Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.886
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 34: 243-64, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26907217

RESUMEN

Galectins are a family of mammalian carbohydrate-binding proteins expressed by many cell types. Galectins can function intracellularly and can also be secreted to bind to cell surface glycoconjugate counterreceptors. Some galectins are made by immune cells, whereas other galectins are secreted by different cell types, such as endothelial or epithelial cells, and bind to immune cells to regulate immune responses. Galectin binding to a single glycan ligand is a low-affinity interaction, but the multivalency of galectins and the glycan ligands presented on cell surface glycoproteins results in high-avidity binding that can reversibly scaffold or cluster these glycoproteins. Galectin binding to a specific glycoprotein counterreceptor is regulated in part by the repertoire of glycosyltransferase enzymes (which make the glycan ligands) expressed by that cell, and the effect of galectin binding results from clustering or retention of specific glycoprotein counterreceptors bearing these specific ligands.


Asunto(s)
Galectinas/metabolismo , Glicosiltransferasas/metabolismo , Inmunidad , Animales , Carbohidratos/inmunología , Citoesqueleto , Galectinas/inmunología , Glicoproteínas/metabolismo , Humanos , Unión Proteica , Agregación de Receptores
2.
Cell ; 185(15): 2657-2677, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35809571

RESUMEN

Cellular carbohydrates or glycans are critical mediators of biological function. Their remarkably diverse structures and varied activities present exciting opportunities for understanding many areas of biology. In this primer, we discuss key methods and recent breakthrough technologies for identifying, monitoring, and manipulating glycans in mammalian systems.


Asunto(s)
Carbohidratos , Polisacáridos , Animales , Mamíferos , Polisacáridos/química
3.
Cell ; 166(1): 115-25, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27345370

RESUMEN

Can a heterotrophic organism be evolved to synthesize biomass from CO2 directly? So far, non-native carbon fixation in which biomass precursors are synthesized solely from CO2 has remained an elusive grand challenge. Here, we demonstrate how a combination of rational metabolic rewiring, recombinant expression, and laboratory evolution has led to the biosynthesis of sugars and other major biomass constituents by a fully functional Calvin-Benson-Bassham (CBB) cycle in E. coli. In the evolved bacteria, carbon fixation is performed via a non-native CBB cycle, while reducing power and energy are obtained by oxidizing a supplied organic compound (e.g., pyruvate). Genome sequencing reveals that mutations in flux branchpoints, connecting the non-native CBB cycle to biosynthetic pathways, are essential for this phenotype. The successful evolution of a non-native carbon fixation pathway, though not yet resulting in net carbon gain, strikingly demonstrates the capacity for rapid trophic-mode evolution of metabolism applicable to biotechnology. PAPERCLIP.


Asunto(s)
Dióxido de Carbono/metabolismo , Evolución Molecular Dirigida , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconeogénesis , Redes y Vías Metabólicas , Procesos Autotróficos , Carbohidratos/biosíntesis , Escherichia coli/crecimiento & desarrollo , Espectrometría de Masas
4.
Annu Rev Biochem ; 84: 865-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25747398

RESUMEN

Soluble sugars serve five main purposes in multicellular organisms: as sources of carbon skeletons, osmolytes, signals, and transient energy storage and as transport molecules. Most sugars are derived from photosynthetic organisms, particularly plants. In multicellular organisms, some cells specialize in providing sugars to other cells (e.g., intestinal and liver cells in animals, photosynthetic cells in plants), whereas others depend completely on an external supply (e.g., brain cells, roots and seeds). This cellular exchange of sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is critical for plants, animals, and humans. At present, three classes of eukaryotic sugar transporters have been characterized, namely the glucose transporters (GLUTs), sodium-glucose symporters (SGLTs), and SWEETs. This review presents the history and state of the art of sugar transporter research, covering genetics, biochemistry, and physiology-from their identification and characterization to their structure, function, and physiology. In humans, understanding sugar transport has therapeutic importance (e.g., addressing diabetes or limiting access of cancer cells to sugars), and in plants, these transporters are critical for crop yield and pathogen susceptibility.


Asunto(s)
Transporte Biológico , Metabolismo de los Hidratos de Carbono , Proteínas de Transporte de Membrana/metabolismo , Animales , Carbohidratos/química , Transportador 2 de Aminoácidos Excitadores , Humanos , Células Vegetales/metabolismo , Plantas/metabolismo
5.
Annu Rev Biochem ; 83: 129-57, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24606135

RESUMEN

Numerous proteins, including cytokines and chemokines, enzymes and enzyme inhibitors, extracellular matrix proteins, and membrane receptors, bind heparin. Although they are traditionally classified as heparin-binding proteins, under normal physiological conditions these proteins actually interact with the heparan sulfate chains of one or more membrane or extracellular proteoglycans. Thus, they are more appropriately classified as heparan sulfate-binding proteins (HSBPs). This review provides an overview of the various modes of interaction between heparan sulfate and HSBPs, emphasizing biochemical and structural insights that improve our understanding of the many biological functions of heparan sulfate.


Asunto(s)
Heparitina Sulfato/química , Proteínas/química , Proteoglicanos/química , Animales , Sitios de Unión , Carbohidratos/química , Matriz Extracelular/metabolismo , Glucuronidasa/química , Humanos , Enlace de Hidrógeno , Ligandos , Sustancias Macromoleculares , Oligosacáridos/química , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína
6.
Nat Immunol ; 23(4): 471, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35354954

Asunto(s)
Carbohidratos , Azúcares
7.
Nat Immunol ; 17(11): 1244-1251, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27760104

RESUMEN

Intestinal epithelial cells apically express glycans, especially α1,2-fucosyl linkages, which work as a biological interface for the host-microbe interaction. Emerging studies have shown that epithelial α1,2-fucosylation is regulated by microbes and by group 3 innate lymphoid cells (ILC3s). Dysregulation of the gene (FUT2) encoding fucosyltransferase 2, an enzyme governing epithelial α1,2-fucosylation, is associated with various human disorders, including infection and chronic inflammatory diseases. This suggests a critical role for an interaction between microbes, epithelial cells and ILC3s mediated via glycan residues. In this Review, using α1,2-fucose and Fut2 gene expression as an example, we describe how epithelial glycosylation is controlled by immune cells and luminal microbes. We also address the pathophysiological contribution of epithelial α1,2-fucosylation to pathogenic and commensal microbes as well as the potential of α1,2-fucose and its regulatory pathway as previously unexploited targets in the development of new therapeutic approaches for human diseases.


Asunto(s)
Gastroenteritis/metabolismo , Homeostasis , Mucosa Intestinal/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Carbohidratos , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Gastroenteritis/genética , Gastroenteritis/inmunología , Gastroenteritis/microbiología , Predisposición Genética a la Enfermedad , Glicosilación , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Linfocitos/inmunología , Linfocitos/metabolismo , Polimorfismo Genético , Galactósido 2-alfa-L-Fucosiltransferasa
8.
Mol Cell ; 75(2): 357-371.e7, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31227231

RESUMEN

Carbohydrate response element binding protein (ChREBP) is a key transcriptional regulator of de novo lipogenesis (DNL) in response to carbohydrates and in hepatic steatosis. Mechanisms underlying nutrient modulation of ChREBP are under active investigation. Here we identify host cell factor 1 (HCF-1) as a previously unknown ChREBP-interacting protein that is enriched in liver biopsies of nonalcoholic steatohepatitis (NASH) patients. Biochemical and genetic studies show that HCF-1 is O-GlcNAcylated in response to glucose as a prerequisite for its binding to ChREBP and subsequent recruitment of OGT, ChREBP O-GlcNAcylation, and activation. The HCF-1:ChREBP complex resides at lipogenic gene promoters, where HCF-1 regulates H3K4 trimethylation to prime recruitment of the Jumonji C domain-containing histone demethylase PHF2 for epigenetic activation of these promoters. Overall, these findings define HCF-1's interaction with ChREBP as a previously unappreciated mechanism whereby glucose signals are both relayed to ChREBP and transmitted for epigenetic regulation of lipogenic genes.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proteínas de Homeodominio/genética , Factor C1 de la Célula Huésped/genética , Lipogénesis/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Carbohidratos/genética , Epigénesis Genética , Regulación de la Expresión Génica , Glucosa/metabolismo , Hexosaminas/genética , Hexosaminas/metabolismo , Humanos , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Regiones Promotoras Genéticas/genética , Mapas de Interacción de Proteínas/genética
9.
PLoS Genet ; 20(1): e1011115, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227606

RESUMEN

Timely regulation of carbon metabolic pathways is essential for cellular processes and to prevent futile cycling of intracellular metabolites. In Halobacterium salinarum, a hypersaline adapted archaeon, a sugar-sensing TrmB family protein controls gluconeogenesis and other biosynthetic pathways. Notably, Hbt. salinarum does not utilize carbohydrates for energy, uncommon among Haloarchaea. We characterized a TrmB-family transcriptional regulator in a saccharolytic generalist, Haloarcula hispanica, to investigate whether the targets and function of TrmB, or its regulon, is conserved in related species with distinct metabolic capabilities. In Har. hispanica, TrmB binds to 15 sites in the genome and induces the expression of genes primarily involved in gluconeogenesis and tryptophan biosynthesis. An important regulatory control point in Hbt. salinarum, activation of ppsA and repression of pykA, is absent in Har. hispanica. Contrary to its role in Hbt. salinarum and saccharolytic hyperthermophiles, TrmB does not act as a global regulator: it does not directly repress the expression of glycolytic enzymes, peripheral pathways such as cofactor biosynthesis, or catabolism of other carbon sources in Har. hispanica. Cumulatively, these findings suggest rewiring of the TrmB regulon alongside metabolic network evolution in Haloarchaea.


Asunto(s)
Gluconeogénesis , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Gluconeogénesis/genética , Archaea/genética , Regulación de la Expresión Génica Arqueal , Carbohidratos , Carbono/metabolismo
10.
Annu Rev Physiol ; 85: 449-468, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36375468

RESUMEN

The interplay between diet, the gut microbiome, and host health is complex. Diets associated with health have many similarities: high fiber, unsaturated fatty acids, and polyphenols while being low in saturated fats, sodium, and refined carbohydrates. Over the past several decades, dietary patterns have changed significantly in Westernized nations with the increased consumption of calorically dense ultraprocessed foods low in fiber and high in saturated fats, salt, and refined carbohydrates, leading to numerous negative health consequences including obesity, metabolic syndrome, and cardiovascular disease. The gut microbiota is an environmental factor that interacts with diet and may also have an impact on health outcomes, many of which involve metabolites produced by the microbiota from dietary components that can impact the host. This review focuses on our current understanding of the complex relationship between diet, the gut microbiota, and host health, with examples of how diet can support health, increase an individual's risk for disease, and be used as a therapy for specific diseases.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Dieta , Obesidad , Carbohidratos
11.
EMBO J ; 41(24): e113003, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377534

RESUMEN

Maturation of membrane proteins is complicated by the need to fold in three distinct environments. While much is known about folding in the two aqueous milieus constituted by cytoplasm and ER lumen, our knowledge of the folding, arrangement, and quality control of transmembrane regions within the lipid bilayer, and its facilitation by molecular chaperones, is limited. New work by Bloemeke et al now reveals an expanded role of the ER chaperone calnexin acting within the lipid bilayer in a carbohydrate-independent manner.


Asunto(s)
Membrana Dobles de Lípidos , Gusto , Calnexina/metabolismo , Pliegue de Proteína , Chaperonas Moleculares/metabolismo , Carbohidratos , Proteínas de Unión al Calcio/metabolismo
12.
Trends Immunol ; 44(10): 845-857, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37684173

RESUMEN

Adjuvants are essential components of modern vaccines. One general mechanism underlying their immunostimulatory functions is the activation of pattern recognition receptors (PRRs) of innate immune cells. Carbohydrates - as essential signaling molecules on microbial surfaces - are potent PRR agonists and candidate materials for adjuvant design. Here, we summarize the latest trends in developing carbohydrate-containing adjuvants, with fresh opinions on how the physicochemical characteristics of the glycans (e.g., molecular size, assembly status, monosaccharide components, and functional group patterns) affect their adjuvant activities in aiding antigen transport, regulating antigen processing, and enhancing adaptive immune responses. From a translational perspective, we also discuss potential technologies for solving long-lasting challenges in carbohydrate adjuvant design.


Asunto(s)
Inmunidad Adaptativa , Vacunas , Humanos , Receptores de Reconocimiento de Patrones , Adyuvantes Inmunológicos , Desarrollo de Vacunas , Carbohidratos , Inmunidad Innata
13.
Nucleic Acids Res ; 52(D1): D1683-D1693, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37889052

RESUMEN

The UniLectin portal (https://unilectin.unige.ch/) was designed in 2019 with the goal of centralising curated and predicted data on carbohydrate-binding proteins known as lectins. UniLectin is also intended as a support for the study of lectomes (full lectin set) of organisms or tissues. The present update describes the inclusion of several new modules and details the latest (https://unilectin.unige.ch/humanLectome/), covering our knowledge of the human lectome and comprising 215 unevenly characterised lectins, particularly in terms of structural information. Each HumanLectome entry is protein-centric and compiles evidence of carbohydrate recognition domain(s), specificity, 3D-structure, tissue-based expression and related genomic data. Other recent improvements regarding interoperability and accessibility are outlined.


Asunto(s)
Bases de Datos de Proteínas , Lectinas , Humanos , Carbohidratos/química , Lectinas/química , Unión Proteica , Dominios Proteicos , Anotación de Secuencia Molecular
14.
Proc Natl Acad Sci U S A ; 120(30): e2305436120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459520

RESUMEN

The feeding mechanisms of animals constrain the spectrum of resources that they can exploit profitably. For floral nectar eaters, both corolla depth and nectar properties have marked influence on foraging choices. We report the multiple strategies used by honey bees to efficiently extract nectar at the range of sugar concentrations and corolla depths they face in nature. Honey bees can collect nectar by dipping their hairy tongues or capillary loading when lapping it, or they can attach the tongue to the wall of long corollas and directly suck the nectar along the tongue sides. The honey bee feeding apparatus is unveiled as a multifunctional tool that can switch between lapping and sucking nectar according to the instantaneous ingesting efficiency, which is determined by the interplay of nectar-mouth distance and sugar concentration. These versatile feeding mechanisms allow honey bees to extract nectar efficiently from a wider range of floral resources than previously appreciated and endow them with remarkable adaptability to diverse foraging environments.


Asunto(s)
Boca , Néctar de las Plantas , Abejas , Animales , Lengua , Carbohidratos , Azúcares
15.
Proc Natl Acad Sci U S A ; 120(3): e2212474120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626556

RESUMEN

Plants respond to oxygen deprivation by activating the expression of a set of hypoxia-responsive genes (HRGs). The master regulator of this process is a small group of transcription factors belonging to group VII of the ethylene response factors (ERF-VIIs). ERF-VIIs are highly unstable under aerobic conditions due to the continuous oxidation of their characteristic Cys residue at the N terminus by plant cysteine oxidases (PCOs). Under hypoxia, PCOs are inactive and the ERF-VIIs activate transcription of the HRGs required for surviving hypoxia. However, if the plant exposed to hypoxia has limited sugar reserves, the activity of ERF-VIIs is severely dampened. This suggests that oxygen sensing by PCO/ERF-VII is fine-tuned by another sensing pathway, related to sugar or energy availability. Here, we show that oxygen sensing by PCO/ERF-VII is controlled by the energy sensor target of rapamycin (TOR). Inhibition of TOR by genetic or pharmacological approaches leads to a much lower induction of HRGs. We show that two serine residues at the C terminus of RAP2.12, a major ERF-VII, are phosphorylated by TOR and are needed for TOR-dependent activation of transcriptional activity of RAP2.12. Our results demonstrate that oxygen and energy sensing converge in plants to ensure an appropriate transcription of genes, which is essential for surviving hypoxia. When carbohydrate metabolism is inefficient in producing ATP because of hypoxia, the lower ATP content reduces TOR activity, thus attenuating the efficiency of induction of HRGs by the ERF-VIIs. This homeostatic control of the hypoxia-response is required for the plant to survive submergence.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oxígeno , Fosfatidilinositol 3-Quinasas , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbohidratos , Cisteína-Dioxigenasa/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hipoxia , Oxígeno/metabolismo , Azúcares/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
16.
J Biol Chem ; 300(1): 105552, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072065

RESUMEN

Fibrinogen C domain-containing protein 1 (FIBCD1) is an immune protein proposed to be involved in host recognition of chitin on the surface of pathogens. As FIBCD1 readily binds acetylated molecules, we have determined the high-resolution crystal structures of a recombinant fragment of the FIBCD1 C-terminal domain complexed with small N-acetyl-containing ligands to determine the mode of recognition. All ligands bind at the conserved N-acetyl-binding site (S1) with galactose and glucose-derived ligands rotated 180° relative to each other. One subunit of a native structure derived from protein expressed in mammalian cells binds glycosylation from a neighboring subunit, in an extended binding site. Across the various structures, the primary S1 binding pocket is occupied by N-acetyl-containing ligands or acetate, with N-acetyl, acetate, or sulfate ion in an adjacent pocket S1(2). Inhibition binding studies of N-acetylglucosamine oligomers, (GlcNAc)n, n = 1, 2, 3, 5, 11, via ELISA along with microscale thermophoresis affinity assays indicate a strong preference of FIBCD1 for longer N-acetylchitooligosaccharides. Binding studies of mutant H396A, located beyond the S1(2) site, showed no significant difference from wildtype, but K381L, within the S1(2) pocket, blocked binding to the model ligand acetylated bovine serum albumin, suggesting that S1(2) may have functional importance in ligand binding. The binding studies, alongside structural definition of diverse N-acetyl monosaccharide binding in the primary S1 pocket and of additional, adjacent binding pockets, able to accommodate both carbohydrate and sulfate functional groups, suggest a versatility in FIBCD1 to recognize chitin oligomers and other pathogen-associated carbohydrate motifs across an extended surface.


Asunto(s)
Receptores de Superficie Celular , Humanos , Acetatos , Sitios de Unión/fisiología , Carbohidratos/química , Quitina/metabolismo , Hemostáticos , Ligandos , Unión Proteica , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Sulfatos , Modelos Moleculares , Estructura Terciaria de Proteína
17.
J Virol ; 98(2): e0159423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289101

RESUMEN

The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein precursor (gp160) trimerizes, is modified by high-mannose glycans in the endoplasmic reticulum, and is transported via Golgi and non-Golgi secretory pathways to the infected cell surface. In the Golgi, gp160 is partially modified by complex carbohydrates and proteolytically cleaved to produce the mature functional Env trimer, which is preferentially incorporated into virions. Broadly neutralizing antibodies (bNAbs) generally recognize the cleaved Env trimer, whereas poorly neutralizing antibodies (pNAbs) bind the conformationally flexible gp160. We found that expression of bNAbs, pNAbs, or soluble/membrane forms of the receptor, CD4, in cells producing HIV-1 all decreased viral infectivity. Four patterns of co-expressed ligand:Env were observed: (i) ligands (CD4, soluble CD4-Ig, and some pNAbs) that specifically recognize the CD4-bound Env conformation resulted in uncleaved Envs lacking complex glycans that were not incorporated into virions; (ii) other pNAbs produced Envs with some complex carbohydrates and severe defects in cleavage, which were relieved by brefeldin A treatment; (iii) bNAbs that recognize gp160 as well as mature Envs resulted in Envs with some complex carbohydrates and moderate decreases in virion Env cleavage; and (iv) bNAbs that preferentially recognize mature Envs produced cleaved Envs with complex glycans in cells and on virions. The low infectivity observed upon co-expression of pNAbs or CD4 could be explained by disruption of Env trafficking, reducing the level of Env and/or increasing the fraction of uncleaved Env on virions. In addition to bNAb effects on virion Env cleavage, the secreted bNAbs neutralized the co-expressed viruses.IMPORTANCEThe Env trimers on the HIV-1 mediate virus entry into host cells. Env is synthesized in infected cells, modified by complex sugars, and cleaved to form a mature, functional Env, which is incorporated into virus particles. Env elicits antibodies in infected individuals, some of which can neutralize the virus. We found that antibodies co-expressed in the virus-producing cell can disrupt Env transit to the proper compartment for cleavage and sugar modification and, in some cases, block incorporation into viruses. These studies provide insights into the processes by which Env becomes functional in the virus-producing cell and may assist attempts to interfere with these events to inhibit HIV-1 infection.


Asunto(s)
Anticuerpos ampliamente neutralizantes , Infecciones por VIH , VIH-1 , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Humanos , Anticuerpos Neutralizantes , Carbohidratos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/fisiología , Polisacáridos/metabolismo
18.
Am J Pathol ; 194(5): 849-860, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325550

RESUMEN

The nerve injury-induced protein 2 (NINJ2) belongs to a family of homophilic adhesion molecules and was initially found to be involved in nerve regeneration. However, the role of NINJ2 in other cellular processes is not well studied. The Ninj2-deficient mice generated in the current study had a short lifespan and were prone to spontaneous tumors, systemic inflammation, and metabolic defects. Comprehensive carbohydrate and lipid metabolic analyses were performed to better understand the metabolic traits that contribute to these phenotypes. Carbohydrate metabolic analyses showed that NINJ2 deficiency led to defects in monosaccharide metabolism along with accumulation of multiple disaccharides and sugar alcohols. Lipidomic analyses showed that Ninj2 deficiency altered patterns of several lipids, including triglycerides, phospholipids, and ceramides. To identify a cellular process that associated with these metabolic defects, the role of NINJ2 in pyroptosis, a programmed cell death that links cancer, inflammation, and metabolic disorders, was examined. Loss of NINJ2 promoted pyroptosis by activating the NOD-like receptor protein 3 (NLRP3) inflammasome. Taken together, these data reveal a critical role of NINJ2 in tumorigenesis, inflammatory response, and metabolism via pyroptosis.


Asunto(s)
Neoplasias , Piroptosis , Ratones , Animales , Transformación Celular Neoplásica , Apoptosis , Inflamasomas , Inflamación/patología , Carbohidratos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Moléculas de Adhesión Celular Neuronal
19.
FASEB J ; 38(7): e23586, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38568858

RESUMEN

Acetaminophen (ACE) is a widely used analgesic and antipyretic drug with various applications, from pain relief to fever reduction. Recent studies have reported equivocal effects of habitual ACE intake on exercise performance, muscle growth, and risks to bone health. Thus, this study aimed to assess the impact of a 6-week, low-dose ACE regimen on muscle and bone adaptations in exercising and non-exercising rats. Nine-week-old Wistar rats (n = 40) were randomized to an exercise or control (no exercise) condition with ACE or without (placebo). For the exercise condition, rats ran 5 days per week for 6 weeks at a 5% incline for 2 min at 15 cm/s, 2 min at 20 cm/s, and 26 min at 25 cm/s. A human equivalent dose of ACE was administered (379 mg/kg body weight) in drinking water and adjusted each week based on body weight. Food, water intake, and body weight were measured daily. At the beginning of week 6, animals in the exercise group completed a maximal treadmill test. At the end of week 6, rats were euthanized, and muscle cross-sectional area (CSA), fiber type, and signaling pathways were measured. Additionally, three-point bending and microcomputer tomography were measured in the femur. Follow-up experiments in human primary muscle cells were used to explore supra-physiological effects of ACE. Data were analyzed using a two-way ANOVA for treatment (ACE or placebo) and condition (exercise or non-exercise) for all animal outcomes. Data for cell culture experiments were analyzed via ANOVA. If omnibus significance was found in either ANOVA, a post hoc analysis was completed, and a Tukey's adjustment was used. ACE did not alter body weight, water intake, food intake, or treadmill performance (p > .05). There was a treatment-by-condition effect for Young's Modulus where placebo exercise was significantly lower than placebo control (p < .05). There was no treatment by condition effects for microCT measures, muscle CSA, fiber type, or mRNA expression. Phosphorylated-AMPK was significantly increased with exercise (p < .05) and this was attenuated with ACE treatment. Furthermore, phospho-4EBP1 was depressed in the exercise group compared to the control (p < .05) and increased in the ACE control and ACE exercise group compared to placebo exercise (p < .05). A low dose of ACE did not influence chronic musculoskeletal adaptations in exercising rodents but acutely attenuated AMPK phosphorylation and 4EBP1 dephosphorylation post-exercise.


Asunto(s)
Acetaminofén , Condicionamiento Físico Animal , Animales , Humanos , Ratas , Acetaminofén/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Peso Corporal , Carbohidratos , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Ratas Wistar
20.
Biol Cell ; 116(8): e2400013, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38881160

RESUMEN

Male infertility is a significant global issue affecting 60-80 million people, with 40%-50% of cases linked to male issues. Exposure to radiation, drugs, sickness, the environment, and oxidative stress may result in testicular degeneration. Carbohydrate-based polymers (CBPs) restore testis differentiation and downregulate apoptosis genes. CBP has biodegradability, low cost, and wide availability, but is at risk of contamination and variations. CBP shows promise in wound healing, but more research is required before implementation in healthcare. Herein, we discuss the recent advances in engineering applications of CBP employed as scaffolds, drug delivery systems, immunomodulation, and stem cell therapy for testicular regeneration. Moreover, we emphasize the promising challenges warranted for future perspectives.


Asunto(s)
Polímeros , Testículo , Humanos , Masculino , Animales , Polímeros/química , Regeneración , Carbohidratos/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Sistemas de Liberación de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA