickness adjusted for the duration of anaesthesia based on the changes modelled in 21-day-old animals. Ultrasound traces recorded sequentially in left and right eyes in 14-day-old animals (n = 30) were compared, with each adjusted for anaesthesia duration. The thickness of the cornea was measured in enucleated eyes (n = 5) using OCT following the application of ultrasound gel (up to 20 min). Retinal thickness was the only ultrasound internal measure unaffected by anaesthesia. All other internal distances rapidly changed and were well fitted by exponential functions (either rise-to-max or decay). After 10 and 20 min of anaesthesia, the thickness of the cornea, crystalline lens and sclera increased by 17.1% and 23.3%, 0.4% and 0.6%, and 5.2% and 6.5% respectively, whilst the anterior chamber, vitreous chamber and choroid decreased by 4.4% and 6.1%, 0.7% and 1.1%, and 10.7% and 11.8% respectively. In enucleated eyes, prolonged contact of the cornea with ultrasound gel resulted in an increase in thickness of 9.3% after 10 min, accounting for approximately half of the expansion observed in live animals. At the back of the eye, ultrasound measurements of the thickness of the retina, choroid and sclera were highly correlated with those from posterior segment OCT images (R2 = 0.92, p = 1.2 × 10-13, R2 = 0.55, p = 4.0 × 10-4, R2 = 0.72, p = 5.0 × 10-6 respectively). Furthermore, ultrasound measures for all ocular components were highly correlated in left and right eyes measured sequentially, when each was adjusted for anaesthetic depth. This study shows that the depth of ocular components can change dramatically with anaesthesia. Researchers should therefore be wary of these concomitant effects and should employ adjustments to better render 'true' values.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Tomografía de Coherencia Óptica , Ultrasonografía , Animales , Tomografía de Coherencia Óptica/métodos , Cobayas , Isoflurano/farmacología , Anestésicos por Inhalación/farmacología , Coroides/efectos de los fármacos , Coroides/diagnóstico por imagen , Envejecimiento/fisiología , Presión Intraocular/efectos de los fármacos , Presión Intraocular/fisiología , Córnea/efectos de los fármacos , Córnea/diagnóstico por imagen , Retina/efectos de los fármacos , Retina/diagnóstico por imagen , Esclerótica/efectos de los fármacos , Esclerótica/diagnóstico por imagen , Factores de Tiempo , Ojo/diagnóstico por imagen , Ojo/efectos de los fármacos , Modelos Animales de Enfermedad , Cristalino/diagnóstico por imagen , Cristalino/efectos de los fármacos
7.
Virol J ; 21(1): 118, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802860

RESUMEN

Herpes simplex virus type 1 (HSV-1) infection of the eyes results in herpes simplex keratitis (HSK), which has led to vision loss and even blindness in patients. However, the rate of drug resistance in HSV is on the rise; therefore, new antiviral agents with sufficient safety profiles must be developed. At present, we assessed the anti-HSV-1 activity of 502 natural compounds and their ability to reduce the HSV-1-induced cytopathic effect. We chose harmol for further studies because it exhibited the highest antiviral activity. We found that harmol inhibited both HSV-1 F and HSV-1/153 (a clinical drug-resistant strain) replication, with an EC50 of 9.34 µM and 5.84 µM, respectively. Moreover, harmol reduced HSV-1 replication in corneal tissues and viral progeny production in tears, and also alleviated early corneal surface lesions related to HSK. For example, harmol treatment preserved corneal thickness and nerve density in HSK mice. Interestingly, harmol also showed a promising antiviral effect on HSV-1/153 induced HSK in mouse model. Furthermore, harmol combined with acyclovir (ACV) treatment showed a greater antiviral effect than either one alone in vitro. Therefore, harmol may be a promising therapeutic agent for managing HSK.


Asunto(s)
Antivirales , Modelos Animales de Enfermedad , Herpesvirus Humano 1 , Queratitis Herpética , Replicación Viral , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Queratitis Herpética/tratamiento farmacológico , Queratitis Herpética/virología , Ratones , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Replicación Viral/efectos de los fármacos , Aciclovir/farmacología , Aciclovir/uso terapéutico , Córnea/virología , Córnea/efectos de los fármacos , Córnea/patología , Chlorocebus aethiops , Humanos , Femenino , Células Vero , Ratones Endogámicos BALB C
8.
Arch Microbiol ; 206(8): 358, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033220

RESUMEN

Fungal keratitis is a severe corneal infection characterized by suppurative and ulcerative lesions. Aspergillus fumigatus is a common cause of fungal keratitis. Antifungal drugs, such as natamycin, are currently the first-line treatment for fungal keratitis, but their ineffectiveness leads to blindness and perforation. Additionally, the development of fungal resistance makes treating fungal keratitis significantly more challenging. The present study used platelet-derived biomaterial (PDB) to manage A. fumigatus keratitis in the animal model. Freezing and thawing processes were used to prepare PDB, and then A. fumigatus keratitis was induced in the mice. Topical administration of PDB, natamycin, and plasma was performed; quantitative real-time PCR (qPCR) and histopathologic examination (HE) were used to assess the inhibitory effect of the mentioned compounds against fungal keratitis. The qPCR results showed that PDB significantly decreased the count of A. fumigatus compared to the control group (P-value ≤ 5). Natamycin also remarkably reduced the count of fungi in comparison to the untreated animal, but its inhibitory effect was not better than PDB (P-value > 5). The findings of HE also demonstrated that treatment with PDB and natamycin decreased the fungal loads in the corneal tissue. However, plasma did not show a significant inhibitory effect against A. fumigatus. PDB is intrinsically safe and free of any infections or allergic responses; additionally, this compound has a potential role in decreasing the burden of A. fumigatus and treating fungal keratitis. Therefore, scientists should consider PDB an applicable approach to managing fungal keratitis and an alternative to conventional antifungal agents.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Queratitis , Aspergillus fumigatus/efectos de los fármacos , Animales , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Modelos Animales de Enfermedad , Materiales Biocompatibles , Plaquetas/efectos de los fármacos , Natamicina/farmacología , Natamicina/administración & dosificación , Natamicina/uso terapéutico , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Córnea/microbiología , Córnea/patología , Córnea/efectos de los fármacos
9.
BMC Vet Res ; 20(1): 153, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659026

RESUMEN

BACKGROUND: Melting corneal ulcers are a serious condition that affects a great number of animals and people around the world and it is characterised by a progressive weakening of the tissue leading to possible severe ophthalmic complications, such as visual impairment or blindness. This disease is routinely treated with medical therapy and keratoplasty, and recently also with alternative regenerative therapies, such as cross-linking, amniotic membrane transplant, and laser. Plasma medicine is another recent example of regenerative treatment that showed promising results in reducing the microbial load of corneal tissue together with maintaining its cellular vitality. Since the effect of helium plasma application on corneal mechanical viscoelasticity has not yet been investigated, the aim of this study is first to evaluate it on ex vivo porcine corneas for different exposition times and then to compare the results with previous data on cross-linking treatment. RESULTS: 94 ex vivo porcine corneas divided into 16 populations (healthy or injured, fresh or cultured and treated or not with plasma or cross-linking) were analysed. For each population, a biomechanical analysis was performed by uniaxial stress-relaxation tests, and a statistical analysis was carried out considering the characteristic mechanical parameters. In terms of equilibrium normalised stress, no statistically significant difference resulted when the healthy corneas were compared with lesioned plasma-treated ones, independently of treatment time, contrary to what was obtained about the cross-linking treated corneas which exhibited more intense relaxation phenomena. CONCLUSIONS: In this study, the influence of the Helium plasma treatment was observed on the viscoelasticity of porcine corneas ex vivo, by restoring in lesioned tissue a degree of relaxation similar to the one of the native tissue, even after only 2 min of application. Therefore, the obtained results suggest that plasma treatment is a promising new regenerative ophthalmic therapy for melting corneal ulcers, laying the groundwork for further studies to correlate the mechanical findings with corneal histology and ultrastructural anatomy after plasma treatment.


Asunto(s)
Córnea , Helio , Gases em Plasma , Animales , Porcinos , Córnea/efectos de los fármacos , Gases em Plasma/farmacología , Gases em Plasma/uso terapéutico , Fenómenos Biomecánicos , Álcalis , Presión Atmosférica , Úlcera de la Córnea/veterinaria , Úlcera de la Córnea/terapia
10.
Biol Pharm Bull ; 47(5): 1033-1042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38797668

RESUMEN

Eye drops, including solutions and suspensions, are essential dosage forms to treat ophthalmic diseases, with poorly water-soluble drugs typically formulated as ophthalmic suspensions. In addition to low bioavailability, suspensions exhibit limited efficacy, safety, and usability due to the presence of drug particles. Improving bioavailability can reduce the drug concentrations and the risk of problems associated with suspended drug particles. However, practical penetration enhancers capable of improving bioavailability remain elusive. Herein, we focused on penetratin (PNT), a cell-penetrating peptide (CPP) that promotes active cellular transport related to macromolecule uptake, such as micropinocytosis. According to the in vitro corneal uptake study using a reconstructed human corneal epithelial tissue model, LabCyte CORNEA-MODEL24, PNT enhanced the uptake of Fluoresbrite® YG carboxylate polystyrene microspheres without covalent binding. In an ex vivo porcine eye model, the addition of 10 µM PNT to rebamipide ophthalmic suspension markedly improved the corneal uptake of rebamipide; however, the addition of 100 µM PNT was ineffective due to potentially increased particle size by aggregation. This article provides basic information on the application of PNT as a penetration enhancer in ophthalmic suspensions, including the in vitro and ex vivo studies mentioned above, as well as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and storage stability at different pH values.


Asunto(s)
Péptidos de Penetración Celular , Córnea , Soluciones Oftálmicas , Suspensiones , Animales , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/administración & dosificación , Soluciones Oftálmicas/administración & dosificación , Humanos , Córnea/metabolismo , Córnea/efectos de los fármacos , Porcinos , Quinolonas/administración & dosificación , Quinolonas/farmacocinética , Quinolonas/química , Administración Oftálmica , Disponibilidad Biológica , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Tamaño de la Partícula , Alanina/análogos & derivados
11.
J Nanobiotechnology ; 22(1): 290, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802884

RESUMEN

Corneal neovascularization (CNV) is one of the common blinding factors worldwide, leading to reduced vision or even blindness. However, current treatments such as surgical intervention and anti-VEGF agent therapy still have some shortcomings or evoke some adverse effects. Recently, SU6668, an inhibitor targeting angiogenic tyrosine kinases, has demonstrated growth inhibition of neovascularization. But the hydrophobicity and low ocular bioavailability limit its application in cornea. Hereby, we proposed the preparation of SU6668 pure nanoparticles (NanoSU6668; size ~135 nm) using a super-stable pure-nanomedicine formulation technology (SPFT), which possessed uniform particle size and excellent aqueous dispersion at 1 mg/mL. Furthermore, mesenchymal stem cell membrane vesicle (MSCm) was coated on the surface of NanoSU6668, and then conjugated with TAT cell penetrating peptide, preparing multifunctional TAT-MSCm@NanoSU6668 (T-MNS). The T-MNS at a concentration of 200 µg/mL was treated for CNV via eye drops, and accumulated in blood vessels with a high targeting performance, resulting in elimination of blood vessels and recovery of cornea transparency after 4 days of treatment. Meanwhile, drug safety test confirmed that T-MNS did not cause any damage to cornea, retina and other eye tissues. In conclusion, the T-MNS eye drop had the potential to treat CNV effectively and safely in a low dosing frequency, which broke new ground for CNV theranostics.


Asunto(s)
Córnea , Neovascularización de la Córnea , Nanopartículas , Soluciones Oftálmicas , Neovascularización de la Córnea/tratamiento farmacológico , Animales , Nanopartículas/química , Soluciones Oftálmicas/química , Córnea/metabolismo , Córnea/efectos de los fármacos , Ratones , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Tamaño de la Partícula , Humanos , Masculino , Ratones Endogámicos C57BL , Conejos
12.
J Nanobiotechnology ; 22(1): 229, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720321

RESUMEN

Efficiently removing excess reactive oxygen species (ROS) generated by various factors on the ocular surface is a promising strategy for preventing the development of dry eye disease (DED). The currently available eye drops for DED treatment are palliative, short-lived and frequently administered due to the short precorneal residence time. Here, we developed nanozyme-based eye drops for DED by exploiting borate-mediated dynamic covalent complexation between n-FeZIF-8 nanozymes (n-Z(Fe)) and poly(vinyl alcohol) (PVA) to overcome these problems. The resultant formulation (PBnZ), which has dual-ROS scavenging abilities and prolonged corneal retention can effectively reduce oxidative stress, thereby providing an excellent preventive effect to alleviate DED. In vitro and in vivo experiments revealed that PBnZ could eliminate excess ROS through both its multienzyme-like activity and the ROS-scavenging activity of borate bonds. The positively charged nanozyme-based eye drops displayed a longer precorneal residence time due to physical adhesion and the dynamic borate bonds between phenyboronic acid and PVA or o-diol with mucin. The in vivo results showed that eye drops could effectively alleviate DED. These dual-function PBnZ nanozyme-based eye drops can provide insights into the development of novel treatment strategies for DED and other ROS-mediated inflammatory diseases and a rationale for the application of nanomaterials in clinical settings.


Asunto(s)
Síndromes de Ojo Seco , Soluciones Oftálmicas , Especies Reactivas de Oxígeno , Soluciones Oftálmicas/química , Soluciones Oftálmicas/farmacología , Síndromes de Ojo Seco/tratamiento farmacológico , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Córnea/efectos de los fármacos , Córnea/metabolismo , Alcohol Polivinílico/química , Humanos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Boratos/química , Nanopartículas/química , Masculino
13.
J Nanobiotechnology ; 22(1): 417, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014353

RESUMEN

Sirolimus (SR) is a macrolide with antifungal and antitumor immunosuppressant properties, classified as a selective inhibitor of mammalian target of rapamycin (mTOR). In this study, an ionic in situ gel of SR (SR-SUS-ISG) was formulated using gellan gum, exhibiting stability regardless of temperature and pH variations, causing minimal irritation. Harnessing the physiological conditions of the eye, SR-SUS-ISG underwent gelation upon contact with ions, increasing drug viscosity and prolonging retention on the ocular surface. Concurrently, SR-SUS-ISG displayed favorable shear dilution properties, reducing viscosity at ambient temperature, enhancing fluidity, and facilitating convenient packaging and transport. Biocompatibility assessments on both human corneal epithelial cells and rabbit eyes demonstrated that SR-SUS-ISG could well be tolerated. Pharmacokinetic investigations in rabbit ocular aqueous humor revealed sustained release, improved corneal penetration, and enhanced bioavailability. Additionally, in a rat corneal alkali burn model, SR-SUS-ISG exhibited inhibitory effects on corneal neovascularization, associated with decreased levels of the inflammatory factors VEGF and MMPs. These findings suggested that SR-SUS-ISG held promise as an effective ocular drug delivery system.


Asunto(s)
Geles , Sirolimus , Animales , Conejos , Sirolimus/farmacología , Sirolimus/farmacocinética , Sirolimus/química , Humanos , Geles/química , Córnea/efectos de los fármacos , Córnea/metabolismo , Ratas , Masculino , Polisacáridos Bacterianos/química , Nanopartículas/química , Administración Oftálmica , Neovascularización de la Córnea/tratamiento farmacológico , Ratas Sprague-Dawley , Viscosidad , Sistemas de Liberación de Medicamentos , Soluciones Oftálmicas/química , Soluciones Oftálmicas/farmacología , Línea Celular , Disponibilidad Biológica
14.
J Nanobiotechnology ; 22(1): 233, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725011

RESUMEN

BACKGROUND: Dry Eye Disease (DED) is a prevalent multifactorial ocular disease characterized by a vicious cycle of inflammation, oxidative stress, and mitochondrial dysfunction on the ocular surface, all of which lead to DED deterioration and impair the patients' quality of life and social functioning. Currently, anti-inflammatory drugs have shown promising efficacy in treating DED; however, such drugs are associated with side effects. The bioavailability of ocular drugs is less than 5% owing to factors such as rapid tear turnover and the presence of the corneal barrier. This calls for investigations to overcome these challenges associated with ocular drug administration. RESULTS: A novel hierarchical action liposome nanosystem (PHP-DPS@INS) was developed in this study. In terms of delivery, PHP-DPS@INS nanoparticles (NPs) overcame the ocular surface transport barrier by adopting the strategy of "ocular surface electrostatic adhesion-lysosomal site-directed escape". In terms of therapy, PHP-DPS@INS achieved mitochondrial targeting and antioxidant effects through SS-31 peptide, and exerted an anti-inflammatory effect by loading insulin to reduce mitochondrial inflammatory metabolites. Ultimately, the synergistic action of "anti-inflammation-antioxidation-mitochondrial function restoration" breaks the vicious cycle associated with DED. The PHP-DPS@INS demonstrated remarkable cellular uptake, lysosomal escape, and mitochondrial targeting in vitro. Targeted metabolomics analysis revealed that PHP-DPS@INS effectively normalized the elevated level of mitochondrial proinflammatory metabolite fumarate in an in vitro hypertonic model of DED, thereby reducing the levels of key inflammatory factors (IL-1ß, IL-6, and TNF-α). Additionally, PHP-DPS@INS strongly inhibited reactive oxygen species (ROS) production and facilitated mitochondrial structural repair. In vivo, the PHP-DPS@INS treatment significantly enhanced the adhesion duration and corneal permeability of the ocular surface in DED mice, thereby improving insulin bioavailability. It also restored tear secretion, suppressed ocular surface damage, and reduced inflammation in DED mice. Moreover, it demonstrated favorable safety profiles both in vitro and in vivo. CONCLUSION: In summary, this study successfully developed a comprehensive DED management nanosystem that overcame the ocular surface transmission barrier and disrupted the vicious cycle that lead to dry eye pathogenesis. Additionally, it pioneered the regulation of mitochondrial metabolites as an anti-inflammatory treatment for ocular conditions, presenting a safe, efficient, and innovative therapeutic strategy for DED and other inflammatory diseases.


Asunto(s)
Síndromes de Ojo Seco , Inflamación , Liposomas , Mitocondrias , Estrés Oxidativo , Síndromes de Ojo Seco/tratamiento farmacológico , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Liposomas/química , Inflamación/tratamiento farmacológico , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Nanopartículas/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Córnea/metabolismo , Córnea/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Oligopéptidos
15.
Eye Contact Lens ; 50(8): 348-356, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38865592

RESUMEN

OBJECTIVES: To investigate the effect of topical 0.05% cyclosporine A (CsA) eye drops as an adjunct to conventional therapy in maintaining post-femtosecond-assisted laser in situ keratomileusis (FS-LASIK) ocular surface stability. METHODS: Sixty-six patients (eyes) undergoing FS-LASIK were randomized into 2 groups: 33 patients (eyes) in group I (conventional treatment group) and 33 patients (eyes) in group II (CsA group). Conventional treatments include topical levofloxacin, fluorometholone, and artificial tears. Group II received topical 0.05% CsA eye drops twice daily for three months in addition to conventional treatment. Ocular Surface Disease Index (OSDI), numerical rating scale (NRS), tear break-up time (TBUT), Schirmer I test (SIt), corneal fluorescein staining (CFS), conjunctival lissamine green (LG) staining, corneal sensitivity, and corneal nerve morphology were measured. In addition, tear inflammatory cytokine levels were measured using the Luminex assay. Follow-up was performed preoperatively and 1 and 3 months postoperatively. RESULTS: In the CsA group, OSDI, TBUT, LG, corneal sensitivity, and corneal nerve fiber total branch density recovered better than in the conventional treatment group. As for tear inflammatory cytokines, interferon (INF) -γ, interleukin (IL)-10, and IL-6 levels were significantly higher in the conventional treatment group as compared with the CsA group. In addition, no significant differences in NRS, SIt, and CFS scores were observed between the two groups. CONCLUSION: In conclusion, 0.05% CsA eye drops is a useful adjunct to conventional treatment for restoring the ocular surface stability after corneal refractive surgery and is more potent in sustaining anti-inflammatory effects.


Asunto(s)
Córnea , Ciclosporina , Inmunosupresores , Queratomileusis por Láser In Situ , Soluciones Oftálmicas , Lágrimas , Humanos , Ciclosporina/administración & dosificación , Masculino , Soluciones Oftálmicas/administración & dosificación , Femenino , Queratomileusis por Láser In Situ/métodos , Adulto , Lágrimas/metabolismo , Inmunosupresores/administración & dosificación , Adulto Joven , Córnea/efectos de los fármacos , Síndromes de Ojo Seco/tratamiento farmacológico , Miopía/cirugía , Miopía/tratamiento farmacológico , Láseres de Excímeros/uso terapéutico , Estudios Prospectivos , Administración Tópica
16.
Altern Lab Anim ; 52(3): 149-154, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606566

RESUMEN

In the cosmetics sector, many products such as shampoos have a probability of accidental ocular exposure during their routine use. One very specific safety parameter is the residence time of the substance on the corneal surface, as prolonged exposure may cause injury. In this study, we developed a system that simulates corneal exposure to blinking and tear flow, for comparing the corneal clearance times of viscous detergent formulations. The Ex Vivo Eye Irritation Test (EVEIT), which uses corneal explants from discarded rabbit eyes from an abattoir, was used as the basis for the new system. To simulate blinking, we developed a silicone wiping membrane to regularly move across the corneal surface, under conditions of constant addition and aspiration of fluid, to mimic tear flow. Six shampoo formulations were tested and were shown to differ widely in their corneal clearance time. Three groups could be identified according to the observed clearance times (fast, intermediate and slow); the reference shampoo had the shortest clearance time of all tested formulations. With this new system, it is now possible to investigate an important physicochemical parameter, i.e. corneal clearance time, for the consideration of ocular safety during the development of novel cosmetic formulations.


Asunto(s)
Parpadeo , Córnea , Animales , Conejos , Córnea/efectos de los fármacos , Parpadeo/efectos de los fármacos , Alternativas a las Pruebas en Animales/métodos , Preparaciones para el Cabello , Lágrimas/efectos de los fármacos
17.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612568

RESUMEN

We have previously shown that PM10 exposure causes oxidative stress and reduces Nrf2 protein levels, and SKQ1 pre-treatment protects against this damage in human corneal epithelial cells (HCE-2). The current study focuses on uncovering the mechanisms underlying acute PM10 toxicity and SKQ1-mediated protection. HCE-2 were pre-treated with SKQ1 and then exposed to 100 µg/mL PM10. Cell viability, oxidative stress markers, programmed cell death, DNA damage, senescence markers, and pro-inflammatory cytokines were analyzed. Nrf2 cellular location and its transcriptional activity were determined. Effects of the Nrf2 inhibitor ML385 were similarly evaluated. Data showed that PM10 decreased cell viability, Nrf2 transcriptional activity, and mRNA levels of antioxidant enzymes, but increased p-PI3K, p-NFκB, COX-2, and iNOS proteins levels. Additionally, PM10 exposure significantly increased DNA damage, phosphor-p53, p16 and p21 protein levels, and ß-galactosidase (ß-gal) staining, which confirmed the senescence. SKQ1 pre-treatment reversed these effects. ML385 lowered the Nrf2 protein levels and mRNA levels of its downstream targets. ML385 also abrogated the protective effects of SKQ1 against PM10 toxicity by preventing the restoration of cell viability and reduced oxidative stress. In conclusion, PM10 induces inflammation, reduces Nrf2 transcriptional activity, and causes DNA damage, leading to a senescence-like phenotype, which is prevented by SKQ1.


Asunto(s)
Córnea , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Material Particulado , Humanos , Córnea/efectos de los fármacos , Córnea/metabolismo , Factor 2 Relacionado con NF-E2/genética , ARN Mensajero/genética , Material Particulado/toxicidad
18.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928268

RESUMEN

Human corneal fibrosis can lead to opacity and ultimately partial or complete vision loss. Currently, corneal transplantation is the only treatment for severe corneal fibrosis and comes with the risk of rejection and donor shortages. Sphingolipids (SPLs) are known to modulate fibrosis in various tissues and organs, including the cornea. We previously reported that SPLs are tightly related to both, transforming growth factor beta (TGF-ß) signaling and corneal fibrogenesis. The aim of this study was to investigate the effects of sphingosine-1-phosphate (S1P) and S1P inhibition on specific TGF-ß and SPL family members in corneal fibrosis. Healthy human corneal fibroblasts (HCFs) were isolated and cultured in EMEM + FBS + VitC (construct medium) on 3D transwells for 4 weeks. The following treatments were prepared in a construct medium: 0.1 ng/mL TGF-ß1 (ß1), 1 µM sphingosine-1-phosphate (S1P), and 5 µM Sphingosine kinase inhibitor 2 (I2). Five groups were tested: (1) control (no treatment); rescue groups; (2) ß1/S1P; (3) ß1/I2; prevention groups; (4) S1P/ß1; and (5) I2/ß1. Each treatment was administered for 2 weeks with one treatment and switched to another for 2 weeks. Using Western blot analysis, the 3D constructs were examined for the expression of fibrotic markers, SPL, and TGF-ß signaling pathway members. Scratch assays from 2D cultures were also utilized to evaluate cell migration We observed reduced fibrotic expression and inactivation of latent TGF-ß binding proteins (LTBPs), TGF-ß receptors, Suppressor of Mothers Against Decapentaplegic homologs (SMADs), and SPL signaling following treatment with I2 prevention and rescue compared to S1P prevention and rescue, respectively. Furthermore, we observed increased cell migration following stimulation with I2 prevention and rescue groups, with decreased cell migration following stimulation with S1P prevention and rescue groups after 12 h and 18 h post-scratch. We have demonstrated that I2 treatment reduced fibrosis and modulated the inactivation of LTBPs, TGF-ß receptors, SPLs, and the canonical downstream SMAD pathway. Further investigations are warranted in order to fully uncover the potential of utilizing SphK I2 as a novel therapy for corneal fibrosis.


Asunto(s)
Córnea , Fibrosis , Lisofosfolípidos , Transducción de Señal , Esfingosina , Factor de Crecimiento Transformador beta , Humanos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacología , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Córnea/metabolismo , Córnea/patología , Córnea/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Células Cultivadas , Esfingolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Enfermedades de la Córnea/metabolismo , Enfermedades de la Córnea/patología , Enfermedades de la Córnea/tratamiento farmacológico
19.
AAPS PharmSciTech ; 25(5): 92, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684590

RESUMEN

PURPOSE: Dry eye syndrome (DES), arising from various etiologic factors, leads to tear film instability and ocular surface damage. Given its anti-inflammatory effects, cyclosporine A (CsA) has been widely used as a short-term treatment option for DES. However, poor bioavailability and solubility of CsA in aqueous phase make the development of a cyclosporine A-based eye drop for ocular topical application a huge challenge. METHODS: In this study, a novel strategy for preparing cyclosporine A-loaded silk fibroin nanoemulsion gel (CsA NBGs) was proposed to address these barriers. Additionally, the rheological properties, ocular irritation potential, tear elimination kinetics, and pharmacodynamics based on a rabbit dry eye model were investigated for the prepared CsA NBGs. Furthermore, the transcorneal mechanism across the ocular barrier was also investigated. RESULTS: The pharmacodynamics and pharmacokinetics of CsA NBGs exhibited superior performance compared to cyclosporine eye drops, leading to a significant enhancement in the bioavailability of CsA NBGs. Furthermore, our investigation into the transcorneal mechanism of CsA NBGs revealed their ability to be absorbed by corneal epithelial cells via the paracellular pathway. CONCLUSION: The CsA NBG formulation exhibits promising potential for intraocular drug delivery, enabling safe, effective, and controlled administration of hydrophobic drugs into the eye. Moreover, it enhances drug retention within the ocular tissues and improves systemic bioavailability, thereby demonstrating significant clinical translational prospects.


Asunto(s)
Disponibilidad Biológica , Ciclosporina , Síndromes de Ojo Seco , Fibroínas , Geles , Soluciones Oftálmicas , Conejos , Animales , Fibroínas/química , Ciclosporina/administración & dosificación , Ciclosporina/farmacocinética , Ciclosporina/química , Síndromes de Ojo Seco/tratamiento farmacológico , Soluciones Oftálmicas/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Administración Oftálmica , Solubilidad , Masculino , Emulsiones/química , Córnea/metabolismo , Córnea/efectos de los fármacos , Modelos Animales de Enfermedad
20.
Exp Eye Res ; 226: 109338, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470430

RESUMEN

Corneal wound healing is integral for resolution of corneal disease or for post-operative healing. However, corneal scarring that may occur secondary to this process can significantly impair vision. Tissue transglutaminase 2 (TGM2) inhibition has shown promising antifibrotic effects and thus holds promise to prevent or treat corneal scarring. The commercially available ocular solution for treatment of ocular manifestations of Cystinosis, Cystaran®, contains the TGM2 inhibitor cysteamine hydrochloride (CH). The purpose of this study is to assess the safety of CH on corneal epithelial and stromal wounds, its effects on corneal wound healing, and its efficacy against corneal scarring following wounding. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were first used to quantify and localize TGM2 expression in the cornea. Subsequently, (i) the in vitro effects of CH at 0.163, 1.63, and 16.3 mM on corneal epithelial cell migration was assessed with an epithelial cell migration assay, and (ii) the in vivo effects of application of 1.63 mM CH on epithelial and stromal wounds was assessed in a rabbit model with ophthalmic examinations, inflammation scoring, color and fluorescein imaging, optical coherence tomography (OCT), and confocal biomicroscopy. Post-mortem assessment of corneal tissue post-stromal wounding included biomechanical characterization (atomic force microscopy (AFM)), histology (H&E staining), and determining incidence of myofibroblasts (immunostaining against α-SMA) in wounded corneal tissue. TGM2 expression was highest in corneal epithelial cells. Application of the TGM2 inhibitor CH did not affect in vitro epithelial cell migration at the two lower concentrations tested. At 16.3 mM, decreased cell migration was observed. In vivo application of CH at 57 mM was well tolerated and did not adversely affect wound healing. No difference in corneal scarring was found between CH treated and vehicle control eyes. This study shows that the TGM2 inhibitor CH, at the FDA-approved dose, is well tolerated in a rabbit model of corneal wound healing and does not adversely affect epithelial or stromal wound healing. This supports the safe use of this medication in Cystinosis patients with open corneal wounds. CH did not have an effect on corneal scarring in this study, suggesting that Cystaran® administration to patients with corneal wounds is unlikely to decrease corneal fibrosis.


Asunto(s)
Lesiones de la Cornea , Cisteamina , Cistinosis , Epitelio Corneal , Animales , Conejos , Cicatriz/metabolismo , Córnea/efectos de los fármacos , Córnea/metabolismo , Enfermedades de la Córnea/patología , Lesiones de la Cornea/tratamiento farmacológico , Lesiones de la Cornea/metabolismo , Cisteamina/farmacología , Cisteamina/uso terapéutico , Cisteamina/metabolismo , Cistinosis/metabolismo , Cistinosis/patología , Epitelio Corneal/patología , Proteína Glutamina Gamma Glutamiltransferasa 2/antagonistas & inhibidores , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA