RESUMEN
Hematopoietic stem cells (HSCs) reside in hypoxic niches within bone marrow and cord blood. Yet, essentially all HSC studies have been performed with cells isolated and processed in non-physiologic ambient air. By collecting and manipulating bone marrow and cord blood in native conditions of hypoxia, we demonstrate that brief exposure to ambient oxygen decreases recovery of long-term repopulating HSCs and increases progenitor cells, a phenomenon we term extraphysiologic oxygen shock/stress (EPHOSS). Thus, true numbers of HSCs in the bone marrow and cord blood are routinely underestimated. We linked ROS production and induction of the mitochondrial permeability transition pore (MPTP) via cyclophilin D and p53 as mechanisms of EPHOSS. The MPTP inhibitor cyclosporin A protects mouse bone marrow and human cord blood HSCs from EPHOSS during collection in air, resulting in increased recovery of transplantable HSCs. Mitigating EPHOSS during cell collection and processing by pharmacological means may be clinically advantageous for transplantation.
Asunto(s)
Médula Ósea , Sangre Fetal/citología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Femenino , Trasplante de Células Madre Hematopoyéticas/instrumentación , Células Madre Hematopoyéticas/citología , Humanos , Hipoxia , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Pre-mRNA splicing follows a pathway driven by ATP-dependent RNA helicases. A crucial event of the splicing pathway is the catalytic activation, which takes place at the transition between the activated Bact and the branching-competent B* spliceosomes. Catalytic activation occurs through an ATP-dependent remodelling mediated by the helicase PRP2 (also known as DHX16)1-3. However, because PRP2 is observed only at the periphery of spliceosomes3-5, its function has remained elusive. Here we show that catalytic activation occurs in two ATP-dependent stages driven by two helicases: PRP2 and Aquarius. The role of Aquarius in splicing has been enigmatic6,7. Here the inactivation of Aquarius leads to the stalling of a spliceosome intermediate-the BAQR complex-found halfway through the catalytic activation process. The cryogenic electron microscopy structure of BAQR reveals how PRP2 and Aquarius remodel Bact and BAQR, respectively. Notably, PRP2 translocates along the intron while it strips away the RES complex, opens the SF3B1 clamp and unfastens the branch helix. Translocation terminates six nucleotides downstream of the branch site through an assembly of PPIL4, SKIP and the amino-terminal domain of PRP2. Finally, Aquarius enables the dissociation of PRP2, plus the SF3A and SF3B complexes, which promotes the relocation of the branch duplex for catalysis. This work elucidates catalytic activation in human splicing, reveals how a DEAH helicase operates and provides a paradigm for how helicases can coordinate their activities.
Asunto(s)
Biocatálisis , Empalme del ARN , Humanos , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Ciclofilinas/metabolismo , Precursores del ARN/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalmosomas/metabolismoRESUMEN
Tumor necrosis factor (TNF) constitutes a critical host defense against tuberculosis, but its excess is also implicated in tuberculosis pathogenesis in zebrafish and humans. Using the zebrafish, we elucidate the pathways by which TNF mediates tuberculosis pathogenesis. TNF excess induces mitochondrial reactive oxygen species (ROS) in infected macrophages through RIP1-RIP3-dependent pathways. While initially increasing macrophage microbicidal activity, ROS rapidly induce programmed necrosis (necroptosis) and release mycobacteria into the growth-permissive extracellular milieu. TNF-induced necroptosis occurs through two pathways: modulation of mitochondrial cyclophilin D, implicated in mitochondrial permeability transition pore formation, and acid sphingomyelinase-mediated ceramide production. Combined genetic blockade of cyclophilin D and acid sphingomyelinase renders the high TNF state hyperresistant by preventing macrophage necrosis while preserving increased microbicidal activity. Similarly, the cyclophilin D-inhibiting drug alisporivir and the acid sphingomyelinase-inactivating drug, desipramine, synergize to reverse susceptibility, suggesting the therapeutic potential of these orally active drugs against tuberculosis and possibly other TNF-mediated diseases.
Asunto(s)
Mitocondrias/metabolismo , Mycobacterium/fisiología , Necrosis , Especies Reactivas de Oxígeno/metabolismo , Tuberculosis/genética , Factores de Necrosis Tumoral/genética , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Macrófagos/inmunología , Redes y Vías Metabólicas , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Factores de Necrosis Tumoral/inmunología , Factores de Necrosis Tumoral/metabolismo , Pez CebraRESUMEN
Ischemia-associated oxidative damage leading to necrosis is a major cause of catastrophic tissue loss, and elucidating its signaling mechanism is therefore of paramount importance. p53 is a central stress sensor responding to multiple insults, including oxidative stress to orchestrate apoptotic and autophagic cell death. Whether p53 can also activate oxidative stress-induced necrosis is, however, unknown. Here, we uncover a role for p53 in activating necrosis. In response to oxidative stress, p53 accumulates in the mitochondrial matrix and triggers mitochondrial permeability transition pore (PTP) opening and necrosis by physical interaction with the PTP regulator cyclophilin D (CypD). Intriguingly, a robust p53-CypD complex forms during brain ischemia/reperfusion injury. In contrast, reduction of p53 levels or cyclosporine A pretreatment of mice prevents this complex and is associated with effective stroke protection. Our study identifies the mitochondrial p53-CypD axis as an important contributor to oxidative stress-induced necrosis and implicates this axis in stroke pathology.
Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Necrosis/metabolismo , Estrés Oxidativo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Línea Celular Tumoral , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Poro de Transición de la Permeabilidad Mitocondrial , Daño por ReperfusiónRESUMEN
Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complex traits, each of which could reveal insights into the mechanisms of disease1. Many of the underlying causal variants may affect enhancers2,3, but we lack accurate maps of enhancers and their target genes to interpret such variants. We recently developed the activity-by-contact (ABC) model to predict which enhancers regulate which genes and validated the model using CRISPR perturbations in several cell types4. Here we apply this ABC model to create enhancer-gene maps in 131 human cell types and tissues, and use these maps to interpret the functions of GWAS variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes through variants in enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal variants are enriched in predicted enhancers by more than 20-fold in particular cell types such as dendritic cells, and ABC achieves higher precision than other regulatory methods at connecting noncoding variants to target genes. These variant-to-function maps reveal an enhancer that contains an IBD risk variant and that regulates the expression of PPIF to alter the membrane potential of mitochondria in macrophages. Our study reveals principles of genome regulation, identifies genes that affect IBD and provides a resource and generalizable strategy to connect risk variants of common diseases to their molecular and cellular functions.
Asunto(s)
Elementos de Facilitación Genéticos/genética , Predisposición Genética a la Enfermedad , Variación Genética/genética , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Enfermedades Inflamatorias del Intestino/genética , Línea Celular , Cromosomas Humanos Par 10/genética , Ciclofilinas/genética , Células Dendríticas , Femenino , Humanos , Macrófagos/metabolismo , Masculino , Mitocondrias/metabolismo , Especificidad de Órganos/genética , FenotipoRESUMEN
The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein. We demonstrate that Cns1 is important for maintaining translation elongation, specifically chaperoning the elongation factor eEF2. In this context, Cns1 interacts with the novel co-factor Hgh1 and forms a quaternary complex together with eEF2 and Hsp90. The in vivo folding and solubility of eEF2 depend on the presence of these proteins. Chaperoning of eEF2 by Cns1 is essential for yeast viability and requires a defined subset of the Hsp90 machinery as well as the identified eEF2 recruiting factor Hgh1.
Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Extensión de la Cadena Peptídica de Translación , Factor 2 de Elongación Peptídica/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografía por Rayos X , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Ciclofilinas/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Resonancia Magnética Nuclear Biomolecular , Factor 2 de Elongación Peptídica/química , Factor 2 de Elongación Peptídica/genética , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-ActividadRESUMEN
The mitochondrial permeability transition pore (mPTP) is a channel in the inner mitochondrial membrane whose sustained opening in response to elevated mitochondrial matrix Ca2+ concentrations triggers necrotic cell death. The molecular identity of mPTP is unknown. One proposed candidate is the mitochondrial ATP synthase, whose canonical function is to generate most ATP in multicellular organisms. Here, we present mitochondrial, cellular, and in vivo evidence that, rather than serving as mPTP, the mitochondrial ATP synthase inhibits this pore. Our studies confirm previous work showing persistence of mPTP in HAP1 cell lines lacking an assembled mitochondrial ATP synthase. Unexpectedly, however, we observe that Ca2+-induced pore opening is markedly sensitized by loss of the mitochondrial ATP synthase. Further, mPTP opening in cells lacking the mitochondrial ATP synthase is desensitized by pharmacological inhibition and genetic depletion of the mitochondrial cis-trans prolyl isomerase cyclophilin D as in wild-type cells, indicating that cyclophilin D can modulate mPTP through substrates other than subunits in the assembled mitochondrial ATP synthase. Mitoplast patch clamping studies showed that mPTP channel conductance was unaffected by loss of the mitochondrial ATP synthase but still blocked by cyclophilin D inhibition. Cardiac mitochondria from mice whose heart muscle cells we engineered deficient in the mitochondrial ATP synthase also demonstrate sensitization of Ca2+-induced mPTP opening and desensitization by cyclophilin D inhibition. Further, these mice exhibit strikingly larger myocardial infarctions when challenged with ischemia/reperfusion in vivo. We conclude that the mitochondrial ATP synthase does not function as mPTP and instead negatively regulates this pore.
Asunto(s)
Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales , Ratones , Animales , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Peptidil-Prolil Isomerasa F , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Calcio/metabolismoRESUMEN
MicroRNAs (miRNAs) play an important role in gene regulation. In Arabidopsis, mature miRNAs are processed from primary miRNA transcripts by the Dicing complex that contains Dicer-like 1 (DCL1), SERRATE (SE), and Hyponastic Leaves 1 (HYL1). The Dicing complex can form nuclear dicing bodies (D-bodies) through SE phase separation. Here, we report that Cyclophilin71 (CYP71), a peptidyl-prolyl isomerase (PPIase), positively regulates miRNA processing. We show that CYP71 directly interacts with SE and enhances its phase separation, thereby promoting the formation of D-body and increasing the activity of the Dicing complex. We further show that the PPIase activity is important for the function of CYP71 in miRNA production. Our findings reveal orchestration of miRNA processing by a cyclophilin protein and suggest the involvement of peptidyl-prolyl cis-trans isomerization, a structural mechanism, in SE phase separation and miRNA processing.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/genética , Ciclofilinas/genética , MicroARNs/genética , Hojas de la Planta , Proteínas de Unión al ARN , Proteínas de Arabidopsis/genéticaRESUMEN
Exorbitant sustained inflammation is closely linked to inflammation-associated disorders, including cancer. The initiation of gastrointestinal cancers such as colorectal cancer is frequently accelerated by uncontrollable chronic inflammation which is triggered by excessive activation of nuclear factor kappa-B (NF-κB) signaling. Linear ubiquitin chains play an important role in activating canonical NF-κB pathway. The only known E3 complex, linear ubiquitin chain assembly complex is responsible for the synthesis of linear ubiquitin chains, thus leading to the activation of NF-κB axis and promoting the development of inflammation and inflammation-associated cancers. We report here cyclophilin J (CYPJ) which is a negative regulator of the linear ubiquitin chain assembly complex. The N terminus of CYPJ binds to the second Npl4 zinc finger (NZF) domain of HOIL-1-interacting protein and the ubiquitin-like domain of Shank-associated RH domain-interacting protein to disrupt the interaction between HOIL-1-interacting protein and Shank-associated RH domain-interacting protein and thus restrains linear ubiquitin chain synthesis and NF-κB activation. Cypj-deficient mice are highly susceptible to dextran sulfate sodium-induced colitis and dextran sulfate sodium plus azoxymethane-induced colon cancer. Moreover, CYPJ expression is induced by hypoxia. Patients with high expression of both CYPJ and hypoxia-inducible factor-1α have longer overall survival and progression-free survival. These results implicate CYPJ as an unexpected robust attenuator of inflammation-driven tumorigenesis that exerts its effects by controlling linear ubiquitin chain synthesis in NF-κB signal pathway.
Asunto(s)
Neoplasias Colorrectales , FN-kappa B , Transducción de Señal , Ubiquitina , Animales , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Ratones , Ubiquitina/metabolismo , FN-kappa B/metabolismo , FN-kappa B/genética , Ciclofilinas/metabolismo , Ciclofilinas/genética , Ratones Noqueados , Progresión de la Enfermedad , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/patología , Colitis/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células HEK293RESUMEN
Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene's promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions.
Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Humanos , Antimaláricos/farmacología , Ciclofilinas/genética , Ciclofilinas/metabolismo , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Repeticiones de Microsatélite , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Regulación hacia ArribaRESUMEN
In plants, heat stress induces changes in alternative splicing, including intron retention; these events can rapidly alter proteins or downregulate protein activity, producing nonfunctional isoforms or inducing nonsense-mediated decay of messenger RNA (mRNA). Nuclear cyclophilins (CYPs) are accessory proteins in the spliceosome complexes of multicellular eukaryotes. However, whether plant CYPs are involved in pre-mRNA splicing remain unknown. Here, we found that Arabidopsis thaliana CYP18-1 is necessary for the efficient removal of introns that are retained in response to heat stress during germination. CYP18-1 interacts with Step II splicing factors (PRP18a, PRP22, and SWELLMAP1) and associates with the U2 and U5 small nuclear RNAs in response to heat stress. CYP18-1 binds to phospho-PRP18a, and increasing concentrations of CYP18-1 are associated with increasing dephosphorylation of PRP18a. Furthermore, interaction and protoplast transfection assays revealed that CYP18-1 and the PP2A-type phosphatase PP2A B'η co-regulate PRP18a dephosphorylation. RNA-seq and RT-qPCR analysis confirmed that CYP18-1 is essential for splicing introns that are retained under heat stress. Overall, we reveal the mechanism of action by which CYP18-1 activates the dephosphorylation of PRP18 and show that CYP18-1 is crucial for the efficient splicing of retained introns and rapid responses to heat stress in plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Empalme Alternativo/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Respuesta al Choque Térmico/genética , Intrones/genética , Empalme del ARN , ARN Mensajero/genéticaRESUMEN
Upon antigen engagement, augmented cytosolic reactive oxygen species (ROS) are needed to achieve optimal T cell receptor (TCR) signaling. However, uncontrolled ROS production is a prominent cause of necrosis, which elicits hyper-inflammation and tissue damage. Hence, it is critical to program activated T cells to achieve ROS equilibrium. Here, we determined that miR-23a is indispensable for effector CD4(+) T cell expansion, particularly by providing early protection from excessive necrosis. Mechanistically, miR-23a targeted PPIF, gatekeeper of the mitochondria permeability transition pore, thereby restricting ROS flux and maintaining mitochondrial integrity. Upon acute Listeria monocytogenes infection, deleting miR-23a in T cells resulted in excessive inflammation, massive liver damage, and a marked mortality increase, which highlights the essential role of miR-23a in maintaining immune homeostasis.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Hígado/patología , MicroARNs/metabolismo , Mitocondrias/metabolismo , Animales , Células Cultivadas , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Homeostasis , Ratones , Ratones Transgénicos , MicroARNs/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Necrosis , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/genéticaRESUMEN
Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of â¼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-ß-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.
Asunto(s)
Enfermedad de Alzheimer , Isoindoles , Mitocondrias , Compuestos de Organoselenio , Peptidil-Prolil Isomerasa F , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Humanos , Cognición/efectos de los fármacos , Azoles/farmacología , Azoles/uso terapéutico , Ciclofilinas/metabolismo , Ciclofilinas/antagonistas & inhibidores , Ratones Transgénicos , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéuticoRESUMEN
The MLL1 gene is a frequent target for recurrent chromosomal translocations, resulting in transformation of hematopoietic precursors into leukemia stem cells. Here, we report on structure-function studies that elucidate molecular events in MLL1 binding of histone H3K4me3/2 marks and recruitment of the cyclophilin CyP33. CyP33 contains a PPIase and a RRM domain and regulates MLL1 function through HDAC recruitment. We find that the PPIase domain of CyP33 regulates the conformation of MLL1 through proline isomerization within the PHD3-Bromo linker, thereby disrupting the PHD3-Bromo interface and facilitating binding of the MLL1-PHD3 domain to the CyP33-RRM domain. H3K4me3/2 and CyP33-RRM target different surfaces of MLL1-PHD3 and can bind simultaneously to form a ternary complex. Furthermore, the MLL1-CyP33 interaction is required for repression of HOXA9 and HOXC8 genes in vivo. Our results highlight the role of PHD3-Bromo cassette as a regulatory platform, orchestrating MLL1 binding of H3K4me3/2 marks and cyclophilin-mediated repression through HDAC recruitment.
Asunto(s)
Ciclofilinas/metabolismo , Histona Desacetilasas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/química , Secuencia de Aminoácidos , Línea Celular , Cristalografía por Rayos X , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Prolina/química , Dominios y Motivos de Interacción de ProteínasRESUMEN
The C-terminal transactivation domain (TAD) of BMAL1 (brain and muscle ARNT-like 1) is a regulatory hub for transcriptional coactivators and repressors that compete for binding and, consequently, contributes to period determination of the mammalian circadian clock. Here, we report the discovery of two distinct conformational states that slowly exchange within the dynamic TAD to control timing. This binary switch results from cis/trans isomerization about a highly conserved Trp-Pro imide bond in a region of the TAD that is required for normal circadian timekeeping. Both cis and trans isomers interact with transcriptional regulators, suggesting that isomerization could serve a role in assembling regulatory complexes in vivo. Toward this end, we show that locking the switch into the trans isomer leads to shortened circadian periods. Furthermore, isomerization is regulated by the cyclophilin family of peptidyl-prolyl isomerases, highlighting the potential for regulation of BMAL1 protein dynamics in period determination.
Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos , Ritmo Circadiano , Factores de Transcripción ARNTL/química , Factores de Transcripción ARNTL/genética , Animales , Línea Celular Tumoral , Ciclofilinas/genética , Ciclofilinas/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Humanos , Isomerismo , Ratones , Mutación , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Filogenia , Prolina , Dominios Proteicos , Transducción de Señal , Relación Estructura-Actividad , Factores de Tiempo , Transfección , TriptófanoRESUMEN
BACKGROUND: Cyclophilins are ubiquitous panallergens whose epidemiologic, diagnostic, and clinical relevance is largely unknown and whose sensitization is rarely examined in routine allergy practice. OBJECTIVE: We investigated the epidemiologic, diagnostic, and clinical relevance of cyclophilins in seasonal allergic rhinitis and its comorbidities. METHODS: We examined a random sample of 253 (25%) of 1263 Italian children with seasonal allergic rhinitis from the Panallergens in Pediatrics (PAN-PED) cohort with characterized disease phenotypes. Nested studies of sensitization prevalence, correlation, and allergen extract inhibition were performed in patients sensitized to birch pollen extract but lacking IgE to Bet v 1/2/4 (74/1263) or with highest serum level of IgE to Bet v 1 (26/1263); and in patients with sensitization to various extracts (ragweed, mugwort, pellitory, Plantago, and plane tree), but not to their respective major allergenic molecule, profilins, and polcalcins. IgE to cyclophilin was detected with recombinant Bet v 7, and extract inhibition tests were performed with the same rBet v 7. RESULTS: IgE to rBet v 7 was detected in 43 (17%) of 253 patients. It was associated with asthma (P < .028) and oral allergy syndrome (P < .017) in univariate but not multivariate analysis adjusted for IgE to profilins (Phl p 12), PR-10s (Bet v 1), and lipid transfer proteins (Pru p 3). IgE to rBet v 7 was also highly prevalent (47/74, 63%) among patients with unexplained sensitization to birch pollen extract. In patients with unexplained sensitization to ragweed, mugwort, pellitory, Plantago and plane tree pollen, the levels of IgE to those extracts correlated with the levels of IgE to rBet v 7, and they were also significantly inhibited by rBet v 7 (inhibition range 45%-74%). CONCLUSIONS: IgE sensitization to cyclophilin is frequent in pollen-allergic patients living in temperate areas and can produce "false" positive outcomes in skin prick and IgE tests to pollen extracts. Molecular diagnostic guidelines should include this panallergen family.
Asunto(s)
Alérgenos , Ciclofilinas , Inmunoglobulina E , Polen , Rinitis Alérgica Estacional , Humanos , Inmunoglobulina E/inmunología , Inmunoglobulina E/sangre , Niño , Rinitis Alérgica Estacional/inmunología , Rinitis Alérgica Estacional/epidemiología , Rinitis Alérgica Estacional/diagnóstico , Rinitis Alérgica Estacional/sangre , Masculino , Femenino , Ciclofilinas/inmunología , Alérgenos/inmunología , Polen/inmunología , Adolescente , Preescolar , Antígenos de Plantas/inmunología , Italia/epidemiología , PrevalenciaRESUMEN
Mitochondrial dysfunction is implicated in neuropsychiatric disorders. Inhibition of mitochondrial permeability transition pore (mPTP) and thereby enhancement of mitochondrial Ca2+ retention capacity (CRC) is a promising treatment strategy. Here, we screened 1718 compounds to search for drug candidates inhibiting mPTP by measuring their effects on CRC in mitochondria isolated from mouse brains. We identified seco-cycline D (SCD) as an active compound. SCD and its derivative were more potent than a known mPTP inhibitor, cyclosporine A (CsA). The mechanism of action of SCD was suggested likely to be different from CsA that acts on cyclophilin D. Repeated administration of SCD decreased ischemic area in a middle cerebral artery occlusion model in mice. These results suggest that SCD is a useful probe to explore mPTP function.
Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Ratones , Animales , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias/metabolismo , Ciclofilinas/metabolismo , Ciclosporina/farmacología , Calcio/farmacología , Encéfalo/metabolismoRESUMEN
Plants have evolved multiple mechanisms to cope with diverse types of light stress, particularly the regulation of the electron transport chain (ETC). Under high light (HL) conditions, the balance of electron flux in the ETC is disturbed, which leads to the overaccumulation of reactive oxygen species (ROS) and results in photodamage and photoinhibition. The cytochrome (Cyt) b6/f complex, which coordinates electron transfer between photosystems I and II (PSI and PSII), plays an essential role in regulating the ETC and initiating photoprotection. However, how the Cyt b6/f complex is maintained under HL conditions remains unclear. Here, we report that the activity of the Cyt b6/f complex is sustained by thylakoid-localized cyclophilin 37 (CYP37) in Arabidopsis (Arabidopsis thaliana). Compared with wild-type plants, cyp37 mutants displayed an imbalance in electron transport from Cyt b6/f to PSI under HL stress, which led to increased ROS accumulation, decreased anthocyanin biosynthesis, and increased chlorophyll degradation. Surprisingly, CYP37's role in regulating ETC balance was independent of photosynthesis control, which was indicated by a higher Y (ND), an indicator of P700 oxidation in PSI. Furthermore, the interaction between CYP37 and photosynthetic electron transfer A (PetA), a subunit of the Cyt b6/f complex, suggests that the central function of CYP37 is to maintain Cyt b6/f complex activity rather than to serve as an assembly factor. Our study provides insights into how plants balance electron flow between PSII and PSI via Cyt b6/f complex under HL.
Asunto(s)
Arabidopsis , Transporte de Electrón/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Citocromos b6/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Clorofila/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Citocromo b6f/genética , Complejo de Citocromo b6f/metabolismo , Plantas/metabolismoRESUMEN
Although cyclophilins are attractive targets for probing biology and therapeutic intervention, no subtype-selective cyclophilin inhibitors have been described. We discovered novel cyclophilin inhibitors from the in vitro selection of a DNA-templated library of 256,000 drug-like macrocycles for cyclophilin D (CypD) affinity. Iterated macrocycle engineering guided by ten X-ray co-crystal structures yielded potent and selective inhibitors (half maximal inhibitory concentration (IC50) = 10 nM) that bind the active site of CypD and also make novel interactions with non-conserved residues in the S2 pocket, an adjacent exo-site. The resulting macrocycles inhibit CypD activity with 21- to >10,000-fold selectivity over other cyclophilins and inhibit mitochondrial permeability transition pore opening in isolated mitochondria. We further exploited S2 pocket interactions to develop the first cyclophilin E (CypE)-selective inhibitor, which forms a reversible covalent bond with a CypE S2 pocket lysine, and exhibits 30- to >4,000-fold selectivity over other cyclophilins. These findings reveal a strategy to generate isoform-selective small-molecule cyclophilin modulators, advancing their suitability as targets for biological investigation and therapeutic development.
Asunto(s)
Ciclofilinas , Poro de Transición de la Permeabilidad Mitocondrial , Ciclofilinas/química , Ciclofilinas/metabolismo , Peptidil-Prolil Isomerasa F , Lisina , ADNRESUMEN
Cyclophilin B (CypB), a significant member of immunophilins family with peptidyl-prolyl cis-trans isomerase (PPIase) activity, is crucial for the growth and metabolism of prokaryotes and eukaryotes. Sporothrix globosa (S. globosa), a principal pathogen in the Sporothrix complex, causes sporotrichosis. Transcriptomic analysis identified the cypB gene as highly expressed in S. globosa. Our previous study demonstrated that the recombinant Escherichia coli strain containing SgcypB gene failed to produce sufficient product when it was induced to express the protein, implying the potential toxicity of recombinant protein to the bacterial host. Bioinformatics analysis revealed that SgCypB contains transmembrane peptides within the 52 amino acid residues at the N-terminus and 21 amino acids near the C-terminus, and 18 amino acid residues within the cytoplasm. AlphaFold2 predicted a SgCypB 3D structure in which there is an independent PPIase domain consisting of a spherical extracellular part. Hence, we chose to express the extracellular domain to yield high-level recombinant protein with PPIase activity. Finally, we successfully produced high-yield, truncated recombinant CypB protein from S. globosa (SgtrCypB) that retained characteristic PPIase activity without host bacterium toxicity. This study presents an alternative expression strategy for proteins toxic to prokaryotes, such as SgCypB. ONE-SENTENCE SUMMARY: The recombinant cyclophilin B protein of Sporothrix globosa was expressed successfully by retaining extracellular domain with peptidyl-prolyl cis-trans isomerase activity to avoid toxicity to the host bacterium.