RESUMEN
Degrading cellulose is a key step in the processing of lignocellulosic biomass into bioethanol. Cellobiose, the disaccharide product of cellulose degradation, has been shown to inhibit cellulase activity, but the mechanisms underlying product inhibition are not clear. We combined single-molecule imaging and biochemical investigations with the goal of revealing the mechanism by which cellobiose inhibits the activity of Trichoderma reesei Cel7A, a well-characterized exo-cellulase. We find that cellobiose slows the processive velocity of Cel7A and shortens the distance moved per encounter; effects that can be explained by cellobiose binding to the product release site of the enzyme. Cellobiose also strongly inhibits the binding of Cel7A to immobilized cellulose, with a Ki of 2.1 mM. The isolated catalytic domain (CD) of Cel7A was also inhibited to a similar degree by cellobiose, and binding of an isolated carbohydrate-binding module to cellulose was not inhibited by cellobiose, suggesting that cellobiose acts on the CD alone. Finally, cellopentaose inhibited Cel7A binding at micromolar concentrations without affecting the enzyme's velocity of movement along cellulose. Together, these results suggest that cellobiose inhibits Cel7A activity both by binding to the "back door" product release site to slow activity and to the "front door" substrate-binding tunnel to inhibit interaction with cellulose. These findings point to strategies for engineering cellulases to reduce product inhibition and enhance cellulose degradation, supporting the growth of a sustainable bioeconomy.
Asunto(s)
Celobiosa , Celulasa , Celulosa , Hypocreales , Celobiosa/metabolismo , Celulasa/metabolismo , Celulasa/antagonistas & inhibidores , Celulosa/metabolismo , Hypocreales/enzimología , Hypocreales/metabolismo , Imagen Individual de Molécula/métodos , Dominio Catalítico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/químicaRESUMEN
ß-glucosidases (Bgls) are glycosyl hydrolases that catalyze the conversion of cellobiose or glucosyl-polysaccharide into glucose. Bgls are widely used in industry to produce bioethanol, wine and juice, and feed. Tris (tris(hydroxymethyl)aminomethane) is an organic compound that can inhibit the hydrolase activity of some Bgls, but the inhibition state and selectivity have not been fully elucidated. Here, three crystal structures of Thermoanaerobacterium saccharolyticum Bgl complexed with the Tris molecule were determined at 1.55-1.95 Å. The configuration of Tris binding to TsaBgl remained consistent across three crystal structures, and the amino acids interacting with the Tris molecule were conserved across Bgl enzymes. The positions O1 and O3 atoms of Tris exhibit the same binding moiety as the hydroxyl group of the glucose molecule. Tris molecules are stably positioned at the glycone site and coordinate with surrounding water molecules. The Tris-binding configuration of TsaBgl is similar to that of HjeBgl, HgaBgl, ManBgl, and KflBgl, but the arrangement of the water molecule coordinating Tris at the aglycone site differs. Meanwhile, both the arrangement of Tris and the water molecules in ubBgl, NkoBgl, and SfrBgl differ from those in TsaBgl. The binding configuration and affinity of the Tris molecule for Bgl may be affected by the residues on the aglycone and gatekeeper regions. This result will extend our knowledge of the inhibitory effect of Tris molecules on TsaBgl.
Asunto(s)
Celobiosa , beta-Glucosidasa , beta-Glucosidasa/metabolismo , Celobiosa/metabolismo , Glucosa/metabolismo , Catálisis , AguaRESUMEN
Cellobiose lipids are surface-active compounds or biological detergents produced by distinct Basidiomycetes yeasts, of which the most and best-described ones belong to the Ustilaginomycetes class. The molecules display slight variation in congener type, which is linked to the hydroxylation position of the long fatty acid, acetylation profile of the cellobiose unit, and presence or absence of the short fatty acid. In general, this variation is strain specific. Although cellobiose lipid biosynthesis has been described for about 11 yeast species, hitherto only two types of biosynthetic gene clusters are identified, and this for only three species. This work adds six more biosynthetic gene clusters and describes for the first time a novel type of cellobiose lipid biosynthetic cluster with a simplified architecture related to specific cellobiose lipids synthesized by Trichosporonaceae family members.
Asunto(s)
Basidiomycota , Celobiosa , Lípidos , Familia de Multigenes , Celobiosa/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo , Lípidos/biosíntesis , Vías Biosintéticas/genéticaRESUMEN
Despite their low quantity and abundance, the cellulolytic bacteria that inhabit the equine large intestine are vital to their host, as they enable the crucial use of forage-based diets. Fibrobacter succinogenes is one of the most important intestinal cellulolytic bacteria. In this study, Fibrobacter sp. HC4, one cellulolytic strain newly isolated from the horse cecum, was characterized for its ability to utilize plant cell wall fibers. Fibrobacter sp. HC4 consumed only cellulose, cellobiose, and glucose and produced succinate and acetate in equal amounts. Among genes coding for CAZymes, 26% of the detected glycoside hydrolases (GHs) were involved in cellulolysis. These cellulases belong to the GH5, GH8, GH9, GH44, GH45, and GH51 families. Both carboxymethyl cellulase and xylanase activities of Fibrobacter sp. HC4 were detected using the Congo red method and were higher than those of F. succinogenes S85, the type strain. The in vitro addition of Fibrobacter sp. HC4 to a fecal microbial ecosystem of horses with large intestinal acidosis significantly enhanced fibrolytic activity as measured by the increase in gas and volatile fatty acids production during the first 48 h. According to this, the pH decreased and the disappearance of dry matter increased at a faster rate with Fibrobacter sp. HC4. Our data suggest a high specialization of the new strain in cellulose degradation. Such a strain could be of interest for future exploitation of its probiotic potential, which needs to be further determined by in vivo studies.IMPORTANCECellulose is the most abundant of plant cell wall fiber and can only be degraded by the large intestine microbiota, resulting in the production of volatile fatty acids that are essential for the host nutrition and health. Consequently, cellulolytic bacteria are of major importance to herbivores. However, these bacteria are challenged by various factors, such as high starch diets, which acidify the ecosystem and reduce their numbers and activity. This can lead to an imbalance in the gut microbiota and digestive problems such as colic, a major cause of mortality in horses. In this work, we characterized a newly isolated cellulolytic strain, Fibrobacter sp. HC4, from the equine intestinal microbiota. Due to its high cellulolytic capacity, reintroduction of this strain into an equine fecal ecosystem stimulates hay fermentation in vitro. Isolating and describing cellulolytic bacteria is a prerequisite for using them as probiotics to restore intestinal balance.
Asunto(s)
Celulosa , Heces , Fibrobacter , Animales , Celulosa/metabolismo , Fibrobacter/genética , Fibrobacter/enzimología , Fibrobacter/aislamiento & purificación , Fibrobacter/metabolismo , Caballos , Heces/microbiología , Celulasa/metabolismo , Celulasa/genética , Ciego/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Celobiosa/metabolismoRESUMEN
Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (ß-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of ß-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.
Asunto(s)
Celulasas , Saccharomycetales , Celobiosa/metabolismo , Temperatura , Fermentación , Xilosa/metabolismo , Saccharomycetales/metabolismo , Etanol/metabolismo , Ingeniería Metabólica , GlucosaRESUMEN
The inherent complexity of coupled biocatalytic reactions presents a major challenge for process development with one-pot multienzyme cascade transformations. Kinetic models are powerful engineering tools to guide the optimization of cascade reactions towards a performance suitable for scale up to an actual production. Here, we report kinetic model-based window of operation analysis for cellobiose production (≥100 g/L) from sucrose and glucose by indirect transglycosylation via glucose 1-phosphate as intermediate. The two-step cascade transformation is catalyzed by sucrose and cellobiose phosphorylase in the presence of substoichiometric amounts of phosphate (≤27 mol% of substrate). Kinetic modeling was instrumental to uncover the hidden effect of bulk microviscosity due to high sugar concentrations on decreasing the rate of cellobiose phosphorylase specifically. The mechanistic-empirical hybrid model thus developed gives a comprehensive description of the cascade reaction at industrially relevant substrate conditions. Model simulations serve to unravel opposed relationships between efficient utilization of the enzymes and maximized concentration (or yield) of the product within a given process time, in dependence of the initial concentrations of substrate and phosphate used. Optimum balance of these competing key metrics of process performance is suggested from the model-calculated window of operation and is verified experimentally. The evidence shown highlights the important use of kinetic modeling for the characterization and optimization of cascade reactions in ways that appear to be inaccessible to purely data-driven approaches.
Asunto(s)
Celobiosa , Fosforilasas , Celobiosa/química , Glucosiltransferasas/química , Glucosa , Sacarosa , FosfatosRESUMEN
One-pot cascade reactions of coupled disaccharide phosphorylases enable an efficient transglycosylation via intermediary α-d-glucose 1-phosphate (G1P). Such transformations have promising applications in the production of carbohydrate commodities, including the disaccharide cellobiose for food and feed use. Several studies have shown sucrose and cellobiose phosphorylase for cellobiose synthesis from sucrose, but the boundaries on transformation efficiency that result from kinetic and thermodynamic characteristics of the individual enzyme reactions are not known. Here, we assessed in a step-by-step systematic fashion the practical requirements of a kinetic model to describe cellobiose production at industrially relevant substrate concentrations of up to 600 mM sucrose and glucose each. Mechanistic initial-rate models of the two-substrate reactions of sucrose phosphorylase (sucrose + phosphate â G1P + fructose) and cellobiose phosphorylase (G1P + glucose â cellobiose + phosphate) were needed and additionally required expansion by terms of glucose inhibition, in particular a distinctive two-site glucose substrate inhibition of the cellobiose phosphorylase (from Cellulumonas uda). Combined with mass action terms accounting for the approach to equilibrium, the kinetic model gave an excellent fit and a robust prediction of the full reaction time courses for a wide range of enzyme activities as well as substrate concentrations, including the variable substoichiometric concentration of phosphate. The model thus provides the essential engineering tool to disentangle the highly interrelated factors of conversion efficiency in the coupled enzyme reaction; and it establishes the necessary basis of window of operation calculations for targeted optimizations toward different process tasks.
Asunto(s)
Celobiosa , Glucosiltransferasas , Glucosiltransferasas/metabolismo , Fosforilasas/metabolismo , Glucosa , Disacáridos , Sacarosa , Cinética , Fosfatos , Especificidad por SustratoRESUMEN
The efficient hydrolysis of lignocellulosic biomass into fermentable sugars is key for viable economic production of biofuels and biorenewable chemicals from second-generation feedstocks. Consolidated bioprocessing (CBP) combines lignocellulose saccharification and chemical production in a single step. To avoid wasting valuable resources during CBP, the selective secretion of enzymes (independent or attached to the surface) based on the carbon source available is advantageous. To enable enzyme expression and secretion based on extracellular glucose levels, we implemented a G-protein-coupled receptor (GPCR)-based extracellular glucose sensor; this allows the secretion and display of cellulases in the presence of the cellulosic fraction of lignocellulose by leveraging cellobiose-dependent signal amplification. We focused on the glucose-responsiveness of the HXT1 promoter and engineered PHXT1 by changing its core to that of the strong promoter PTHD3 , increasing extracellular enzyme activity by 81%. We then demonstrated glucose-mediated expression and cell-surface display of the ß-glucosidase BglI on the surface of Saccharomyces cerevisiae. The display system was further optimized by re-directing fatty acid pools from lipid droplet synthesis toward formation of membrane precursors via knock-out of PAH1. This resulted in an up to 4.2-fold improvement with respect to the baseline strain. Finally, we observed cellobiose-dependent signal amplification of the system with an increase in enzymatic activity of up to 3.1-fold when cellobiose was added.
Asunto(s)
Celulosa , Proteínas de Saccharomyces cerevisiae , Celulosa/metabolismo , Celobiosa/metabolismo , Fermentación , Saccharomyces cerevisiae/metabolismo , beta-Glucosidasa , Glucosa/metabolismo , Fosfatidato Fosfatasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Cello-oligosaccharides (COS) become a new type of functional oligosaccharides. COS transglycosylation reactions were studied to enhance COS yield production. Seeking the ability of the free form of Fusarium solani ß-glucosidase (FBgl1) to synthesize COS under low substrate concentrations, we found out that this biocatalyst initiates this reaction with only 1 g/L of cellobiose, giving rise to the formation of cellotriose. Cellotriose and cellopentaose were detected in biphasic conditions with an immobilized FBgl1 and when increased to 50 g/L of cellobiose as a starter concentration. After the biocatalyst recycling process, the trans-glycosylation yield of COS was maintained after 5 cycles, and the COS concentration was 6.70 ± 0.35 g/L. The crude COS contained 20.15 ± 0.25 g/L glucose, 23.15 ± 0.22 g/L non-reacting substrate cellobiose, 5.25 ± 0.53 g/L, cellotriose and 1.49 ± 0.32 g/L cellopentaose. A bioprocess was developed for cellotriose enrichment, using whole Bacillus velezensis cells as a microbial purification tool. This bacteria consumed glucose, unreacted cellobiose, and cellopentaose while preserving cellotriose in the fermented medium. This study provides an excellent enzyme candidate for industrial COS production and is also the first study on the single-step COS enrichment process.
Asunto(s)
Bacillus , Celobiosa , Fusarium , Oligosacáridos , beta-Glucosidasa , Fusarium/enzimología , Fusarium/metabolismo , Fusarium/genética , beta-Glucosidasa/metabolismo , Oligosacáridos/metabolismo , Celobiosa/metabolismo , Bacillus/enzimología , Bacillus/metabolismo , Bacillus/genética , Prebióticos , Glicosilación , Glucosa/metabolismoRESUMEN
ß-Glucosidase (ß-G) holds promising applications in various fields, such as biomass energy, food, pharmaceuticals, and environmental protection, yet its industrial application is still limited by issues of stability and recycling. Herein, we first immobilized ß-G onto the surface of magnetic chitosan nanoparticles (MCS/ß-G) through adsorption methods. Subsequently, utilizing the metal-organic framework (MOF), CaBDC, which possesses good stability under acidic conditions, we encapsulated MCS/ß-G. The resulting biocatalyst (MCS/ß-G@CaBDC) exhibited excellent activity and recyclability. MCS/ß-G@CaBDC can convert 91.5% of cellobiose to glucose in 60 min and maintained 81.9% activity after 10 cycles. The apparent Km value of MCS/ß-G@CaBDC was 0.148 mM, lower than free ß-G (0.166 mM) and MCS/ß-G (0.173 mM). The CaBDC layer increased the mass transfer resistance of the reaction but also triggered structural rearrangement of ß-G during the encapsulation process. This resulted in the ß-sheet content rising to 68.4%, which, in turn, contributed to enhancing the rigidity of ß-G. Moreover, the saturated magnetic strength of this biocatalyst could reach 37.3 emu/g, facilitating its magnetic recovery. The biocatalyst prepared in this study exhibits promising application prospects, and the immobilization method can provide valuable insights into the field of enzyme immobilization.
Asunto(s)
Celobiosa , Enzimas Inmovilizadas , Estructuras Metalorgánicas , beta-Glucosidasa , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Celobiosa/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Estructuras Metalorgánicas/química , Hidrólisis , Calcio/química , Calcio/metabolismo , Estabilidad de Enzimas , Quitosano/químicaRESUMEN
In this study, the cellobiose 2-epimerase gene csce from Caldicellulosiruptor saccharolyticus was expressed in Escherichia coli using TB medium containing yeast extract Oxoid and tryptone Oxoid. Interesting, it was found that when the concentration of isopropyl-beta-d-thiogalactopyranoside (IPTG) and lactose was 0 (no addition), the activity of cellobiose 2-epimerase reached 5.88 U/mL. It was 3.70-fold higher than the activity observed when 1.0 mM IPTG was added. When using M9 medium without yeast extract Oxoid and tryptone Oxoid, cellobiose 2-epimerase gene could not be expressed without IPTG and lactose. However, cellobiose 2-epimerase gene could be expressed when yeast extract Oxoid or tryptone Oxoid was added, indicating that these supplements contained inducers for gene expression. In the absence of IPTG and lactose, the addition of soy peptone Angel-1 or yeast extract Angel-1 to M9 medium significantly upregulated the expression of cellobiose 2-epimerase gene in E. coli BL21 pET28a-csce, and these inductions led to higher expression levels compared to tryptone Oxoid or yeast extract Oxoid. The relative transcription level of csce was consistent with its expression level in E. coli BL21 pET28a-csce. In the medium TB without IPTG and lactose and containing yeast extract Angel-1 and soy peptone Angel-1, the activity of cellobiose 2-epimerase reached 6.88 U/mL, representing a 2.2-fold increase compared to previously reported maximum activity in E. coli. The significance of this study lies in its implications for efficient heterologous expression of recombinant enzyme proteins in E. coli without the need for IPTG and lactose addition.
Asunto(s)
Carbohidrato Epimerasas , Celobiosa , Escherichia coli , Lactosa , Escherichia coli/genética , Escherichia coli/metabolismo , Lactosa/metabolismo , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/biosíntesis , Celobiosa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Isopropil Tiogalactósido/farmacología , Regiones Promotoras Genéticas , Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismoRESUMEN
Bicontinuous thermotropic liquid crystal (LC) materials, e.g., double gyroid (DG) phases, have garnered significant attention due to the potential utility of their 3D network structures in wide-ranging applications. However, the utility of these materials is significantly constrained by the lack of robust molecular design rules for shape-filling amphiphiles that spontaneously adopt the saddle curvatures required to access these useful supramolecular assemblies. Toward this aim, we synthesized anomerically pure Guerbet-type glycolipids bearing cellobiose head groups and branched alkyl tails and studied their thermotropic LC self-assembly. Using a combination of differential scanning calorimetry, polarized optical microscopy, and small-angle X-ray scattering, our studies demonstrate that Guerbet cellobiosides exhibit a strong propensity to self-assemble into DG morphologies over wide thermotropic phase windows. The stabilities of these assemblies sensitively depend on the branched alkyl tail structure and the anomeric configuration of the glycolipid in a previously unrecognized manner. Complementary molecular simulations furnish detailed insights into the observed self-assembly characteristics, thus unveiling molecular motifs that foster network phase self-assembly that will enable future designs and applications of network LC materials.
Asunto(s)
Celobiosa , Cristales Líquidos , Glucolípidos/química , Cristales Líquidos/química , Rastreo Diferencial de Calorimetría , MicroscopíaRESUMEN
BACKGROUND: Trichoderma reesei is an organism extensively used in the bioethanol industry, owing to its capability to produce enzymes capable of breaking down holocellulose into simple sugars. The uptake of carbohydrates generated from cellulose breakdown is crucial to induce the signaling cascade that triggers cellulase production. However, the sugar transporters involved in this process in T. reesei remain poorly identified and characterized. RESULTS: To address this gap, this study used temporal membrane proteomics analysis to identify five known and nine putative sugar transporters that may be involved in cellulose degradation by T. reesei. Docking analysis pointed out potential ligands for the putative sugar transporter Tr44175. Further functional validation of this transporter was carried out in Saccharomyces cerevisiae. The results showed that Tr44175 transports a variety of sugar molecules, including cellobiose, cellotriose, cellotetraose, and sophorose. CONCLUSION: This study has unveiled a transporter Tr44175 capable of transporting cellobiose, cellotriose, cellotetraose, and sophorose. Our study represents the first inventory of T. reesei sugar transportome once exposed to cellulose, offering promising potential targets for strain engineering in the context of bioethanol production.
Asunto(s)
Celulasa , Glucanos , Hypocreales , Trichoderma , Celobiosa/metabolismo , Proteoma/metabolismo , Proteínas de la Membrana/metabolismo , Celulosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Celulasa/metabolismo , Azúcares/metabolismo , Oligosacáridos/metabolismo , Trichoderma/metabolismoRESUMEN
The cellulose-rich corncob residue (CCR) is an abundant and renewable agricultural biomass that has been under-exploited. In this study, two strategies were compared for their ability to transform CCR into cello-oligosaccharides (COS). The first strategy employed the use of endo-glucanases. Although selected endo-glucanases from GH9, GH12, GH45, and GH131 could release COS with degrees of polymerization from 2 to 4, the degrading efficiency was low. For the second strategy, first, CCR was efficiently depolymerized to glucose and cellobiose using the cellulase from Trichoderma reesei. Then, using these simple sugars and sucrose as the starting materials, phosphorylases from different microorganisms were combined to generate COS to a level up to 100.3 g/L with different patterns and degrees of polymerization. Using tomato as a model plant, the representative COS obtained from BaSP (a sucrose phosphorylase from Bifidobacterium adolescens), CuCbP (a cellobiose phosphorylase from Cellulomonas uda), and CcCdP (a cellodextrin phosphorylase from Clostridium cellulosi) were shown to be able to promote plant growth. The current study pointed to an approach to make use of CCR for production of the value-added COS. KEY POINTS: ⢠Sequential use of cellulase and phosphorylases effectively generated cello-oligosaccharides from corncob residue. ⢠Cello-oligosaccharides patterns varied in accordance to cellobiose/cellodextrin phosphorylases. ⢠Spraying cello-oligosaccharides promoted tomato growth.
Asunto(s)
Celobiosa , Celulasa , Zea mays , Oligosacáridos/química , FosforilasasRESUMEN
Galacto-oligosaccharides (GOS) are prebiotic compounds that are mainly used in infant formula to mimic bifidogenic effects of mother's milk. They are synthesized by ß-galactosidase enzymes in a trans-glycosylation reaction with lactose. Many ß-galactosidase enzymes from different sources have been studied, resulting in varying GOS product compositions and yields. The in vivo role of these enzymes is in lactose hydrolysis. Therefore, the best GOS yields were achieved at high lactose concentrations up to 60%wt, which require a relatively high temperature to dissolve. Some thermostable ß-glucosidase enzymes from thermophilic bacteria are also capable of using lactose or para nitrophenyl-galactose as a substrate. Here, we describe the use of the ß-glucosidase BglA from Thermotoga maritima for synthesis of oligosaccharides derived from lactose and cellobiose and their detailed structural characterization. Also, the BglA enzyme kinetics and yields were determined, showing highest productivity at higher lactose and cellobiose concentrations. The BglA trans-glycosylation/hydrolysis ratio was higher with 57%wt lactose than with a nearly saturated cellobiose (20%wt) solution. The yield of GOS was very high, reaching 72.1%wt GOS from lactose. Structural elucidation of the products showed mainly ß(1 â 3) and ß(1 â 6) elongating activity, but also some ß(1 â 4) elongation was observed. The ß-glucosidase BglA from T. maritima was shown to be a very versatile enzyme, producing high yields of oligosaccharides, particularly GOS from lactose. KEY POINTS: ⢠ß-Glucosidase of Thermotoga maritima synthesizes GOS from lactose at very high yield. ⢠Thermotoga maritima ß-glucosidase has high activity and high thermostability. ⢠Thermotoga maritima ß-glucosidase GOS contains mainly (ß1-3) and (ß1-6) linkages.
Asunto(s)
Celobiosa , Lactosa , Oligosacáridos , Thermotoga maritima , beta-Glucosidasa , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Lactosa/metabolismo , Celobiosa/metabolismo , beta-Glucosidasa/metabolismo , beta-Glucosidasa/genética , beta-Glucosidasa/química , Cinética , Oligosacáridos/metabolismo , Glicosilación , Hidrólisis , Temperatura , Estabilidad de EnzimasRESUMEN
Consolidated bioprocessing candidate, Clostridium thermocellum, is a cellulose hydrolysis specialist, with the ability to ferment the released sugars to produce bioethanol. C. thermocellum is generally studied with model substrates Avicel and cellobiose to understand the metabolic pathway leading to ethanol. In the present study, adaptive laboratory evolution, allowing C. thermocellum DSM 1237 to adapt to growth on glucose, fructose, and sorbitol, with the prospect that some strains will adapt their metabolism to yield more ethanol. Adaptive growth on glucose and sorbitol resulted in an approximately 1 mM and 2 mM increase in ethanol yield per millimolar glucose equivalent, respectively, accompanied by a shift in the production of the other expected fermentation end products. The increase in ethanol yield observed for sorbitol adapted cells was due to the carbon source being more reduced compared to cellobiose. Glucose and cellobiose have similar oxidation states thus the increase in ethanol yield is due to the rerouting of electrons from other reduced metabolic products excluding H2 which did not decrease in yield. There was no increase in ethanol yield observed for fructose adapted cells, but there was an unanticipated elimination of formate production, also observed in sorbitol adapted cells suggesting that fructose has regulatory implications on formate production either at the transcription or protein level.
Asunto(s)
Carbono , Celobiosa , Clostridium thermocellum , Etanol , Fermentación , Fructosa , Glucosa , Clostridium thermocellum/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/crecimiento & desarrollo , Etanol/metabolismo , Fructosa/metabolismo , Carbono/metabolismo , Glucosa/metabolismo , Celobiosa/metabolismo , Sorbitol/metabolismo , Adaptación Fisiológica , Formiatos/metabolismoRESUMEN
Due to the continuous rise in global incidence and severity of invasive fungal infections (IFIs), particularly among immunocompromised and immunodeficient patients, there is an urgent demand for swift and accurate fungal pathogen diagnosis. Therefore, the need for fungal-specific positron emission tomography (PET) imaging agents that can detect the infection in the early stages is increasing. Cellobiose, a disaccharide, is readily metabolized by fungal pathogens such as Aspergillus species. Recently, our group reported fluorine-18 labeled cellobiose, 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB), for specific imaging of Aspergillus infection. The positive imaging findings with very low background signal on delayed imaging make this ligand a promising fungal-specific imaging ligand. Inspired by this result, the decision was made to automate the radiolabeling procedure for better reproducibility and to facilitate clinical translation. A Trasis AllInOne (Trasis AIO) automated module was used for this purpose. The reagent vials contain commercially available 2-deoxy-2-[18F]fluoroglucose ([18F]FDG), glucose-1-phosphate, and enzyme (cellobiose phosphorylase). A Sep-Pak cartridge was used to purify the tracer. The overall radiochemical yield was 50%-70% (n = 6, decay corrected) in 75-min synthesis time with a radiochemical purity of > 98%. This is a highly reliable protocol to produce current good manufacturing practice (cGMP)-compliant [18F]FCB for clinical PET imaging.
Asunto(s)
Celobiosa , Celobiosa/síntesis química , Celobiosa/química , Celobiosa/análogos & derivados , Técnicas de Química Sintética , Automatización , RadioquímicaRESUMEN
BACKGROUND: Cellobiose 2-epimerase (CE) has received great attention due to its potential applications in the food and pharmaceutical industries. In this study, a novel CE from mesophilic anaerobic halophilic bacterium Iocasia fonsfrigidae strain SP3-1 (IfCE) was successfully expressed in Escherichia coli and characterized. RESULTS: Unlike other CEs, the purified IfCE shows only epimerization activity toward ß-1,4-glycosidic linkages of disaccharides, including mannobiose, cellobiose and lactose, but not for monosaccharides, ß-1,4-glycosidic linkages of trisaccharides and α-1,4-glycosidic linkages of disaccharides. Only one epimerization product was obtained from the action of IfCE against mannobiose, cellobiose and lactose. Under optimum conditions, 31.0% of epilactose, a rare and low-calorie prebiotic sweetener with medicinal and pharmacological properties, was obtained from 10 mg mL-1 lactose. IfCE was highly active against lactose under NaCl concentrations up to 500 mmol L-1, possibly due to the excessive basic (arginine and lysine) and acidic (aspartic and glutamic acids) amino acid residues, which are localized on the surface of the halophilic enzyme structure. These residues may protect the enzyme from Cl- and Na+ ions from the environment, respectively. Under normal conditions, IfCE was able to convert lactose present in fresh goat milk to epilactose with a conversion yield of 31% in 10 min. In addition, IfCE has been investigated as a safe enzyme for human allergen. CONCLUSION: The results suggested that IfCE is a promising candidate to increase the quality and value of milk and dairy products by converting lactose that causes digestive problems in people with lactose intolerance into epilactose. © 2024 Society of Chemical Industry.
Asunto(s)
Proteínas Bacterianas , Carbohidrato Epimerasas , Celobiosa , Cabras , Lactosa , Leche , Animales , Lactosa/metabolismo , Lactosa/química , Leche/química , Leche/microbiología , Celobiosa/metabolismo , Celobiosa/química , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Especificidad por Sustrato , DisacáridosRESUMEN
Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.
Asunto(s)
Biomasa , Burkholderia , Fermentación , Hidroxibutiratos , Lignina , Aceite de Palma , ARN Ribosómico 16S , Xilosa , Lignina/metabolismo , Aceite de Palma/metabolismo , Hidroxibutiratos/metabolismo , Burkholderia/metabolismo , Burkholderia/genética , Burkholderia/crecimiento & desarrollo , Xilosa/metabolismo , ARN Ribosómico 16S/genética , Microbiología del Suelo , Glucosa/metabolismo , Poliésteres/metabolismo , Concentración de Iones de Hidrógeno , Furaldehído/metabolismo , Furaldehído/análogos & derivados , Celobiosa/metabolismoRESUMEN
Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[18F]-fluoro-d-glucose ([18F]FDG), the most common tracer used in clinical imaging, to form [18F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [18F]FDG was reacted with ß-d-glucose-1-phosphate in the presence of maltose phosphorylase, the α-1,4- and α-1,3-linked products 2-deoxy-[18F]-fluoro-maltose ([18F]FDM) and 2-deoxy-2-[18F]-fluoro-sakebiose ([18F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (ß-1,3), and cellobiose (ß-1,4) phosphorylases to synthesize 2-deoxy-2-[18F]fluoro-trehalose ([18F]FDT), 2-deoxy-2-[18F]fluoro-laminaribiose ([18F]FDL), and 2-deoxy-2-[18F]fluoro-cellobiose ([18F]FDC). We subsequently tested [18F]FDM and [18F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. Both [18F]FDM and [18F]FSK were stable in human serum with high accumulation in preclinical infection models. The synthetic ease and high sensitivity of [18F]FDM and [18F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of these tracers to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [18F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.