Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(22): e2118240119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35613055

RESUMEN

Adult hippocampal neurogenesis is critical for learning and memory, and aberrant adult neurogenesis has been implicated in cognitive decline associated with aging and neurological diseases [J. T. Gonçalves, S. T. Schafer, F. H. Gage, Cell 167, 897­914 (2016)]. In previous studies, we observed that the delayed-rectifier voltage-gated potassium channel Kv1.1 controls the membrane potential of neural stem and progenitor cells and acts as a brake on neurogenesis during neonatal hippocampal development [S. M. Chou et al., eLife 10, e58779 (2021)]. To assess the role of Kv1.1 in adult hippocampal neurogenesis, we developed an inducible conditional knockout mouse to specifically remove Kv1.1 from adult neural stem cells via tamoxifen administration. We determined that Kv1.1 deletion in adult neural stem cells causes overproliferation and depletion of radial glia-like neural stem cells, prevents proper adult-born granule cell maturation and integration into the dentate gyrus, and moderately impairs hippocampus-dependent contextual fear learning and memory. Taken together, these findings support a critical role for this voltage-gated ion channel in adult neurogenesis.


Asunto(s)
Condicionamiento Clásico , Hipocampo , Canal de Potasio Kv.1.1 , Células-Madre Neurales , Neurogénesis , Neuronas , Animales , Miedo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/fisiología , Ratones , Ratones Noqueados , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología
2.
J Neurophysiol ; 125(5): 1954-1972, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33852808

RESUMEN

Temporal coding precision of bushy cells in the ventral cochlear nucleus (VCN), critical for sound localization and communication, depends on the generation of rapid and temporally precise action potentials (APs). Voltage-gated potassium (Kv) channels are critically involved in this. The bushy cells in rat VCN express Kv1.1, 1.2, 1.3, 1.6, 3.1, 4.2, and 4.3 subunits. The Kv1.1 subunit contributes to the generation of a temporally precise single AP. However, the understanding of the functions of other Kv subunits expressed in the bushy cells is limited. Here, we investigated the functional diversity of Kv subunits concerning their contributions to temporal coding. We characterized the electrophysiological properties of the Kv channels with different subunits using whole cell patch-clamp recording and pharmacological methods. The neuronal firing pattern changed from single to multiple APs only when the Kv1.1 subunit was blocked. The Kv subunits, including the Kv1.1, 1.2, 1.6, or 3.1, were involved in enhancing temporal coding by lowering membrane excitability, shortening AP latencies, reducing jitter, and regulating AP kinetics. Meanwhile, all the Kv subunits contributed to rapid repolarization and sharpening peaks by narrowing half-width and accelerating fall rate, and the Kv1.1 subunit also affected the depolarization of AP. The Kv1.1, 1.2, and 1.6 subunits endowed bushy cells with a rapid time constant and a low input resistance of membrane for enhancing spike timing precision. The present results indicate that the Kv channels differentially affect intrinsic membrane properties to optimize the generation of rapid and reliable APs for temporal coding.NEW & NOTEWORTHY This study investigates the roles of Kv channels in effecting precision using electrophysiological and pharmacological methods in bushy cells. Different Kv channels have varying electrophysiological characteristics, which contribute to the interplay between changes in the membrane properties and regulation of neuronal excitability which then improve temporal coding. We conclude that the Kv channels are specialized to promote the precise and rapid coding of acoustic input by optimizing the generation of reliable APs.


Asunto(s)
Potenciales de Acción/fisiología , Núcleo Coclear/fisiología , Neuronas/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Femenino , Canal de Potasio Kv.1.1/antagonistas & inhibidores , Canal de Potasio Kv.1.1/fisiología , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Canal de Potasio Kv.1.2/fisiología , Canal de Potasio Kv1.6/antagonistas & inhibidores , Canal de Potasio Kv1.6/fisiología , Masculino , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley
3.
Epilepsia ; 61(12): 2836-2846, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33104247

RESUMEN

OBJECTIVE: Leucine-rich glioma-inactivated 1 (LGI1) is a secreted transsynaptic protein that interacts presynaptically with Kv1.1 potassium channels and a disintegrin and metalloprotease (ADAM) protein 23, and postsynaptically influences α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors through a direct link with the ADAM22 cell adhesion protein. Haploinsufficiency of LGI1 or autoantibodies directed against LGI1 are associated with human epilepsy, generating the hypothesis that a subacute reduction of LGI1 is sufficient to increase network excitability. METHODS: We tested this hypothesis in ex vivo hippocampal slices and in neuronal cultures, by subacutely reducing LGI1 expression with shRNA. RESULTS: Injection of shRNA-LGI1 in the hippocampus increased dentate granule cell excitability and low-frequency facilitation of mossy fibers to CA3 pyramidal cell neurotransmission. Application of the Kv1 family blocker, α-dendrotoxin, occluded this effect, implicating the involvement of Kv1.1. This subacute reduction of LGI1 was also sufficient to increase neuronal network activity in neuronal primary culture. SIGNIFICANCE: These results indicate that a subacute reduction in LGI1 potentiates neuronal excitability and short-term synaptic plasticity, and increases neuronal network excitability, opening new avenues for the treatment of limbic encephalitis and temporal lobe epilepsies.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Neuronas/fisiología , Convulsiones/etiología , Animales , Regulación hacia Abajo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canal de Potasio Kv.1.1/metabolismo , Canal de Potasio Kv.1.1/fisiología , Ratones , Ratones Noqueados , Comunicación Paracrina , ARN Interferente Pequeño , Convulsiones/fisiopatología , Sinapsis/metabolismo , Sinapsis/fisiología
4.
Proc Natl Acad Sci U S A ; 111(19): E1950-9, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24782544

RESUMEN

Voltage sensor domains (VSDs) regulate ion channels and enzymes by transporting electrically charged residues across a hydrophobic VSD constriction called the gating pore or hydrophobic plug. How the gating pore controls the gating charge movement presently remains debated. Here, using saturation mutagenesis and detailed analysis of gating currents from gating pore mutations in the Shaker Kv channel, we identified statistically highly significant correlations between VSD function and physicochemical properties of gating pore residues. A necessary small residue at position S240 in S1 creates a "steric gap" that enables an intracellular access pathway for the transport of the S4 Arg residues. In addition, the stabilization of the depolarized VSD conformation, a hallmark for most Kv channels, requires large side chains at positions F290 in S2 and F244 in S1 acting as "molecular clamps," and a hydrophobic side chain at position I237 in S1 acting as a local intracellular hydrophobic barrier. Finally, both size and hydrophobicity of I287 are important to control the main VSD energy barrier underlying transitions between resting and active states. Taken together, our study emphasizes the contribution of several gating pore residues to catalyze the gating charge transfer. This work paves the way toward understanding physicochemical principles underlying conformational dynamics in voltage sensors.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/fisiología , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos/fisiología , Animales , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Canal de Potasio Kv.1.1/química , Canal de Potasio Kv.1.2/química , Modelos Químicos , Datos de Secuencia Molecular , Oocitos/fisiología , Técnicas de Placa-Clamp , Estructura Secundaria de Proteína/fisiología , Xenopus laevis
5.
Neurogenetics ; 17(4): 245-249, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27271339

RESUMEN

Episodic ataxia type 1 (EA1) is an autosomal dominant channelopathy caused by mutations in KCNA1, which encodes the voltage-gated potassium channel, Kv1.1. Eleven members of an EA family were evaluated with molecular and functional studies. A novel c.746T>G (p.Phe249Cys) missense mutation of KCNA1 segregated in the family members with episodic ataxia, myokymia, and malignant hyperthermia susceptibility. No mutations were found in the known malignant hyperthermia genes RYR1 or CACNA1S. The Phe249Cys-Kv1.1 channels did not show any currents upon functional expression, confirming a pathogenic role of the mutation. Malignant hyperthermia may be a presentation of KCNA1 mutations, which has significant implications for the clinical care of these patients and illustrates the phenotypic heterogeneity of KCNA1 mutations.


Asunto(s)
Ataxia/genética , Canal de Potasio Kv.1.1/genética , Hipertermia Maligna/genética , Mutación Missense , Adolescente , Ataxia/complicaciones , Familia , Femenino , Humanos , Canal de Potasio Kv.1.1/fisiología , Hipertermia Maligna/complicaciones , Linaje
6.
Epilepsia ; 55(5): e44-e49, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24702645

RESUMEN

The ketogenic diet (KD) is an effective therapy for pediatric refractory epilepsies; however, whether the KD changes the pathologic network oscillations generated by an epileptic brain remains unknown. We have reported that hippocampal CA3 regions of epileptic Kv1.1α knockout (KO) mice generate pathologic sharp waves (SPWs) and high-frequency oscillations (HFOs) that have higher incidence, longer duration, and fast ripples compared to wild-type (WT). Synaptic activity of hyperexcitable KO mossy fibers significantly decreased CA3 principal cell spike-timing reliability, which contributed to this network pathology. In addition, we have demonstrated that the KD reduces seizures by 75% in KO mice. Here, we determined whether 10- to 14-day in vivo KD treatment exerts disease-modifying effects that alter the spontaneous SPW-HFO complexes generated by the hippocampal CA3 region of KO mice in vitro using extracellular multielectrode array recordings. We found that KD treatment significantly attenuated the pathologic features of KO SPWs and ripples and reduced the incidence of fast ripples. The KD also improved spike-timing reliability of KO CA3 principal cells, decreased mossy fiber excitability, increased mossy fiber-CA3 paired-pulse ratios, and reduced coupling of field excitatory postsynaptic potentials and population spikes in the CA3 region. Collectively, these data indicate that KD treatment modulates CA3-generated pathologic oscillations by dampening hyperactive mossy fiber synapses.


Asunto(s)
Región CA3 Hipocampal/fisiopatología , Dieta Cetogénica , Electroencefalografía , Epilepsia/fisiopatología , Canal de Potasio Kv.1.1/genética , Animales , Epilepsia/dietoterapia , Epilepsia/genética , Potenciales Evocados/fisiología , Femenino , Expresión Génica/genética , Heterocigoto , Canal de Potasio Kv.1.1/fisiología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Fibras Musgosas del Hipocampo/fisiología , Sinapsis/fisiología , Técnicas de Cultivo de Tejidos
7.
J Neurosci ; 32(7): 2538-43, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22396426

RESUMEN

Sound localization along the azimuth depends on the sensitivity of binaural nuclei in the auditory brainstem to small differences in interaural level and timing occurring within a submillisecond epoch and on monaural pathways that transmit level and timing cues with high temporal fidelity to insure their coincident arrival at the binaural targets. The soma and axons of these brainstem neurons are heavily invested with ion channels containing the low-threshold potassium channel subunit Kv1.1, which previous in vitro and in vivo studies suggest are important for regulating their high input-output correspondence and temporal synchrony. We compared awake Kcna1-null mutant (Kcna1-/-) mice lacking Kv1.1 with Kcna1+/+ mice to determine whether Kv1.1 activity contributes to sound localization and examined anesthetized mice for absolute hearing thresholds for suprathreshold differences that may be revealed in the waveforms of auditory brainstem response potentials. The awake -/- mice tested with reflex modification audiometry had reduced sensitivity to an abrupt change in the location of a broad band noise compared to +/+ mice, while anesthetized -/- mice had normal absolute thresholds for tone pips but a high level of stimulus-evoked but asynchronous background activity. Evoked potential waveforms had progressively earlier peaks and troughs in -/- mice, but the amplitude excursions between adjacent features were identical in the two groups. Their greater excitability and asynchrony in suprathreshold evoked potentials coupled with their normal thresholds suggests that a disruption in central neural processing in -/- mice and not peripheral hearing loss is responsible for their poor sound localization.


Asunto(s)
Umbral Auditivo/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Eliminación de Gen , Audición/fisiología , Canal de Potasio Kv.1.1/genética , Localización de Sonidos/fisiología , Animales , Regulación hacia Abajo/genética , Femenino , Canal de Potasio Kv.1.1/antagonistas & inhibidores , Canal de Potasio Kv.1.1/fisiología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Regulación hacia Arriba/genética
8.
J Neurosci ; 32(47): 16872-9, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23175839

RESUMEN

Neural activity plays an important role in development and maturation of visual circuits in the brain. Activity can be instructive in refining visual projections by directly mediating formation and elimination of specific synaptic contacts through competition-based mechanisms. Alternatively, activity could be permissive-regulating production of factors that create a favorable environment for circuit refinement. Here we used the Xenopus laevis tadpole visual system to test whether activity is instructive or permissive for shaping development of the retinotectal circuit. In vivo spike output was dampened in a small subgroup of tectal neurons, starting from developmental stages 44-46, by overexpressing Shaker-like Xenopus Kv1.1 potassium channels using electroporation. Tadpoles were then reared until stage 49, a time period when significant refinement of the retinotectal map occurs. Kv1.1-expressing neurons had significantly decreased spike output in response to both current injection and visual stimuli compared to untransfected controls, with spiking occurring during a more limited time interval. We found that Kv1.1-expressing neurons had larger visual receptive fields, decreased receptive field sharpness, and more persistent recurrent excitation than control neurons, all of which are characteristics of immature neurons. Transfected cells, however, had normal spontaneous excitatory synaptic currents and dendritic arbors. These results suggest that spike output of a tectal neuron plays an important instructive role in development of its receptive field properties and refinement of local circuits. However, other activity-dependent processes, such as synaptogenesis and dendritic growth, remain unaffected due to the permissive environment created by otherwise normal network activity.


Asunto(s)
Neuronas/fisiología , Colículos Superiores/crecimiento & desarrollo , Colículos Superiores/fisiología , Campos Visuales/fisiología , Animales , Mapeo Encefálico , ADN/biosíntesis , ADN/genética , Dendritas/fisiología , Fenómenos Electrofisiológicos , Electroporación , Canal de Potasio Kv.1.1/fisiología , Larva , Microscopía Confocal , Neuronas/ultraestructura , Estimulación Luminosa , Colículos Superiores/citología , Transmisión Sináptica/fisiología , Transfección , Xenopus laevis
9.
J Neurosci ; 32(44): 15489-94, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23115186

RESUMEN

While adaptation is widely thought to facilitate neural coding, the form of adaptation should depend on how the signals are encoded. Monaural neurons early in the interaural time difference (ITD) pathway encode the phase of sound input using spike timing rather than firing rate. Such neurons in chicken nucleus magnocellularis (NM) adapt to ongoing stimuli by increasing firing rate and decreasing spike timing precision. We measured NM neuron responses while adapting them to simulated physiological input, and used these responses to construct inputs to binaural coincidence detector neurons in nucleus laminaris (NL). Adaptation of spike timing in NM reduced ITD sensitivity in NL, demonstrating the dominant role of timing in the short-term plasticity as well as the immediate response of this sound localization circuit.


Asunto(s)
Adaptación Fisiológica/fisiología , Tronco Encefálico/fisiología , Localización de Sonidos/fisiología , Estimulación Acústica , Algoritmos , Animales , Vías Auditivas/fisiología , Núcleo Basal de Meynert/fisiología , Embrión de Pollo , Núcleo Coclear/citología , Núcleo Coclear/fisiología , Fenómenos Electrofisiológicos , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Lateralidad Funcional/fisiología , Canal de Potasio Kv.1.1/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Tetrodotoxina/farmacología
10.
Epilepsia ; 54(10): 1789-800, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24032507

RESUMEN

PURPOSE: There is a gap in our knowledge of the factors that modulate the predisposition to seizures following perinatal hypoxia. Herein, we investigate in a mouse model the effects of two distinct factors: developmental stage after the occurrence of the perinatal insult, and the presence of a seizure predisposing mutation. METHODS: Effects of age: P6 (postnatal day 6) mouse pups were subjected to acute hypoxia down to 4% O2 over the course of 45 min. Seizure susceptibilities to flurothyl-induced seizures (single exposures) and to flurothyl kindling were determined at specific subsequent ages. Effects of mutation: Heterozygote mice, with deletion of one copy of the Kcn1a gene, subjected to P6 hypoxia were compared as adults to wild-type mice with respect to susceptibility to a single exposure to flurothyl and to the occurrence of spontaneous seizures as detected by hippocampal electroencephalography (EEG) and video recordings. KEY FINDINGS: Effects of age: As compared to controls, wild-type mice exposed to P6 hypoxia had a shortened seizure latency in response to a single flurothyl exposure at P50, but not at P7 or P28 (p < 0.04). In addition, perinatal hypoxia at P6 enhanced the rate of development of flurothyl kindling performed at P28-38 (p < 0.03), but not at P7-17. Effects of mutation: Kcn1a heterozygous mice subjected to P6 hypoxia exhibited increased susceptibility to flurothyl-induced seizures at P50 as compared to Normoxia heterozygote littermates, and to wild-type Hypoxia and Normoxia mice. In addition, heterozygotes exposed to P6 hypoxia were the only group in which spontaneous seizures were detected during the period of long-term monitoring (p < 0.027 in all comparisons). SIGNIFICANCE: Our data establish a mouse model of mild perinatal hypoxia in which we document the following: (1) the emergence, after a latent period, of increased susceptibility to flurothyl-induced seizures, and to flurothyl induced kindling; and (2) an additive effect of a gene mutation to the seizure predisposing consequences of perinatal hypoxia, thereby demonstrating that a modifier (or susceptibility) gene can exacerbate the long-term consequences of hypoxic injury.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Hipoxia/complicaciones , Canal de Potasio Kv.1.1/genética , Convulsiones/etiología , Factores de Edad , Animales , Animales Recién Nacidos/genética , Animales Recién Nacidos/fisiología , Modelos Animales de Enfermedad , Electroencefalografía , Flurotilo/farmacología , Heterocigoto , Hipocampo/fisiopatología , Humanos , Excitación Neurológica/efectos de los fármacos , Excitación Neurológica/fisiología , Canal de Potasio Kv.1.1/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación/genética , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/fisiopatología
11.
J Physiol ; 590(11): 2645-58, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22411008

RESUMEN

Megencephaly, or mceph, is a spontaneous frame-shift mutation of the mouse Kv1.1 gene. This mceph mutation results in a truncated Kv1.1 channel α-subunit without the channel pore domain or the voltage sensor. Interestingly, mceph/mceph mouse brains are enlarged and ­ unlike wild-type mouse brains ­ they keep growing throughout adulthood, especially in the hippocampus and ventral cortex. We used mosaic analysis with double markers (MADM) to identify the underlying mechanism. In mceph-MADM6 mice with only a small fraction of neurons homozygous for the mceph mutation, those homozygous mceph/mceph neurons in the hippocampus are more abundant than wild-type neurons produced by sister neural progenitors. In contrast, neither mceph/mceph astrocytes, nor neurons in the adjacent dorsal cortex (including the entorhinal and parietal cortex) exhibited overgrowth in the adult brain. The sizes of mceph/mceph hippocampal neurons were comparable to mceph/+ or wild-type neurons. Our mosaic analysis reveals that loss of Kv1.1 function causes an overproduction of hippocampal neurons, leading to an enlarged brain phenotype.


Asunto(s)
Encéfalo/anomalías , Canal de Potasio Kv.1.1/fisiología , Neuronas/patología , Animales , Astrocitos/citología , Encéfalo/patología , Femenino , Masculino , Ratones , Ratones Mutantes Neurológicos
12.
Eur J Neurosci ; 36(12): 3698-708, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23009328

RESUMEN

Neocortical networks produce oscillations that often correspond to characteristic physiological or pathological patterns. However, the mechanisms underlying the generation of and the transitions between such oscillatory states remain poorly understood. In this study, we examined resonance in mouse layer V neocortical pyramidal neurons. To accomplish this, we employed standard electrophysiology to describe cellular resonance parameters. Bode plot analysis revealed a range of resonance magnitude values in layer V neurons and demonstrated that both magnitude and phase response characteristics of layer V neocortical pyramidal neurons are modulated by changes in the extracellular environment. Specifically, increased resonant frequencies and total inductive areas were observed at higher extracellular potassium concentrations and more hyperpolarised membrane potentials. Experiments using pharmacological agents suggested that current through hyperpolarization-activated cyclic nucleotide-gated channels (I(h) ) acts as the primary driver of resonance in these neurons, with other potassium currents, such as A-type potassium current and delayed-rectifier potassium current (Kv1.4 and Kv1.1, respectively), contributing auxiliary roles. The persistent sodium current was also shown to play a role in amplifying the magnitude of resonance without contributing significantly to the phase response. Although resonance effects in individual neurons are small, their properties embedded in large networks may significantly affect network behavior and may have potential implications for pathological processes.


Asunto(s)
Potenciales de la Membrana , Neocórtex/fisiología , Red Nerviosa/fisiología , Células Piramidales/fisiología , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/antagonistas & inhibidores , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Canal de Potasio Kv.1.1/antagonistas & inhibidores , Canal de Potasio Kv.1.1/fisiología , Canal de Potasio Kv1.4/antagonistas & inhibidores , Canal de Potasio Kv1.4/fisiología , Ratones , Ratones Endogámicos , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Sodio/metabolismo
13.
Brain ; 133(Pt 12): 3530-40, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21106501

RESUMEN

Episodic ataxia type 1 is a neuronal channelopathy caused by mutations in the KCNA1 gene encoding the fast K(+) channel subunit K(v)1.1. Episodic ataxia type 1 presents with brief episodes of cerebellar dysfunction and persistent neuromyotonia and is associated with an increased incidence of epilepsy. In myelinated peripheral nerve, K(v)1.1 is highly expressed in the juxtaparanodal axon, where potassium channels limit the depolarizing afterpotential and the effects of depolarizing currents. Axonal excitability studies were performed on patients with genetically confirmed episodic ataxia type 1 to characterize the effects of K(v)1.1 dysfunction on motor axons in vivo. The median nerve was stimulated at the wrist and compound muscle action potentials were recorded from abductor pollicis brevis. Threshold tracking techniques were used to record strength-duration time constant, threshold electrotonus, current/threshold relationship and the recovery cycle. Recordings from 20 patients from eight kindreds with different KCNA1 point mutations were compared with those from 30 normal controls. All 20 patients had a history of episodic ataxia and 19 had neuromyotonia. All patients had similar, distinctive abnormalities: superexcitability was on average 100% higher in the patients than in controls (P < 0.00001) and, in threshold electrotonus, the increase in excitability due to a depolarizing current (20% of threshold) was 31% higher (P < 0.00001). Using these two parameters, the patients with episodic ataxia type 1 and controls could be clearly separated into two non-overlapping groups. Differences between the different KCNA1 mutations were not statistically significant. Studies of nerve excitability can identify K(v)1.1 dysfunction in patients with episodic ataxia type 1. The simple 15 min test may be useful in diagnosis, since it can differentiate patients with episodic ataxia type 1 from normal controls with high sensitivity and specificity.


Asunto(s)
Ataxia/genética , Ataxia/fisiopatología , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Axones/fisiología , Estimulación Eléctrica , Fenómenos Electrofisiológicos , Femenino , Humanos , Síndrome de Isaacs/fisiopatología , Masculino , Nervio Mediano/fisiología , Persona de Mediana Edad , Mutación/genética , Neuronas/fisiología , Adulto Joven
14.
Neuron ; 52(3): 399-401, 2006 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17088206

RESUMEN

In the October 6th issue of Science, Raab-Graham et al. described two surprising findings. They discovered that local dendritic translation of Kv1.1 occurs in CA1 dendrites of rat hippocampal slices and in cultured neurons. This local translation is inhibited by NMDA receptor-mediated synaptic signaling acting through the mTOR kinase.


Asunto(s)
Axones/fisiología , Dendritas/fisiología , Canal de Potasio Kv.1.1/fisiología , Proteínas Quinasas/metabolismo , Animales , Hipocampo/citología , Modelos Biológicos , Neuronas/citología , Transporte de Proteínas/fisiología , Serina-Treonina Quinasas TOR
15.
Neuron ; 49(5): 697-706, 2006 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-16504945

RESUMEN

The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.


Asunto(s)
Encéfalo/metabolismo , Canal de Potasio Kv.1.1/fisiología , Canal de Potasio Kv.1.2/fisiología , Inhibición Neural/fisiología , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting/métodos , Encéfalo/citología , Química Encefálica , Membrana Celular/metabolismo , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Humanos , Inmunohistoquímica/métodos , Péptidos y Proteínas de Señalización Intracelular , Espectrometría de Masas/métodos , Potenciales de la Membrana/fisiología , Mutagénesis/fisiología , Mutación , Oocitos , Técnicas de Placa-Clamp/métodos , Conformación Proteica , Ratas , Alineación de Secuencia , Tinción con Nitrato de Plata/métodos , Transfección/métodos , Xenopus
16.
Curr Opin Nephrol Hypertens ; 19(5): 456-62, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20625291

RESUMEN

PURPOSE OF REVIEW: This review highlights recent advances in renal magnesium (Mg) handling. The understanding of the molecular processes of epithelial Mg transport has expanded considerably due to the identification of novel genes involved in hypomagnesemic disorders. RECENT FINDINGS: Mg deficiency remains one of the most common electrolyte disorders. Detailed genetic analysis of families with inherited forms of hypomagnesemia has led to the identification of new genes involved in Mg homeostasis. As such, familial hypomagnesemia has been linked to mutations in the claudin-16/19 complex located in the thick ascending limb. Moreover, the pro-epidermal growth factor, the potassium channels Kv1.1 and Kir4.1, and the hepatocyte nuclear factor 1B have recently been identified as causative factors in syndromes of hereditary hypomagnesemia. These proteins play key roles in regulating electrolyte balance within the distal convoluted tubule, either by directly affecting the epithelial Mg channel, transient receptor potential channel melastatin member 6, or by altering the driving force for Mg influx via the channel. SUMMARY: Recent genetic and molecular studies have further elucidated the processes that govern renal Mg transport and hence systemic Mg balance. This has provided us with new tools to understand the molecular pathology behind hypomagnesemia.


Asunto(s)
Magnesio/metabolismo , Nefronas/metabolismo , Factor Nuclear 1-beta del Hepatocito/fisiología , Humanos , Transporte Iónico , Riñón/metabolismo , Túbulos Renales Distales/metabolismo , Túbulos Renales Proximales/metabolismo , Canal de Potasio Kv.1.1/fisiología , Asa de la Nefrona/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Canales Catiónicos TRPM/fisiología
17.
J Nephrol ; 23(1): 5-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20091480

RESUMEN

The role of the kidney in controlling and maintaining plasma potassium levels in the normal range requires the presence and activity of renal potassium channels, and their importance has been highlighted in patients with Bartter syndrome harboring mutations in the ROMK (Kir1.1, KCJN1) channel and hyperkalemia. However, the kidney expresses far more potassium channels than ROMK. Their functions are slowly emerging from studies in animal models and human rare inherited disorders that allow a better understanding of the plethora of functions that potassium channels fulfill in the kidney. Three recent studies shed light on the function of 2 members of the family of voltage-gated potassium channels. The group of René Bindels demonstrates that patients with isolated hypomagnesemia and inappropriately normal magnesuria carry mutations in the Kv1.1 (KCNA) potassium channel (Glaudemans B, et al. J Clin Invest. 2009;119:936-942). Two other studies elucidate a rather complex syndrome involving seizures, ataxia, deafness and renal salt loss, and show that mutations in the Kir4.1 (KCNJ10) potassium channel are responsible (Scholl UI, et al. Proc Natl Acad Sci U S A. 2009;106:5842-5847; Bockenhauer D, et al. N Engl J Med. 2009;360:1960-1970). This human disease is recapitulated by a mouse model deficient for the Kir4.1 channel presenting with similar symptoms. These studies together show that potassium channels in the kidney serve purposes far beyond controlling systemic potassium homeostasis, and are involved in various essential functions of the kidney. Moreover, defects of 2 different potassium channels expressed on opposing membrane domains of the same cells cause distinct symptoms.


Asunto(s)
Túbulos Renales Distales/fisiología , Canales de Potasio/fisiología , Animales , Síndrome de Bartter/genética , Síndrome de Bartter/fisiopatología , Modelos Animales de Enfermedad , Síndrome de Gitelman/genética , Síndrome de Gitelman/fisiopatología , Humanos , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/fisiología , Mutación/genética , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/fisiología
18.
Epilepsy Behav ; 16(1): 52-7, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19682955

RESUMEN

OBJECTIVE: The endogenous hormone melatonin has previously been shown to exert anticonvulsant effects in a variety of experimental models. Accordingly, we asked whether ramelteon, a synthetic and selective melatonin receptor agonist, might also possess anticonvulsant and/or antiepileptogenic properties. METHODS: The effects of ramelteon (30 or 100 mg/kg intraperitoneally twice daily for 5 days) were evaluated in two animal models of epilepsy. In the rat rapid kindling model, baseline hippocampal afterdischarge properties, kindling progression, and hippocampal excitability in kindled animals were measured. Anti-ictogenic efficacy was assessed after acute administration in untreated kindled rats. In the spontaneously epileptic Kcna1-null mouse model, we determined seizure frequency and periodicity using continuous video/EEG monitoring over 72 hours. Further, circadian rest-activity rhythms in ramelteon-treated animals were studied with actigraphy. RESULTS: In kindled animals, ramelteon reversed kindling-induced hippocampal excitability; however, it did not modify baseline afterdischarge properties, the progression and establishment of the kindled state in the rapid kindling model. However, in Kcna1-null mice, ramelteon (200 mg/kg/day) significantly attenuated seizure periodicity and frequency and improved circadian rest-activity rhythms compared with control animals. CONCLUSIONS: The selective melatonin receptor agonist ramelteon possesses anticonvulsant properties in a chronic epilepsy model. Our findings provide further support for melatonin receptors being potential novel targets for anticonvulsant drug development.


Asunto(s)
Anticonvulsivantes , Indenos/uso terapéutico , Receptores de Melatonina/agonistas , Animales , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Electrodos Implantados , Electroencefalografía , Hipocampo/fisiología , Excitación Neurológica/efectos de los fármacos , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/fisiología , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Ratas , Ratas Wistar , Convulsiones/prevención & control
19.
J Assoc Res Otolaryngol ; 20(6): 565-577, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31410614

RESUMEN

The submillisecond acuity for detecting rapid spatial and temporal fluctuations in acoustic stimuli observed in humans and laboratory animals depends in part on select groups of auditory neurons that preserve synchrony from the ears to the binaural nuclei in the brainstem. These fibers have specialized synapses and axons that use a low-threshold voltage-activated outward current, IKL, conducted through Kv1 potassium ion channels. These are in turn coupled with HCN channels that express a mixed cation inward mixed current, IH, to support precise synchronized firing. The behavioral evidence is that their respective Kcna1 or HCN1 genes are absent in adult mice; the results are weak startle reflexes, slow responding to noise offsets, and poor sound localization. The present behavioral experiments were motivated by an in vitro study reporting increased IKL in an auditory nucleus in Kcna2-/- mice lacking the Kv1.2 subunit, suggesting that Kcna2-/- mice might perform better than Kcna2+/+ mice. Because Kcna2-/- mice have only a 17-18-day lifespan, we compared both preweanling Kcna2-/- vs. Kcna2+/+ mice and Kcna1-/- vs. Kcna1+/+ mice at P12-P17/18; then, the remaining mice were tested at P23/P25. Both null mutant strains had a stunted physique, but the Kcna1-/- mice had severe behavioral deficits while those in Kcna2-/- mice were relatively few and minor. The in vitro increase of IKL could have resulted from Kv1.1 subunits substituting for Kv1.2 units and the loss of the inhibitory "managerial" effect of Kv1.2 on Kv1.1. However, any increased neuronal synchronicity that accompanies increased IKL may not have been enough to affect behavior. All mice performed unusually well on the early spatial tests, but then, they fell towards adult levels. This unexpected effect may reflect a shift from summated independent monaural pathways to integrated binaural processing, as has been suggested for similar observations for human infants.


Asunto(s)
Canal de Potasio Kv.1.1/fisiología , Canal de Potasio Kv.1.2/fisiología , Localización de Sonidos , Estimulación Acústica , Animales , Femenino , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.2/genética , Masculino , Ratones , Ratones Endogámicos C3H , Actividad Motora , Ruido , Reflejo de Sobresalto , Destete
20.
CNS Neurosci Ther ; 25(4): 442-451, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30242974

RESUMEN

AIMS: Kv1.1 (KCNA1) channels contribute to the control of neuronal excitability and have been associated with epilepsy. Kv1.1 channels can associate with the cytoplasmic Kvß1 subunit resulting in rapid inactivating A-type currents. We hypothesized that removal of channel inactivation, by modulating Kv1.1/Kvß1 interaction with a small molecule, would lead to decreased neuronal excitability and anticonvulsant activity. METHODS: We applied high-throughput screening to identify ligands able to modulate the Kv1.1-T1 domain/Kvß1 protein complex. We then selected a compound that was characterized on recombinant Kv1.1/Kvß1 channels by electrophysiology and further evaluated on sustained neuronal firing and on in vitro epileptiform activity using a high K+ -low Ca2+ model in hippocampal slices. RESULTS: We identified a novel compound able to modulate the interaction of the Kv1.1/Kvß1 complex and that produced a functional inhibition of Kv1.1/Kvß1 channel inactivation. We demonstrated that this compound reduced the sustained repetitive firing in hippocampal neurons and was able to abolish the development of in vitro epileptiform activity. CONCLUSIONS: This study describes a rational drug discovery approach for the identification of novel ligands that inhibit Kv1.1 channel inactivation and provides pharmacological evidence that such a mechanism translates into physiological effects by reducing in vitro epileptiform activity.


Asunto(s)
Potenciales de Acción/fisiología , Descubrimiento de Drogas/métodos , Hipocampo/fisiología , Canal de Potasio Kv.1.1/fisiología , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Hipocampo/efectos de los fármacos , Humanos , Canal de Potasio Kv.1.1/agonistas , Canal de Potasio Kv.1.1/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Bloqueadores de los Canales de Potasio/farmacología , Estructura Secundaria de Proteína , Ratas , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA