Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.394
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 20(1): 18-28, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510222

RESUMEN

Cyclic GMP-AMP synthase (cGAS) is a key sensor responsible for cytosolic DNA detection. Here we report that GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) is critical for DNA sensing and efficient activation of cGAS. G3BP1 enhanced DNA binding of cGAS by promoting the formation of large cGAS complexes. G3BP1 deficiency led to inefficient DNA binding by cGAS and inhibited cGAS-dependent interferon (IFN) production. The G3BP1 inhibitor epigallocatechin gallate (EGCG) disrupted existing G3BP1-cGAS complexes and inhibited DNA-triggered cGAS activation, thereby blocking DNA-induced IFN production both in vivo and in vitro. EGCG administration blunted self DNA-induced autoinflammatory responses in an Aicardi-Goutières syndrome (AGS) mouse model and reduced IFN-stimulated gene expression in cells from a patient with AGS. Thus, our study reveals that G3BP1 physically interacts with and primes cGAS for efficient activation. Furthermore, EGCG-mediated inhibition of G3BP1 provides a potential treatment for cGAS-related autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , ADN Helicasas/metabolismo , Complejos Multiproteicos/metabolismo , Malformaciones del Sistema Nervioso/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Animales , Autoantígenos/inmunología , Autoantígenos/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/tratamiento farmacológico , Enfermedades Autoinmunes del Sistema Nervioso/genética , Catequina/análogos & derivados , Catequina/uso terapéutico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Citosol/inmunología , Citosol/metabolismo , ADN/inmunología , ADN/metabolismo , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Modelos Animales de Enfermedad , Exodesoxirribonucleasas/genética , Células HEK293 , Células HeLa , Humanos , Interferones/metabolismo , Ratones , Ratones Noqueados , Malformaciones del Sistema Nervioso/tratamiento farmacológico , Malformaciones del Sistema Nervioso/genética , Fármacos Neuroprotectores/uso terapéutico , Fosfoproteínas/genética , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/genética , Unión Proteica , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/antagonistas & inhibidores , Proteínas con Motivos de Reconocimiento de ARN/genética
2.
Breast Cancer Res ; 26(1): 114, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978121

RESUMEN

The protein Bcl-2, well-known for its anti-apoptotic properties, has been implicated in cancer pathogenesis. Identifying the primary gene responsible for promoting improved cell survival and development has provided compelling evidence for preventing cellular death in the progression of malignancies. Numerous research studies have provided evidence that the abundance of Bcl-2 is higher in malignant cells, suggesting that suppressing Bcl-2 expression could be a viable therapeutic approach for cancer treatment. In this study, we acquired a compound collection using a database that includes constituents from Traditional Chinese Medicine (TCM). Initially, we established a pharmacophore model and utilized it to search the TCM database for potential compounds. Compounds with a fitness score exceeding 0.75 were selected for further analysis. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis identified six compounds with favorable therapeutic characteristics. The compounds that successfully passed the initial screening process based on the pharmacodynamic model were subjected to further evaluation. Extra-precision (XP) docking was employed to identify the compounds with the most favorable XP docking scores. Further analysis using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method to calculate the overall free binding energy. The binding energy between the prospective ligand molecule and the target protein Bcl-2 was assessed by a 100 ns molecular dynamics simulation for curcumin and Epigallocatechin gallate (EGCG). The findings of this investigation demonstrate the identification of a molecular structure that effectively inhibits the functionality of the Bcl-2 when bound to the ligand EGCG. Consequently, this finding presents a novel avenue for the development of pharmaceuticals capable of effectively addressing both inflammatory and tumorous conditions.


Asunto(s)
Catequina , Curcumina , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-bcl-2 , Catequina/análogos & derivados , Catequina/farmacología , Catequina/química , Catequina/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Humanos , Curcumina/farmacología , Curcumina/química , Curcumina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Unión Proteica , Farmacóforo
3.
Biochem Biophys Res Commun ; 734: 150424, 2024 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-39083974

RESUMEN

To explore the therapeutic effects along with the molecular mechanisms of epigallocatechin gallate (EGCG) in non-alcoholic fatty liver disease (NAFLD) treatment using network pharmacology as well as animal experiments. Firstly, the Traditional Chinese Medicine (TCM) Systems Pharmacology Database was searched to identify the potential targets of EGCG. The DisGeNET Database was used to screen the potential targets of NAFLD. The GeneCards Database was searched to identify related genes involved in pyroptosis. Subsequently, the intersecting genes of EGCG targeting pyroptosis to regulate NAFLD were obtained using a Venn diagram. Simultaneously, the aforementioned intersecting genes were used to construct a drug-disease target protein-protein interaction (PPI) network. The DAVID database was adopted for Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The main pathway-target network was determined. Next, the potential mechanism of EGCG targeting pyroptosis to regulate NAFLD was investigated and validated through in vivo experiments. 626 potential targets of EGCG, 447 target genes of NAFLD, and 568 potential targets of pyroptosis were identified. The number of common targets between EGCG, NAFLD, and pyroptosis was 266. GO biological process items and 92 KEGG pathways were determined based on the analysis results. Animal experiments demonstrated that EGCG could ameliorate body weight, glucolipid metabolism, steatosis, and liver injury, enhance insulin sensitivity, and improve glucose tolerance in NAFLD mice through the classical pathway of pyroptosis. EGCG could effectively treat NAFLD through multiple targets and pathways. It was concluded that EGCG ameliorates hepatocyte steatosis, pyroptosis, dyslipidemia, and inflammation in NAFLD mice fed a high-fat diet (HFD), and the protective mechanism could be associated with the NLRP3-Caspase-1-GSDMD classical pyroptosis pathway.


Asunto(s)
Catequina , Ratones Endogámicos C57BL , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico , Mapas de Interacción de Proteínas , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , Animales , Ratones , Masculino , Mapas de Interacción de Proteínas/efectos de los fármacos , Piroptosis/efectos de los fármacos , Humanos , Dieta Alta en Grasa/efectos adversos
4.
BMC Cancer ; 24(1): 486, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632501

RESUMEN

BACKGROUND: The antiviral drug Nirmatrelvir was found to be a key drug in controlling the progression of pneumonia during the infectious phase of COVID-19. However, there are very few options for effective treatment for cancer patients who have viral pneumonia. Glucocorticoids is one of the effective means to control pneumonia, but there are many adverse events. EGCG is a natural low toxic compound with anti-inflammatory function. Thus, this study was designed to investigate the safety and efficacy of epigallocatechin-3-gallate (EGCG) aerosol to control COVID-19 pneumonia in cancer populations. METHODS: The study was designed as a prospective, single-arm, open-label phase I/II trial at Shandong Cancer Hospital and Institute, between January 5, 2023 to March 31,2023 with viral pneumonia on radiographic signs after confirmed novel coronavirus infection. These patients were treated with EGCG nebulization 10 ml three times daily for at least seven days. EGCG concentrations were increased from 1760-8817umol/L to 4 levels with dose escalation following a standard Phase I design of 3-6 patients per level. Any grade adverse event caused by EGCG was considered a dose-limiting toxicity (DLT). The maximum tolerated dose (MTD) is defined as the highest dose with less than one-third of patients experiencing dose limiting toxicity (DLT) due to EGCG. The primary end points were the toxicity of EGCG and CT findings, and the former was graded by Common Terminology Criteria for Adverse Events (CTCAE) v. 5.0. The secondary end point was the laboratory parameters before and after treatment. RESULT: A total of 60 patients with high risk factors for severe COVID-19 pneumonia (factors such as old age, smoking and combined complications)were included in this phase I-II study. The 54 patients in the final analysis were pathologically confirmed to have tumor burden and completed the whole course of treatment. A patient with bucking at a level of 1760 umol/L and no acute toxicity associated with EGCG has been reported at the second or third dose gradients. At dose escalation to 8817umol/L, Grade 1 adverse events of nausea and stomach discomfort occurred in two patients, which resolved spontaneously within 1 hour. After one week of treatment, CT showed that the incidence of non-progression of pneumonia was 82% (32/39), and the improvement rate of pneumonia was 56.4% (22/39). There was no significant difference in inflammation-related laboratory parameters (white blood cell count, lymphocyte count, IL-6, ferritin, C-reactive protein and lactate dehydrogenase) before and after treatment. CONCLUSION: Aerosol inhalation of EGCG is well tolerated, and preliminary investigation in cancer population suggests that EGCG may be effective in COVID-19-induced pneumonia, which can promote the improvement of patients with moderate pneumonia or prevent them from developing into severe pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05758571. Date of registration: 8 February 2023.


Asunto(s)
COVID-19 , Catequina , Neoplasias , Neumonía Viral , Humanos , Catequina/efectos adversos , Catequina/análogos & derivados , Catequina/uso terapéutico , Oxígeno , Neumonía Viral/epidemiología , Estudios Prospectivos , Aerosoles y Gotitas Respiratorias , Resultado del Tratamiento
5.
Biol Pharm Bull ; 47(7): 1331-1337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39048354

RESUMEN

Green tea (GT) catechins exhibit antiviral effects in experimental studies. However, we lack clinical evidence on the preventive effects of catechin concentrations in gargling against acute upper respiratory tract infections (URTIs). Therefore, we aimed to investigate the concentration-dependence of GT catechins in gargling on the incidence of URTIs. We conducted an open-label randomized study. The target population consisted of 209 students from the University of Shizuoka and Meiji University, who were randomly assigned to high-catechin (approximate catechin concentration: 76.4 mg/dL), low-catechin (approximate catechin concentration: 30.8 mg/dL), and a control water gargling (catechin concentration: 0 mg/dL) group. All participants gargled water or GT daily for 12 weeks. The symptoms of URTIs were recorded on a daily survey form by participants. The incidences of URTIs occurred in 6 (9.1%), 7 (10.8%), and 11 (15.7%) participants in the high-catechin, low-catechin, and water groups, respectively. Cox proportional hazards analysis, using background factors and prevention status as covariates, revealed a hazard ratio of 0.57 (95% Confidence Interval (CI): 0.21-1.55, p = 0.261) for the high-catechin vs. water group and 0.54 (95% CI: 0.20-1.50, p = 0.341) for the low-catechin vs. water group. Our findings showed the incidence of URTIs in a concentration-dependent GT gargling was not significantly different, partly owing to the low event rates caused by intense precautions against the coronavirus disease 2019 pandemic. Our study would serve as a foundation for the development of an advanced protocol with optimal concentrations and a larger number of participants.


Asunto(s)
Catequina , Infecciones del Sistema Respiratorio , , Catequina/farmacología , Catequina/uso terapéutico , Catequina/administración & dosificación , Humanos , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/epidemiología , Masculino , Femenino , Té/química , Adulto Joven , Adulto , Relación Dosis-Respuesta a Droga , Enfermedad Aguda , Incidencia , Antivirales/uso terapéutico
6.
Biol Pharm Bull ; 47(7): 1248-1254, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38866477

RESUMEN

Ethanol (alcohol) is a risk factor that contributes to non-communicable diseases. Chronic abuse of ethanol is toxic to both the heart and overall health, and even results in death. Ethanol and its byproduct acetaldehyde can harm the cardiovascular system by impairing mitochondrial function, causing oxidative damage, and reducing contractile proteins. Endothelial cells are essential components of the cardiovascular system, are highly susceptible to ethanol, either through direct or indirect exposure. Thus, protection against endothelial injury is of great importance for persons who chronic abuse of ethanol. In this study, an in vitro model of endothelial injury was created using ethanol. The findings revealed that a concentration of 20.0 mM of ethanol reduced cell viability and Bcl-2 expression, while increasing cell apoptosis, intracellular reactive oxygen species (ROS) levels, mitochondrial depolarization, and the expression of Bax and cleaved-caspase-3 in endothelial cells. Further study showed that ethanol promoted nuclear translocation of nuclear factor kappa B (NF-κB), increased the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 in the culture medium, and inhibited nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway. The aforementioned findings suggest that ethanol has a harmful impact on endothelial cells. Nevertheless, the application of epigallocatechin-3-gallate (EGCG) to the cells can effectively mitigate the detrimental effects of ethanol on endothelial cells. In conclusion, EGCG alleviates ethanol-induced endothelial injury partly through alteration of NF-κB translocation and activation of the Nrf2 signaling pathway. Therefore, EGCG holds great potential in safeguarding individuals who chronically abuse ethanol from endothelial dysfunction.


Asunto(s)
Catequina , Etanol , Factor 2 Relacionado con NF-E2 , FN-kappa B , Transducción de Señal , Etanol/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , FN-kappa B/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
7.
J Nanobiotechnology ; 22(1): 633, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39420343

RESUMEN

Natural compound-based treatments provide innovative ways for ulcerative colitis therapy. However, poor targeting and rapid degradation curtail its application, which needs to be addressed. Inspired by biomacromolecule-based materials, we have developed an orally administrated nanoparticle (GBP@HA NPs) using bovine serum albumin as a carrier for polyphenol delivery. The system synergizes galactosylated bovine serum albumin with two polyphenols, epigallocatechin gallate and tannic acid, which is then encased in "nanoarmor" of ε-Polylysine and hyaluronic acid to boost its stability and targeting. Remarkably, the nanoarmor demonstrated profound therapeutic effects in both acute and chronic mouse models of ulcerative colitis, mitigating disease symptoms via multiple mechanisms, regulating inflammation related factors and exerting a modulatory impact on gut microbiota. Further mechanistic investigations indicate that GBP@HA NPs may act through several pathways, including modulation of Keap1-Nrf2 and NF-κB signaling, as well as Caspase-1-dependent pyroptosis. Consequently, this novel armored nanotherapy promotes the way for enhanced polyphenol utilization in ulcerative colitis treatment research.


Asunto(s)
Colitis Ulcerosa , Ácido Hialurónico , Nanopartículas , Colitis Ulcerosa/tratamiento farmacológico , Animales , Ácido Hialurónico/química , Ratones , Nanopartículas/química , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Albúmina Sérica Bovina/química , Polilisina/química , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Catequina/uso terapéutico , Polifenoles/química , Polifenoles/farmacología , Masculino , Taninos/química , Taninos/farmacología , Taninos/uso terapéutico , Portadores de Fármacos/química , Microbioma Gastrointestinal/efectos de los fármacos
8.
Clin Exp Nephrol ; 28(2): 136-143, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37847436

RESUMEN

BACKGROUND: Burn patients often face a high risk of acute kidney injury (AKI) after severe burn injuries, meanwhile epigallocatechin-3-gallate (EGCG) has been proven to be effective in alleviating organ injury. METHODS: This study used the classical burn model in rats. Thirty model rats were randomly divided into a Burn group, a Burn + placebo group, a Burn + EGCG (50 mg/kg) group, and ten non-model rats as Sham group. The urinary excretion of the rats was subsequently monitored for a period of 48 h. After 48 h of different treatments, rat serum and kidneys were taken for the further verification. The efficacy of EGCG was assessed in pathological sections, biochemical indexes, and at the molecular level. RESULTS: Pathological sections were compared between the Burn group and Burn + placebo group. The rats in the Burn + EGCG group had less kidney damage. Moreover, the EGCG group maintained significantly elevated urine volumes, biochemical indexes manifested that EGCG could reduce serum creatinine (Cr) and neutrophil gelatinase-associated lipocalin (NGAL) level and inhibit the oxidation-related enzyme malondialdehyde (MDA) level, meanwhile the superoxide dismutase (SOD) level was increased. The molecular level showed that EGCG significantly reduced the mRNA expression levels of the inflammation-related molecules interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). CONCLUSION: The research indicated that EGCG had an alleviating effect on kidney injury in severely burned rats, and its alleviating effects were related to improving kidney functions, alleviating oxidative stress, and inhibiting the expression of inflammatory factors.


Asunto(s)
Lesión Renal Aguda , Quemaduras , Catequina , Humanos , Ratas , Animales , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Riñón/patología , Catequina/farmacología , Catequina/uso terapéutico , Catequina/metabolismo , Factor de Necrosis Tumoral alfa , Quemaduras/complicaciones , Quemaduras/tratamiento farmacológico , Quemaduras/metabolismo
9.
Phytother Res ; 38(6): 2993-3019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600725

RESUMEN

Neurodegenerative disorders (NDs) are among the most common causes of death across the globe. NDs are characterized by progressive damage to CNS neurons, leading to defects in specific brain functions such as memory, cognition, and movement. The most common NDs are Parkinson's, Alzheimer's, Huntington's, and amyotrophic lateral sclerosis (ALS). Despite extensive research, no therapeutics or medications against NDs have been proven to be effective. The current treatment of NDs involving symptom-based targeting of the disease pathogenesis has certain limitations, such as drug resistance, adverse side effects, poor blood-brain barrier permeability, and poor bioavailability of drugs. Some studies have shown that plant-derived natural compounds hold tremendous promise for treating and preventing NDs. Therefore, the primary objective of this review article is to critically analyze the properties and potency of some of the most studied phytomedicines, such as quercetin, curcumin, epigallocatechin gallate (EGCG), apigenin, and cannabinoids, and highlight their advantages and limitations for developing next-generation alternative treatments against NDs. Further extensive research on pre-clinical and clinical studies for developing plant-based drugs against NDs from bench to bedside is warranted.


Asunto(s)
Catequina , Enfermedades Neurodegenerativas , Fitoterapia , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Catequina/análogos & derivados , Catequina/uso terapéutico , Catequina/farmacología , Curcumina/uso terapéutico , Curcumina/farmacología , Quercetina/farmacología , Quercetina/uso terapéutico , Animales , Cannabinoides/uso terapéutico , Cannabinoides/farmacología , Apigenina/farmacología , Apigenina/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Extractos Vegetales/farmacología
10.
Molecules ; 29(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543009

RESUMEN

Epigallocatechin gallate (EGCG) is a catechin, which is a type of flavonoid found in high concentrations in green tea. EGCG has been studied extensively for its potential health benefits, particularly in cancer. EGCG has been found to exhibit anti-proliferative, anti-angiogenic, and pro-apoptotic effects in numerous cancer cell lines and animal models. EGCG has demonstrated the ability to interrupt various signaling pathways associated with cellular proliferation and division in different cancer types. EGCG anticancer activity is mediated by interfering with various cancer hallmarks. This article summarize and highlight the effects of EGCG on cancer hallmarks and focused on the impacts of EGCG on these cancer-related hallmarks. The studies discussed in this review enrich the understanding of EGCG's potential as a therapeutic tool against cancer, offering a substantial foundation for scientists and medical experts to advance scientific and clinical investigations regarding EGCG's possibility as a potential anticancer treatment.


Asunto(s)
Catequina , Catequina/análogos & derivados , Neoplasias , Animales , Catequina/farmacología , Catequina/uso terapéutico , Neoplasias/tratamiento farmacológico , Proliferación Celular , Transducción de Señal ,
11.
Semin Cancer Biol ; 80: 256-275, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461153

RESUMEN

Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.


Asunto(s)
Catequina , Neoplasias , Apoptosis , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Estudios Prospectivos , Reproducibilidad de los Resultados
12.
Brief Bioinform ; 22(2): 1346-1360, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33386025

RESUMEN

The global pandemic crisis, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed the lives of millions of people across the world. Development and testing of anti-SARS-CoV-2 drugs or vaccines have not turned to be realistic within the timeframe needed to combat this pandemic. Here, we report a comprehensive computational approach to identify the multi-targeted drug molecules against the SARS-CoV-2 proteins, whichare crucially involved in the viral-host interaction, replication of the virus inside the host, disease progression and transmission of coronavirus infection. Virtual screening of 75 FDA-approved potential antiviral drugs against the target proteins, spike (S) glycoprotein, human angiotensin-converting enzyme 2 (hACE2), 3-chymotrypsin-like cysteine protease (3CLpro), cathepsin L (CTSL), nucleocapsid protein, RNA-dependent RNA polymerase (RdRp) and non-structural protein 6 (NSP6), resulted in the selection of seven drugs which preferentially bind to the target proteins. Further, the molecular interactions determined by molecular dynamics simulation revealed that among the 75 drug molecules, catechin can effectively bind to 3CLpro, CTSL, RBD of S protein, NSP6 and nucleocapsid protein. It is more conveniently involved in key molecular interactions, showing binding free energy (ΔGbind) in the range of -5.09 kcal/mol (CTSL) to -26.09 kcal/mol (NSP6). At the binding pocket, catechin is majorly stabilized by the hydrophobic interactions, displays ΔEvdW values: -7.59 to -37.39 kcal/mol. Thus, the structural insights of better binding affinity and favorable molecular interaction of catechin toward multiple target proteins signify that catechin can be potentially explored as a multi-targeted agent against COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Catequina/farmacología , Polifenoles/farmacología , SARS-CoV-2/efectos de los fármacos , COVID-19/virología , Catequina/química , Catequina/uso terapéutico , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Polifenoles/uso terapéutico
13.
Microb Pathog ; 176: 105999, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36702369

RESUMEN

Francisella tularensis is a highly infectious intracellular bacterium causing tularemia disease and is regarded as a potential biological weapon. The development of a vaccine, effective treatment, or prophylactic substances targeted against tularemia is in the forefront of interest and could help to prevent or mitigate possible malevolent acts by bioterrorism utilizing F. tularensis. The viability of F. tularensis, and thus of a tularemia disease outbreak, might potentially be suppressed by simple commonly available natural substances. Epigallocatechin gallate (EGCG) is contained in green tea and its antimicrobial effect has been described. Here, we show that EGCG can suppress F. tularensis growth and is able to reduce the bacterium's ability to replicate inside mouse bone marrow-derived macrophages (BMMs) without side effects on BMMs' own viability. We suggest one (but not the only) mechanism of EGCG action. We demonstrate that EGCG can block the main functions of HU protein, the important regulator of F. tularensis virulence, leading to overall attenuation of F. tularensis viability. EGCG can delay death of mice infected by F. tularensis and can be used as a prophylactic agent against tularemia disease. Postponing death by up to 2 days can provide sufficient opportunity to administer another treatment agent.


Asunto(s)
Catequina , Francisella tularensis , Tularemia , Animales , Ratones , Tularemia/microbiología , Proteínas de Unión al ADN/metabolismo , Catequina/uso terapéutico
14.
Crit Rev Food Sci Nutr ; 63(18): 3222-3235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34620005

RESUMEN

Endometriosis is a chronic disorder characterized by the presence of endometrial glands and stroma outside the uterine cavity. It affects 8%-10% of women in their reproductive years, and represents a major clinical problem with deleterious social, sexual and reproductive consequences. Current treatment options include pain relief, hormonal intervention and surgical removal. However, these treatments are deemed unsatisfactory owing to varying success, significant side effects and high recurrence rates. Green tea and its major bioactive component, (-)-epigallocatechin gallate (EGCG), possess diverse biological properties, particularly anti-angiogenic, anti-proliferation, anti-metastasis, and apoptosis induction. In recent years, preclinical studies have proposed the use of green tea to inhibit the growth of endometriosis. Herein, the aim of this review is to summarize the potential therapeutic effects of green tea on molecular and cellular mechanism through inflammation, oxidative stress, invasion and adhesion, apoptosis and angiogenesis in endometriosis.


Asunto(s)
Catequina , Endometriosis , Humanos , Femenino , Neovascularización Patológica/tratamiento farmacológico , , Endometriosis/tratamiento farmacológico , Endometriosis/inducido químicamente , Endometriosis/patología , Catequina/farmacología , Catequina/uso terapéutico , Apoptosis
15.
Crit Rev Food Sci Nutr ; 63(12): 1755-1791, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34433338

RESUMEN

Several studies have reported the health-beneficial effects of dietary phytochemicals, namely polyphenols, to prevent various diseases, including cancer. Polyphenols, like (-)-epigallocatechin-3-gallate (EGCG) from green tea, curcumin from turmeric, and ellagic acid from pomegranate are known to act by modulating antioxidant, anti-inflammatory and apoptotic signal transduction pathways in the tumor milieu. The evolving literature underscores the role of epigenetic regulation of genes associated with cancer by these polyphenols, primarily via non-coding RNAs (ncRNAs), such as microRNAs (miRNA) and long noncoding RNA (lncRNA). However, there is little clarity on the exact role(s) played by these ncRNAs and their interactions with other ncRNAs, or with their protein targets, in response to modulation by these dietary polyphenols. Here, we review ncRNA interactions and functional networks of the complex ncRNA interactome with their targets in preclinical studies along with the role of epigenetics as well as key aspects of pharmacokinetics and phytochemistry of dietary polyphenols. We also summarize the current state of clinical trials with these dietary polyphenols. Taken together, this synthetic review provides insights into the molecular aspects underlying the anticancer chemopreventive effects of dietary polyphenols as well as summarizes data on novel biomarkers modulated by these polyphenols for preventive or therapeutic purposes in various types of cancer.


Asunto(s)
Catequina , MicroARNs , Neoplasias , Humanos , Epigénesis Genética , Polifenoles/química , Neoplasias/genética , Neoplasias/prevención & control , Neoplasias/tratamiento farmacológico , Quimioprevención , Catequina/uso terapéutico , MicroARNs/genética , Té/química
16.
Nanotechnology ; 34(21)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36535007

RESUMEN

Cancer has recently increased the death toll worldwide owing to inadequate therapy and decreased drug bioavailability. Long-term and untargeted chemotherapeutic exposure causes toxicity to healthy cells and drug resistance. These challenges necessitate the development of new methods to increase drug efficacy. Nanotechnology is an emerging field in the engineering of new drug delivery platforms. The phytochemical epigallocatechin gallate (EGCG), the main component of green tea extract and its most bioactive component, offers novel approaches to cancer cell eradication. The current review focuses on the nanogold-based carriers containing EGCG, with an emphasis on the chemotherapeutic effects of EGCG in cancer treatment. The nanoscale vehicle may improve the EGCG solubility and bioavailability while overcoming constraints and cellular barriers. This article reviewed the phytochemical EGCG-based gold nanoplatforms and their major anticancer applications, both individually, and in combination therapy in a few cases.


Asunto(s)
Catequina , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Catequina/farmacología , Catequina/uso terapéutico , Disponibilidad Biológica ,
17.
Parasitol Res ; 122(10): 2287-2299, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37507540

RESUMEN

Tapeworm infections cause insidious and irreversible effects in the infected individuals and some of them have already shown resistance to available drugs. A search for alternative treatment is urgently required. Phenolic compounds are amongst the most researched natural substances for their medicinal use. The present study aims to determine anthelmintic efficacy of two polyphenols Gallic acid and Catechin against the zoonotic rat tapeworm Hymenolepis diminuta. Both compounds are potent anti-oxidants and play major roles in combating pathogens, while their anthelmintic property according to our knowledge is yet to be explored. The parasite model H. diminuta was procured from intestine of infected rats raised in our laboratory. Two sets of parasites were treated in vitro with 5, 10, 20 and 40 mg/ml concentrations of each Gallic Acid and Catechin separately, another set of parasites were treated with standard dose of Praziquantel in RPMI 1640, while still another set of worms were kept in RPMI 1640 at 37 ± 10C with 1% Dimethyl sulfoxide as control. Motility and structural alterations were the parameters assessed for anthelmintic efficacy of the compounds. After paralysis the worms were processed for morphological, histological, and ultrastructural study and observed under light and electron microscope. Dose-dependent efficacy was observed in both compounds. Shrinkage of suckers, deformed proglottids and architectural alteration of the tegument were observed throughout the body of treated parasites compared to control. Although in terms of time taken for paralysis and mortality Gallic acid was more effective than Catechin, the degree of morphological aberrations caused were almost similar, except histological alteration was more in Catechin treated worms than in Gallic acid. Nevertheless, both Gallic acid and Catechin are suggested to possess anthelmintic efficacy besides other health benefits but extended studies are required to compare their efficacy.


Asunto(s)
Antihelmínticos , Catequina , Himenolepiasis , Hymenolepis diminuta , Hymenolepis , Parásitos , Ratas , Animales , Catequina/farmacología , Catequina/uso terapéutico , Ácido Gálico/farmacología , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Himenolepiasis/parasitología
18.
Int J Mol Sci ; 24(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37175868

RESUMEN

The assembly of the amyloid-ß peptide (Aß) into toxic oligomers and fibrils is associated with Alzheimer's disease and dementia. Therefore, disrupting amyloid assembly by direct targeting of the Aß monomeric form with small molecules or antibodies is a promising therapeutic strategy. However, given the dynamic nature of Aß, standard computational tools cannot be easily applied for high-throughput structure-based virtual screening in drug discovery projects. In the current study, we propose a computational pipeline-in the framework of the ensemble docking strategy-to identify catechins' binding sites in monomeric Aß42. It is shown that both hydrophobic aromatic interactions and hydrogen bonding are crucial for the binding of catechins to Aß42. Additionally, it has been found that all the studied ligands, especially EGCG, can act as potent inhibitors against amyloid aggregation by blocking the central hydrophobic region of Aß. Our findings are evaluated and confirmed with multi-microsecond MD simulations. Finally, it is suggested that our proposed pipeline, with low computational cost in comparison with MD simulations, is a suitable approach for the virtual screening of ligand libraries against Aß.


Asunto(s)
Enfermedad de Alzheimer , Catequina , Humanos , Catequina/uso terapéutico , Simulación de Dinámica Molecular , Fragmentos de Péptidos/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Sitios de Unión , Amiloide/química
19.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108217

RESUMEN

Chronic obesity causes various diseases, leading to an urgent need for its treatment and prevention. Using monosodium-glutamate-induced obesity mice, the present study investigated the synergistic obesity-reducing effects of tea catechins and the antioxidant ß-cryptoxanthin present in mandarin oranges. The results show that the obese mice that ingested both tea catechin and ß-cryptoxanthin for 4 weeks had a significantly decreased body weight, with no difference in body weight compared with control mice. Moreover, the blood biochemical test results were normal, and the body fat percentage was significantly decreased according to the histopathological analysis. Additionally, the abundance of M1 macrophages, which release pro-inflammatories, was significantly reduced in adipose tissue. Indeed, a significant decrease was detected in M1-macrophage-secreted tumor necrosis factor-alpha levels. Meanwhile, M2 macrophage levels were recovered, and adiponectin, which is released from adipocytes and involved in suppressing metabolic syndrome, was increased. Collectively, these results suggest that the combination of tea catechins and antioxidant foods can alleviate chronic obesity, indicating that a combination of various ingredients in foods might contribute to reducing chronic obesity.


Asunto(s)
Catequina , , Animales , Ratones , Té/metabolismo , beta-Criptoxantina/metabolismo , beta-Criptoxantina/farmacología , beta-Criptoxantina/uso terapéutico , Ratones Obesos , Catequina/uso terapéutico , Antioxidantes/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/etiología , Peso Corporal , Tejido Adiposo/metabolismo , Ingestión de Alimentos , Antiinflamatorios/uso terapéutico
20.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37445915

RESUMEN

Breast cancer is one of the most diagnosed cancers worldwide, with an incidence of 47.8%. Its treatment includes surgery, radiotherapy, chemotherapy, and antibodies giving a mortality of 13.6%. Breast tumor development is driven by a variety of signaling pathways with high heterogeneity of surface receptors, which makes treatment difficult. Epigallocatechin-3-gallate (EGCG) is a natural polyphenol isolated as the main component in green tea; it has shown multiple beneficial effects in breast cancer, controlling proliferation, invasion, apoptosis, inflammation, and demethylation of DNA. These properties were proved in vitro and in vivo together with synergistic effects in combination with traditional chemotherapy, increasing the effectiveness of the treatment. This review focuses on the effects of EGCG on the functional capabilities acquired by breast tumor cells during its multistep development, the molecular and signal pathways involved, the synergistic effects in combination with current drugs, and how nanomaterials can improve its bioavailability on breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Catequina , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Catequina/farmacología , Catequina/uso terapéutico , Polifenoles/farmacología , Mama/metabolismo , Transducción de Señal , Apoptosis ,
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA