RESUMEN
Viruses employ a series of diverse translational strategies to expand their coding capacity, which produces viral proteins with common domains and entangles virus-host interactions. P3N-PIPO, which is a transcriptional slippage product from the P3 cistron, is a potyviral protein dedicated to intercellular movement. Here, we show that P3N-PIPO from watermelon mosaic virus (WMV) triggers cell death when transiently expressed in Cucumis melo accession PI 414723 carrying the Wmr resistance gene. Surprisingly, expression of the P3N domain, shared by both P3N-PIPO and P3, can alone induce cell death, whereas expression of P3 fails to activate cell death in PI 414723. Confocal microscopy analysis revealed that P3N-PIPO targets plasmodesmata (PD) and P3N associates with PD, while P3 localizes in endoplasmic reticulum in melon cells. We also found that mutations in residues L35, L38, P41, and I43 of the P3N domain individually disrupt the cell death induced by P3N-PIPO, but do not affect the PD localization of P3N-PIPO. Furthermore, WMV mutants with L35A or I43A can systemically infect PI 414723 plants. These key residues guide us to discover some WMV isolates potentially breaking the Wmr resistance. Through searching the NCBI database, we discovered some WMV isolates with variations in these key sites, and one naturally occurring I43V variation enables WMV to systemically infect PI 414723 plants. Taken together, these results demonstrate that P3N-PIPO, but not P3, is the avirulence determinant recognized by Wmr, although the shared N terminal P3N domain can alone trigger cell death.IMPORTANCEThis work reveals a novel viral avirulence (Avr) gene recognized by a resistance (R) gene. This novel viral Avr gene is special because it is a transcriptional slippage product from another virus gene, which means that their encoding proteins share the common N-terminal domain but have distinct C-terminal domains. Amazingly, we found that it is the common N-terminal domain that determines the Avr-R recognition, but only one of the viral proteins can be recognized by the R protein to induce cell death. Next, we found that these two viral proteins target different subcellular compartments. In addition, we discovered some virus isolates with variations in the common N-terminal domain and one naturally occurring variation that enables the virus to overcome the resistance. These results show how viral proteins with common domains interact with a host resistance protein and provide new evidence for the arms race between plants and viruses.
Asunto(s)
Enfermedades de las Plantas , Potyvirus , Proteínas Virales , Enfermedades de las Plantas/virología , Potyvirus/genética , Potyvirus/patogenicidad , Proteínas Virales/genética , Proteínas Virales/metabolismo , Cucumis melo/virología , Resistencia a la Enfermedad/genética , Muerte Celular , Plasmodesmos/virología , Plasmodesmos/metabolismo , Virulencia , Cucurbitaceae/virología , Interacciones Huésped-Patógeno , Retículo Endoplásmico/virología , Retículo Endoplásmico/metabolismo , Mutación , Citrullus/virologíaRESUMEN
Watermelon silver mottle virus (WSMoV), a potentially invasive virus, is known to reduce the yield and degrade the quality of infected crops in Cucurbitaceae and Solanaceae families, resulting in significant economic losses in limited areas of several Asian countries. WSMoV, previously detected on various crops in southern China, has now become more prevalent on watermelon and sweet pepper in the northern cities of China for the first time. A sequencing-based phylogenetic analysis has confirmed that the viral strains infecting cucumber, watermelon, and sweet pepper plants in Shandong Province are most closely related to those isolated from Guangdong, Guangxi, and Taiwan, suggesting a farther and continuous spread of WSMoV throughout China. To develop a fast, accurate, and practical protocol for WSMoV detection, we designed a set of primers from the conserved sequence of the WSMoV nucleocapsid protein (N) gene for a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). The RT-LAMP assay was performed successfully for 50 min at 61°C and exhibited a highly specific result without cross-reactions with other similar viruses and a sensitivity that is 100-fold higher than that of the traditional RT-PCR. The confirmation of 26 WSMoV suspect samples collected from various regions in Shandong through the RT-LAMP testing has demonstrated that the assay is suitable and practical for detection of WSMoV in both laboratory and field settings.
Asunto(s)
Citrullus , Técnicas de Amplificación de Ácido Nucleico , Filogenia , Enfermedades de las Plantas , Enfermedades de las Plantas/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Citrullus/virología , China , Transcripción Reversa , Tospovirus/genética , Tospovirus/aislamiento & purificación , Tospovirus/clasificación , ARN Viral/genética , Capsicum/virología , Técnicas de Diagnóstico MolecularRESUMEN
Cucurbits are economically important crops worldwide. The genomic data of many cucurbits are now available. However, functional analyses of cucurbit genes and noncoding RNAs have been impeded because genetic transformation is difficult for many cucurbitaceous plants. Here, we developed a set of tobacco ringspot virus (TRSV)-based vectors for gene and microRNA (miRNA) function studies in cucurbits. A TRSV-based expression vector could simultaneously express GREEN FLUORESCENT PROTEIN (GFP) and heterologous viral suppressors of RNA silencing in TRSV-infected plants, while a TRSV-based gene silencing vector could knock down endogenous genes exemplified by PHYTOENE DESATURASE (PDS) in Cucumis melo, Citrullus lanatus, Cucumis sativus, and Nicotiana benthamiana plants. We also developed a TRSV-based miRNA silencing vector to dissect the functions of endogenous miRNAs. Four representative miRNAs, namely, miR159, miR166, miR172, and miR319, from different cucurbits were inserted into the TRSV vector using a short tandem target mimic strategy and induced characteristic phenotypes in TRSV-miRNA-infected plants. This TRSV-based vector system will facilitate functional genomic studies in cucurbits.
Asunto(s)
Citrullus/genética , Cucumis sativus/genética , Vectores Genéticos , MicroARNs/genética , Nepovirus/genética , Nicotiana/genética , Citrullus/virología , Cucumis sativus/virología , Técnicas de Silenciamiento del Gen , Ingeniería Genética , Proteínas Fluorescentes Verdes , Oxidorreductasas/genética , Proteínas de Plantas/genética , Interferencia de ARN , ARN de Planta/genética , Nicotiana/virologíaRESUMEN
BACKGROUND: Tobamoviruses, including tomato brown rugose fruit virus (ToBRFV) on tomato and pepper, and cucumber green mottle mosaic virus (CGMMV) on cucumber and watermelon, have caused many disease outbreaks around the world in recent years. With seed-borne, mechanical transmission and resistant breaking traits, tobamoviruses pose serious threat to vegetable production worldwide. With the absence of a commercial resistant cultivar, growers are encouraged to take preventative measures to manage those highly contagious viral diseases. However, there is no information available on which disinfectants are effective to deactivate the virus infectivity on contaminated hands, tools and equipment for these emerging tobamoviruses. The purpose of this study was to evaluate a collection of 16 chemical disinfectants for their effectiveness against mechanical transmission of two emerging tobamoviruses, ToBRFV and CGMMV. METHODS: Bioassay was used to evaluate the efficacy of each disinfectant based on virus infectivity remaining in a prepared virus inoculum after three short exposure times (10 s, 30 s and 60 s) to the disinfectant and inoculated mechanically on three respective test plants (ToBRFV on tomato and CGMMV on watermelon). Percent infection of plants was measured through symptom observation on the test plants and the presence of the virus was confirmed through an enzyme-linked immunosorbent assay with appropriate antibodies. Statistical analysis was performed using one-way ANOVA based on data collected from three independent experiments. RESULTS: Through comparative analysis of percent infection of test plants, a similar trend of efficacy among 16 disinfectants was observed between the two pathosystems. Four common disinfectants with broad spectrum activities against two different tobamoviruses were identified. Those effective disinfectants with 90-100% efficacy against both tobamoviruses were 0.5% Lactoferrin, 2% Virocid, and 10% Clorox, plus 2% Virkon against CGMMV and 3% Virkon against ToBRFV. In addition, SP2700 generated a significant effect against CGMMV, but poorly against ToBRFV. CONCLUSION: Identification of common disinfectants against ToBRFV and CGMMV, two emerging tobamoviruses in two different pathosystems suggest their potential broader effects against other tobamoviruses or even other viruses.
Asunto(s)
Desinfectantes/farmacología , Enfermedades de las Plantas/prevención & control , Tobamovirus/efectos de los fármacos , Citrullus/crecimiento & desarrollo , Citrullus/virología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/virología , Enfermedades de las Plantas/virología , Inactivación de Virus/efectos de los fármacosRESUMEN
Watermelon crinkle leaf-associated virus 1 and watermelon crinkle leaf-associated virus 2 (WCLaV-1 and WCLaV-2), two unclassified members of the order Bunyavirales, are phylogenetically related to members of the genus Coguvirus (family Phenuiviridae). The genome of both viruses was reported previously to be composed of three RNA segments. However, the terminal sequences of two genomic RNA segments, namely those encoding the putative movement protein (MP) and the nucleocapsid (NP) protein, remained undetermined. High-throughput sequencing of total RNA and small RNA preparations, combined with reverse transcription PCR amplification followed by sequencing, revealed that the WCLaV-1 and WCLaV-2 possess a bipartite genome consisting of a negative-sense RNA1, encoding the RNA-dependent RNA polymerase, and an ambisense RNA2, encoding the putative movement (MP) and nucleocapsid (NP) proteins. The two open reading frames of RNA2 are in opposite orientations and are separated by a long AU-rich intergenic region (IR) that may assume a hairpin conformation. RNA1 and RNA2 of both viruses share almost identical 5' and 3' termini, which are complementary to each other up to 20 nt. This genome organization is typical of members of the genus Coguvirus, with which WCLaV-1 and WCLaV-2 also share similar terminal 5' and 3' sequences of RNA1 and RNA2. These molecular features, together with phylogenetic reconstructions support the classification of WCLaV-1 and WCLaV2 as members of two new species in the genus Coguvirus.
Asunto(s)
Citrullus/virología , Genoma Viral/genética , Virus ARN de Sentido Negativo/genética , Secuencia de Aminoácidos , Virus ARN de Sentido Negativo/clasificación , Proteínas de la Nucleocápside/genética , Filogenia , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Proteínas de Movimiento Viral en Plantas/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Análisis de Secuencia de ADNRESUMEN
Cucurbit yellow stunting disorder virus (CYSDV) is a single-stranded positive-sense RNA virus that produces devastating disease in watermelon and squash. Foliar symptoms of CYSDV consist of interveinal yellowing, brittleness, and thickening of older leaves leading to reduced plant vigor. A rapid diagnostic method for CYSDV would facilitate early detection and implementation of best viral-based management practices. We developed a rapid isothermal reverse transcription-recombination polymerase amplification (exo RT-RPA) assay for the detection of CYSDV. The primers and a 6-fluorescein amidite (6-FAM) probe were developed to target the nucleocapsid gene. The real-time assay detected CYSDV at 2.5 pg purified total RNA extracted from CYSDV-infected leaf tissue and corresponded to 10 copies of the target molecule. The assay was specific and did not cross-react with other common cucurbit viruses found in Florida and Georgia. The performance of the exo RT-RPA was evaluated using crude extract from 21 cucurbit field samples and demonstrated that the exo RT-RPA is a rapid procedure, thus providing a promising novel alternative approach for the detection of CYSDV.
Asunto(s)
Citrullus/virología , Crinivirus/aislamiento & purificación , Cucurbita/virología , Proteínas de la Nucleocápside/genética , Enfermedades de las Plantas/virología , Crinivirus/genética , Diagnóstico Precoz , Fluorescencia , Colorantes Fluorescentes/química , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Hojas de la Planta/virología , Transcripción Reversa , Sensibilidad y EspecificidadRESUMEN
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) play vital roles in plant defense responses against viral infections. However, there is no systematic understanding of lncRNAs and circRNAs and their competing endogenous RNA (ceRNA) networks in watermelon under cucumber green mottle mosaic virus (CGMMV) stress. Here, we present the characterization and expression profiles of lncRNAs and circRNAs in watermelon leaves 48-h post-inoculation (48 hpi) with CGMMV, with mock inoculation as a control. Deep sequencing analysis revealed 2373 lncRNAs and 606 circRNAs in the two libraries. Among them, 67 lncRNAs (40 upregulated and 27 downregulated) and 548 circRNAs (277 upregulated and 271 downregulated) were differentially expressed (DE) in the 48 hpi library compared with the control library. Furthermore, 263 cis-acting matched lncRNA-mRNA pairs were detected for 49 of the DE-lncRNAs. KEGG pathway analysis of the cis target genes of the DE-lncRNAs revealed significant associations with phenylalanine metabolism, the citrate cycle (TCA cycle), and endocytosis. Additionally, 30 DE-lncRNAs were identified as putative target mimics of 33 microRNAs (miRNAs), and 153 DE-circRNAs were identified as putative target mimics of 88 miRNAs. Furthermore, ceRNA networks of lncRNA/circRNA-miRNA-mRNA in response to CGMMV infection are described, with 12 DE-lncRNAs and 65 DE-circRNAs combining with 22 miRNAs and competing for the miRNA binding sites on 29 mRNAs. The qRT-PCR validation of selected lncRNAs and circRNAs showed a general correlation with the high-throughput sequencing results. This study provides a valuable resource of lncRNAs and circRNAs involved in the response to CGMMV infection in watermelon.
Asunto(s)
Citrullus/virología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/virología , ARN Circular/metabolismo , ARN Largo no Codificante/metabolismo , ARN de Planta/metabolismo , Tobamovirus/crecimiento & desarrollo , Citrullus/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/inmunología , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Cucumber green mottle mosaic virus (CGMMV) is an important viral pathogen on cucurbit plants worldwide, which can cause severe fruit decay symptoms on infected watermelon (usually called "watermelon blood flesh"). However, the molecular mechanism of this disease has not been well understood. In this study, we employed the isobaric tags for relative and absolute quantitation (iTRAQ) technique to analyze the proteomic profiles of watermelon fruits in response to CGMMV infection. A total of 595 differentially accumulated proteins (DAPs) were identified, of which 404 were upregulated and 191 were downregulated. Functional annotation analysis showed that these DAPs were mainly involved in photosynthesis, carbohydrate metabolism, secondary metabolite biosynthesis, plant-pathogen interaction, and protein synthesis and turnover. The accumulation levels of several proteins related to chlorophyll metabolism, pyruvate metabolism, TCA cycle, heat shock proteins, thioredoxins, ribosomal proteins, translation initiation factors, and elongation factors were strongly affected by CGMMV infection. Furthermore, a correlation analysis was performed between CGMMV-responsive proteome and transcriptome data of watermelon fruits obtained in our previous study, which could contribute to comprehensively elucidating the molecular mechanism of "watermelon blood flesh". To confirm the iTRAQ-based proteome data, the corresponding transcripts of ten DAPs were validated by determining their abundance via quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). These results could provide a scientific basis for in-depth understanding of the pathogenic mechanisms underlying CGMMV-induced "watermelon blood flesh", and lay the foundation for further functional exploration and verification of related genes and proteins.
Asunto(s)
Citrullus/metabolismo , Citrullus/virología , Biología Computacional , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/virología , Proteoma , Proteómica , Tobamovirus/fisiología , Biología Computacional/métodos , Ontología de Genes , Interacciones Huésped-Patógeno/genética , Anotación de Secuencia Molecular , Enfermedades de las Plantas/genética , Proteómica/métodosRESUMEN
An upgraded nicking/polymerization strategy for ultrasensitive electrochemical detection of Watermelon mosaic virus (WMV) is proposed on the basis of the exonuclease and polymerase activity of T4 DNA polymerase and Mg2+-dependent DNAzyme-assisted and hemin/G-quadruplex DNAzyme-assisted cascade amplification strategies. Briefly, the hybridized DNA of the target WMV sequence, HP1, and P1 was recognized and nicked by nicking endonuclease Nb.BbvCI, and two DNA segments (P1-25 and P1-6) were produced. P1-25 was digested in the 3'â5' direction, and digestion was halted at the 3'-terminal G locus with the exonuclease activity of T4 DNA polymerase. When dNTP solution mix was added to the mixture, an intact enzymatic sequence of Mg2+-dependent DNAzyme was synthesized by T4 DNA polymerase, which hybridized with its substrate sequence in the loop segment of HP2 immobilized on a gold electrode and initiated the cleavage round. The caged G-quadruplex sequence was released and formed hemin/G-quadruplex-based DNAzyme, resulting in sharply increased electrochemical signals. A correlation between the differential pulse voltammetry signal and the concentration of target WMV sequence was obtained in the range from 50 fM to 1 nM, with 50 fM detection limit. Because the nicking and polymerization reactions are irreversible and share the same buffer, the cascade amplification strategy is an ultrasensitive and high-efficiency strategy, indicating potential for viral detection. Graphical abstract An upgrade nicking/polymerization strategy for ultrasensitive electrochemical detection of Watermelon mosaic virus (WMV) was proposed based on DNAzyme-assistant cascade amplification strategies.
Asunto(s)
Técnicas Biosensibles/métodos , Citrullus/virología , ADN Polimerasa Dirigida por ADN/química , G-Cuádruplex , Hemina/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Potyvirus/aislamiento & purificación , Proteínas Virales/química , ADN Catalítico/química , Técnicas Electroquímicas/métodos , Hibridación de Ácido Nucleico , Enfermedades de las Plantas/virología , Polimerizacion , Potyvirus/genéticaRESUMEN
Cucumber green mottle mosaic virus (CGMMV), a member of the genus Tobamovirus (family Virgaviridae), is an economically important virus that has detrimental effects on cucurbit crops worldwide. Understanding the interaction between host factors and CGMMV viral proteins will facilitate the design of new strategies for disease control. In this study, a yeast two-hybrid assay revealed that the CGMMV helicase (HEL) domain interacts with a Citrullus lanatus small heat shock protein (sHSP), and we verified this observation by performing in vitro GST pull-down and in vivo coimmunoprecipitation assays. Measurement of the levels of accumulated sHSP transcript revealed that sHSP is upregulated on initial CGMMV infection in both Nicotiana benthamiana and C. lanatus plants, although not in the systemically infected leaves. We also found that the subcellular localization of the sHSP was altered after CGMMV infection. To further validate the role of sHSP in CGMMV infection, we produced and assayed N. benthamiana transgenic plants with up- and down-regulated sHSP expression. Overexpression of sHSP inhibited viral RNA accumulation and retarded disease development, whereas sHSP silencing had no marked effect on CGMMV infection. Therefore, we postulate that the identified sHSP may be one of the factors modulating host defense mechanisms in response to CGMMV infection and that the HEL domain interaction may inhibit this sHSP function to promote viral infection.
Asunto(s)
Citrullus , Proteínas de Choque Térmico Pequeñas , Tobamovirus , Citrullus/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Tobamovirus/genéticaRESUMEN
Insect vector behavior and biology can be affected by pathogen-induced changes in the physiology and morphology of the host plant. Herein, we examined the temporal effects of Squash vein yellowing virus (family Potyviridae, genus Ipomovirus) infection on the settling, oviposition preference, and feeding behavior of its whitefly vector, Bemisia tabaci (Gennadius) Middle East-Asia Minor 1 (MEAM1), formerly known as B. tabaci biotype B. Settling and oviposition behavioral choice assays were conducted on pairs of infected and mock-inoculated watermelon (Citrullus lanatus (Thunb) Matsum and Nakai) (Cucurbitales: Cucurbitaceae) at 5-6 days post inoculation (DPI) and 10-12 DPI. Electropenetrography, or electrical penetration graph (both abbreviated EPG), was used to assess differences in feeding behaviors of whitefly on mock-inoculated, 5-6 and 10-12 DPI infected watermelon plants. Whiteflies showed no preference in settling or oviposition on the infected and mock-inoculated plants at 5-6 DPI. However, at 10-12 DPI, whiteflies initially settled on infected plants but then preference of settling shifted to mock-inoculated plants after 8 h. Only at 10-12 DPI, females laid significantly more eggs on mock-inoculated plants than infected plants. EPG revealed no differences in whitefly feeding behaviors among mock-inoculated, 5-6 DPI infected and 10-12 DPI infected plants. The results highlighted the need to examine plant disease progression and its effect on vector behavior and performance, which could play a crucial role in Squash vein yellowing virus spread.
Asunto(s)
Conducta Alimentaria , Hemípteros/fisiología , Hemípteros/virología , Potyviridae/fisiología , Animales , Citrullus/parasitología , Citrullus/virología , Electrofisiología/métodos , Femenino , Insectos Vectores/fisiología , Insectos Vectores/virología , Oviposición/fisiología , Enfermedades de las Plantas/virologíaRESUMEN
Cucumber green mottle mosaic virus (CGMMV) is a member of the genus Tobamovirus, which cause diseases in cucurbits, especially watermelon. In watermelon, symptoms develop on the whole plant, including leaves, stems, peduncles, and fruit. To better understand the molecular mechanisms of watermelon early responses to CGMMV infection, a comparative transcriptome analysis of 24 h CGMMV-infected and mock-inoculated watermelon leaves was performed. A total of 1641 differently expressed genes (DEGs) were identified, with 886 DEGs upregulated and 755 DEGs downregulated after CGMMV infection. A functional analysis indicated that the DEGs were involved in photosynthesis, plantâ»pathogen interactions, secondary metabolism, and plant hormone signal transduction. In addition, a few transcription factor families, including WRKY, MYB, HLH, bZIP and NAC, were responsive to the CGMMV-induced stress. To confirm the high-throughput sequencing results, 15 DEGs were validated by qRT-PCR analysis. The results provide insights into the identification of candidate genes or pathways involved in the responses of watermelon leaves to CGMMV infection.
Asunto(s)
Citrullus/genética , Perfilación de la Expresión Génica/métodos , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Tobamovirus/patogenicidad , Citrullus/virología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Fenotipo , Fotosíntesis , Enfermedades de las Plantas/virología , Reguladores del Crecimiento de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/virología , Metabolismo Secundario , Análisis de Secuencia de ARNRESUMEN
In this study, we found that the infectivity of zucchini yellow mosaic virus (ZYMV) in watermelon lines H1 and K6 changed from partial to complete after propagation in the susceptible watermelon line ZXG637. When using cucumber infected with strain ZYMV-CH87 as an inoculum (named ZYMV-CH87C), the mean incidences of infection in lines H1 and K6 were 6% and 11%, respectively. However, when these lines were inoculated with ZXG637 infected with ZYMV-CH87C (named ZYMV-637), 100% of the plants became infected. Sequencing of ZYMV from these different inoculums revealed two nucleotide changes in the P3 cistron in ZYMV-637, which resulted in changes in the amino acids at positions 768 and 857 of the P3 protein, compared with the original strain ZYMV-CH87. We named this variant the M768I857-variant. The M768I857-variant was detected at low levels (3.9%) in ZYMV-CH87C. When ZYMV-CH87C was passaged with ZXG637, the M768I857-variant was selected by the host, and the original sequence was replaced entirely after two passages. These results may be explained by host-associated selection due to an unknown host-encoded factor. Using the M768I857-variant as an inoculum, 100% of the H1 and K6 plants showed systemic symptoms. These results suggest that (1) changing the individual amino acids at the end of the P3 N-terminus induces resistance-breaking, and (2) the P3 N-terminus may be involved in host recognition.
Asunto(s)
Citrullus/genética , Resistencia a la Enfermedad/genética , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Potyvirus/patogenicidad , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Citrullus/inmunología , Citrullus/virología , Cucumis sativus/genética , Cucumis sativus/inmunología , Cucumis sativus/virología , Susceptibilidad a Enfermedades , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Enfermedades de las Plantas/inmunología , Potyvirus/genética , Alineación de Secuencia , VirulenciaRESUMEN
The complete nucleotide sequence of a novel positive single-stranded (+ss) RNA virus, tentatively named watermelon virus A (WVA), was determined using a combination of three methods: RNA sequencing, small RNA sequencing, and Sanger sequencing. The full genome of WVA is comprised of 8,372 nucleotides (nt), excluding the poly (A) tail, and contains four open reading frames (ORFs). The largest ORF, ORF1 encodes a putative replication-associated polyprotein (RP) with three conserved domains. ORF2 and ORF4 encode a movement protein (MP) and coat protein (CP), respectively. The putative product encoded by ORF3, of an estimated molecular mass of 25 kDa, has no significant similarity with other proteins. Identity and phylogenetic analysis indicate that WVA is a new virus, closely related to members of the family Betaflexiviridae. However, the final taxonomic allocation of WVA within the family is yet to be determined.
Asunto(s)
Citrullus/virología , Fuselloviridae , Genoma Viral , Secuencia de Bases , ARN/genéticaRESUMEN
Cucumber green mottle mosaic virus (CGMMV) is a damaging pathogen that attacks crop plants belonging to the family Cucurbitaceae. Little is known about the regulatory role of microRNAs (miRNAs) in response to CGMMV infection. To identify CGMMV-responsive miRNAs, two sRNA libraries from mock-inoculated and CGMMV-infected watermelon leaves were constructed and sequenced using Solexa sequencing technology. In total, 471 previously known and 1,809 novel miRNAs were obtained, of which 377 known and 246 novel miRNAs were found to be differentially expressed during CGMMV infection. The target genes for the CGMMV-responsive known miRNAs are active in diverse biological processes, including cell wall modulation, plant hormone signaling, defense-related protein induction, primary and secondary metabolism, regulation of virus replication, and intracellular transport. The expression patterns of some CGMMV-responsive miRNAs and their corresponding targets were confirmed by RT-qPCR. One target gene for miR156a-5p was verified by 5'-RNA-ligase-mediated rapid amplification of cDNA ends (5'-RLM-RACE) analysis. The results of this study provide further insights into the miRNA-mediated regulatory network involved in the response to viral infection in watermelon and other cucurbit crops.
Asunto(s)
Citrullus/virología , MicroARNs/genética , Virus del Mosaico/genética , Enfermedades de las Plantas/virología , ARN Viral/genética , Genoma ViralRESUMEN
Cucumber green mottle mosaic virus (CGMMV) is a single-stranded, positive sense RNA virus infecting cucurbitaceous plants. In recent years, CGMMV has become an important pathogen of cucurbitaceous crops including watermelon, pumpkin, cucumber and bottle gourd in China, causing serious losses to their production. In this study, we surveyed CGMMV infection in various cucurbitaceous crops grown in Zhejiang Province and in several seed lots purchased from local stores with the dot enzyme-linked immunosorbent assay (dot-ELISA), using a CGMMV specific monoclonal antibody. Seven CGMMV isolates obtained from watermelon, grafted watermelon or oriental melon samples were cloned and sequenced. Identity analysis showed that the nucleotide identities of the seven complete genome sequences ranged from 99.2 to 100%. Phylogenetic analysis of seven CGMMV isolates as well as 24 other CGMMV isolates from the GenBank database showed that all CGMMV isolates could be grouped into two distinct monophyletic clades according to geographic distribution, i.e. Asian isolates for subtype I and European isolates for subtype II, indicating that population diversification of CGMMV isolates may be affected by geographical distribution. Site variation rate analysis of CGMMV found that the overall variation rate was below 8% and mainly ranged from 2 to 5%, indicating that the CGMMV genomic sequence was conservative. Base substitution type analysis of CGMMV showed a mutational bias, with more transitions (AâG and CâT) than transversions (AâC, AâT, GâC and GâT). Most of the variation occurring in the CGMMV genome resulted in non-synonymous substitutions, and the variation rate of some sites was higher than 30% because of this mutational bias. Selection constraint analysis of CGMMV ORFs showed strong negative selection acting on the replication-associated protein, similar to what occurs for other plant RNA viruses. Finally, potential recombination analysis identified isolate Ec as a recombinant with a low degree of confidence.
Asunto(s)
Citrullus/virología , Cucumis sativus/virología , Cucurbita/virología , Variación Genética/genética , Genoma Viral/genética , Momordica/virología , Tobamovirus/genética , Secuencia de Bases , Enfermedades de las Plantas/virología , ARN Viral/genética , Análisis de Secuencia de ADN , Tobamovirus/aislamiento & purificaciónRESUMEN
Seed-transmitted viruses have caused significant damage to watermelon crops in Korea in recent years, with cucumber green mottle mosaic virus (CGMMV) infection widespread as a result of infected seed lots. To determine the likely origin of CGMMV infection, we collected CGMMV isolates from watermelon and melon fields and generated full-length infectious cDNA clones. The full-length cDNAs were cloned into newly constructed binary vector pJY, which includes both the 35S and T7 promoters for versatile usage (agroinfiltration and in vitro RNA transcription) and a modified hepatitis delta virus ribozyme sequence to precisely cleave RNA transcripts at the 3' end of the tobamovirus genome. Three CGMMV isolates (OMpj, Wpj, and Mpj) were separately evaluated for infectivity in Nicotiana benthamiana, demonstrated by either Agroinfiltration or inoculation with in vitro RNA transcripts. CGMMV nucleotide identities to other tobamoviruses were calculated from pairwise alignments using DNAMAN. CGMMV identities were 49.89% to tobacco mosaic virus; 49.85% to pepper mild mottle virus; 50.47% to tomato mosaic virus; 60.9% to zucchini green mottle mosaic virus; and 60.96% to kyuri green mottle mosaic virus, confirming that CGMMV is a distinct species most similar to other cucurbit-infecting tobamoviruses. We further performed phylogenetic analysis to determine relationships of our new Korean CGMMV isolates to previously characterized isolates from Canada, China, India, Israel, Japan, Korea, Russia, Spain, and Taiwan available from NCBI. Analysis of CGMMV amino acid sequences showed three major clades, broadly typified as 'Russian,' 'Israeli,' and 'Asian' groups. All of our new Korean isolates fell within the 'Asian' clade. Neither the 128 nor 186 kDa RdRps of the three new isolates showed any detectable gene silencing suppressor function.
Asunto(s)
Cucumis sativus/virología , Cucumovirus/genética , Filogenia , Enfermedades de las Plantas/genética , Bacteriófago T7/genética , Citrullus/virología , Cucumovirus/patogenicidad , Cucurbitaceae/virología , ADN Complementario/genética , Genoma Viral , Enfermedades de las Plantas/virología , Regiones Promotoras Genéticas , Nicotiana/virología , Virus del Mosaico del Tabaco/genética , Tobamovirus/genéticaRESUMEN
Heterologous gene expression using plant virus vectors enables research on host-virus interactions and the production of useful proteins, but the host range of plant viruses limits the practical applications of such vectors. Here, we aimed to develop a viral vector based on cucumber fruit mottle mosaic virus (CFMMV), a member of the genus Tobamovirus, whose members infect cucurbits. The subgenomic promoter (SGP) in the coat protein (CP) gene, which was used to drive heterologous expression, was mapped by analyzing deletion mutants from a CaMV 35S promoter-driven infectious CFMMV clone. The region from nucleotides (nt) -55 to +160 relative to the start codon of the open reading frame (ORF) of CP was found to be a fully active promoter, and the region from nt -55 to +100 was identified as the active core promoter. Based on these SGPs, we constructed a cloning site in the CFMMV vector and successfully expressed enhanced green fluorescent protein (EGFP) in Nicotiana benthamiana and watermelon (Citrullus lanatus). Co-inoculation with the P19 suppressor increased EGFP expression and viral replication by blocking degradation of the viral genome. Our CFMMV vector will be useful as an expression vector in cucurbits.
Asunto(s)
Proteínas de la Cápside/genética , Cucumis sativus/virología , Tobamovirus/genética , Citrullus/virología , Frutas/virología , Expresión Génica , Genes Virales , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , ARN Viral/química , ARN Viral/genética , Nicotiana/virologíaRESUMEN
Four poleroviral isolates from Greece, two from lettuce, one from spinach and one from watermelon showing yellowing symptoms, were molecularly characterized by analyzing the sequence of a large part of the genome spanning from the 3'-terminal part of the RdRp to the end of the CP gene. The sequences were analyzed for their similarity and phylogenetic relationships to other members of the genus Polerovirus as well as for evidence of recombination events. The results revealed the existence of two putatively new viruses: one from lettuce and one from spinach, provisionally named "lettuce yellows virus" and "spinach yellows virus", respectively. Also, a new recombinant virus infecting lettuce, herein named "lettuce mild yellows virus", and a watermelon isolate of pepo aphid-borne yellows virus (PABYV) were identified. Our study highlights the existence of high genetic diversity within the genus Polerovirus, which could be associated with the emergence of new viral diseases in various crops worldwide.
Asunto(s)
Citrullus/virología , Variación Genética , Lactuca/virología , Luteoviridae/clasificación , Luteoviridae/aislamiento & purificación , Enfermedades de las Plantas/virología , Spinacia oleracea/virología , Análisis por Conglomerados , Genoma Viral , Grecia , Luteoviridae/genética , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Recombinación Genética , Análisis de Secuencia de ADN , Homología de SecuenciaRESUMEN
Watermelon silver mottle virus (WSMoV) is an emerging disease of cucurbit crops in South China. Production of high-quality antibodies is necessary for the development of serological methods for detection of this virus. The nucleocapsid protein (NP) gene of WSMoV was amplified from WSMoV-infected watermelon leaves by RT-PCR and cloned into vector pET-28a (+) for prokaryotic expression. After identification via enzyme digestion and sequencing, the recombinant clone was transformed into Escherichia coli Rosetta (DE3) for protein expression. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the molecular weight of the WSMoV NP fusion protein was 34.1 kDa. The fusion protein was purified and used as antigen for the preparation of polyclonal antisera in rabbits. Results of indirect ELISA and western blot analysis showed that the antisera reacted specifically with WSMoV NP. In addition, sensitivity and specificity of the antisera were examined on a number of infected field samples by indirect ELISA. These findings will facilitate further immunological and serological studies of WSMoV. .