Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179.218
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 37: 97-123, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31026412

RESUMEN

The B cell antigen receptor (BCR) plays a central role in the self/nonself selection of B lymphocytes and in their activation by cognate antigen during the clonal selection process. It was long thought that most cell surface receptors, including the BCR, were freely diffusing and randomly distributed. Since the advent of superresolution techniques, it has become clear that the plasma membrane is compartmentalized and highly organized at the nanometer scale. Hence, a complete understanding of the precise conformation and activation mechanism of the BCR must take into account the organization of the B cell plasma membrane. We review here the recent literature on the nanoscale organization of the lymphocyte membrane and discuss how this new information influences our view of the conformational changes that the BCR undergoes during activation.


Asunto(s)
Linfocitos B/inmunología , Membrana Celular/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Regulación Alostérica , Animales , Compartimento Celular , Humanos , Activación de Linfocitos , Nanomedicina , Conformación Proteica
2.
Cell ; 187(3): 526-544, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306980

RESUMEN

Methods from artificial intelligence (AI) trained on large datasets of sequences and structures can now "write" proteins with new shapes and molecular functions de novo, without starting from proteins found in nature. In this Perspective, I will discuss the state of the field of de novo protein design at the juncture of physics-based modeling approaches and AI. New protein folds and higher-order assemblies can be designed with considerable experimental success rates, and difficult problems requiring tunable control over protein conformations and precise shape complementarity for molecular recognition are coming into reach. Emerging approaches incorporate engineering principles-tunability, controllability, and modularity-into the design process from the beginning. Exciting frontiers lie in deconstructing cellular functions with de novo proteins and, conversely, constructing synthetic cellular signaling from the ground up. As methods improve, many more challenges are unsolved.


Asunto(s)
Inteligencia Artificial , Proteínas , Conformación Proteica , Proteínas/química , Proteínas/metabolismo , Ingeniería de Proteínas , Aprendizaje Profundo
3.
Cell ; 187(12): 2990-3005.e17, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772370

RESUMEN

Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin ß-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.


Asunto(s)
Integrinas , Talina , Animales , Humanos , Ratones , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Adhesión Celular , Células CHO , Cricetulus , Integrinas/metabolismo , Integrinas/química , Ligandos , Unión Proteica , Conformación Proteica , Transducción de Señal , Imagen Individual de Molécula , Talina/metabolismo , Talina/química
4.
Annu Rev Biochem ; 91: 541-569, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35041460

RESUMEN

Controlled assembly and disassembly of multi-protein complexes is central to cellular signaling. Proteins of the widespread and functionally diverse HORMA family nucleate assembly of signaling complexes by binding short peptide motifs through a distinctive safety-belt mechanism. HORMA proteins are now understood as key signaling proteins across kingdoms, serving as infection sensors in a bacterial immune system and playing central roles in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular homeostasis pathways. Here, we describe how HORMA proteins' unique ability to adopt multiple conformational states underlies their functions in these diverse contexts. We also outline how a dedicated AAA+ ATPase regulator, Pch2/TRIP13, manipulates HORMA proteins' conformational states to activate or inactivate signaling in different cellular contexts. The emergence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multiple genome-maintenance pathways accounts for its frequent misregulation in human cancers and highlights TRIP13 as a novel therapeutic target.


Asunto(s)
Proteínas de Ciclo Celular , Transducción de Señal , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/genética , Humanos , Conformación Proteica
5.
Cell ; 185(19): 3533-3550.e27, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36113427

RESUMEN

Integrins are validated drug targets with six approved therapeutics. However, small-molecule inhibitors to three integrins failed in late-stage clinical trials for chronic indications. Such unfavorable outcomes may in part be caused by partial agonism, i.e., the stabilization of the high-affinity, extended-open integrin conformation. Here, we show that the failed, small-molecule inhibitors of integrins αIIbß3 and α4ß1 stabilize the high-affinity conformation. Furthermore, we discovered a simple chemical feature present in multiple αIIbß3 antagonists that stabilizes integrins in their bent-closed conformation. Closing inhibitors contain a polar nitrogen atom that stabilizes, via hydrogen bonds, a water molecule that intervenes between a serine residue and the metal in the metal-ion-dependent adhesion site (MIDAS). Expulsion of this water is a requisite for transition to the open conformation. This change in metal coordination is general to integrins, suggesting broad applicability of the drug-design principle to the integrin family, as validated with a distantly related integrin, α4ß1.


Asunto(s)
Diseño de Fármacos , Integrina alfa4beta1 , Conformación Proteica , Serina , Agua
6.
Annu Rev Biochem ; 90: 631-658, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823651

RESUMEN

Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.


Asunto(s)
Colágeno/química , Fibrosis/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Procolágeno/química , Procolágeno/metabolismo , Animales , Colágeno/metabolismo , Retículo Endoplásmico/metabolismo , Fibrosis/genética , Proteínas del Choque Térmico HSP47/química , Proteínas del Choque Térmico HSP47/genética , Humanos , Hidroxilación , Chaperonas Moleculares/metabolismo , Prolina/química , Prolina/metabolismo , Conformación Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional
7.
Annu Rev Biochem ; 90: 559-579, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33492991

RESUMEN

Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F-), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F-, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F-/H+ antiporters and the Fluc/FEX family of F- channels.


Asunto(s)
Antiportadores/química , Antiportadores/metabolismo , Fluoruros/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Citoplasma/metabolismo , Fluoruros/toxicidad , Transporte Iónico , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Annu Rev Biochem ; 90: 535-558, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33556281

RESUMEN

Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Agrecanos/química , Agrecanos/genética , Agrecanos/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Sitios de Unión , Transporte Biológico , Calcio/metabolismo , Cardiolipinas/metabolismo , Secuencia Conservada , Citoplasma/metabolismo , Humanos , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/metabolismo , Mutación , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nat Rev Mol Cell Biol ; 25(3): 187-211, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37957331

RESUMEN

Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/metabolismo , Conformación Proteica , Secuencia de Aminoácidos , Sustancias Macromoleculares
10.
Cell ; 184(10): 2665-2679.e19, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33882274

RESUMEN

The bacterial flagellar motor is a supramolecular protein machine that drives rotation of the flagellum for motility, which is essential for bacterial survival in different environments and a key determinant of pathogenicity. The detailed structure of the flagellar motor remains unknown. Here we present an atomic-resolution cryoelectron microscopy (cryo-EM) structure of the bacterial flagellar motor complexed with the hook, consisting of 175 subunits with a molecular mass of approximately 6.3 MDa. The structure reveals that 10 peptides protruding from the MS ring with the FlgB and FliE subunits mediate torque transmission from the MS ring to the rod and overcome the symmetry mismatch between the rotational and helical structures in the motor. The LP ring contacts the distal rod and applies electrostatic forces to support its rotation and torque transmission to the hook. This work provides detailed molecular insights into the structure, assembly, and torque transmission mechanisms of the flagellar motor.


Asunto(s)
Flagelos/fisiología , Flagelos/ultraestructura , Salmonella typhimurium/fisiología , Microscopía por Crioelectrón , Conformación Proteica , Torque
11.
Cell ; 184(22): 5670-5685.e23, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34637702

RESUMEN

We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.


Asunto(s)
Técnicas Biosensibles , Péptidos/química , Imagen Individual de Molécula , Animales , Adhesión Celular , Línea Celular , Supervivencia Celular , Embrión de Mamíferos/citología , Activación Enzimática , Fibroblastos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Ratones , Nanopartículas/química , Conformación Proteica , Familia-src Quinasas/metabolismo
12.
Cell ; 184(21): 5448-5464.e22, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34624221

RESUMEN

Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin's hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL "jumps ship" from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , Conformación de Ácido Nucleico , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Hidrólisis , Cinética , Microscopía de Fuerza Atómica , Modelos Moleculares , Proteínas Nucleares/metabolismo , Conformación Proteica , Cohesinas
13.
Cell ; 184(20): 5138-5150.e12, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34496225

RESUMEN

Many transient receptor potential (TRP) channels respond to diverse stimuli and conditionally conduct small and large cations. Such functional plasticity is presumably enabled by a uniquely dynamic ion selectivity filter that is regulated by physiological agents. What is currently missing is a "photo series" of intermediate structural states that directly address this hypothesis and reveal specific mechanisms behind such dynamic channel regulation. Here, we exploit cryoelectron microscopy (cryo-EM) to visualize conformational transitions of the capsaicin receptor, TRPV1, as a model to understand how dynamic transitions of the selectivity filter in response to algogenic agents, including protons, vanilloid agonists, and peptide toxins, permit permeation by small and large organic cations. These structures also reveal mechanisms governing ligand binding substates, as well as allosteric coupling between key sites that are proximal to the selectivity filter and cytoplasmic gate. These insights suggest a general framework for understanding how TRP channels function as polymodal signal integrators.


Asunto(s)
Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Regulación Alostérica , Permeabilidad de la Membrana Celular/efectos de los fármacos , Microscopía por Crioelectrón , Diterpenos/farmacología , Células HEK293 , Humanos , Activación del Canal Iónico , Lípidos/química , Meglumina/farmacología , Modelos Moleculares , Unión Proteica , Conformación Proteica , Protones , Canales Catiónicos TRPV/agonistas
14.
Cell ; 184(2): 521-533.e14, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33373587

RESUMEN

Development of γ-secretase inhibitors (GSIs) and modulators (GSMs) represents an attractive therapeutic opportunity for Alzheimer's disease (AD) and cancers. However, how these GSIs and GSMs target γ-secretase has remained largely unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human γ-secretase bound individually to two GSI clinical candidates, Semagacestat and Avagacestat, a transition state analog GSI L685,458, and a classic GSM E2012, at overall resolutions of 2.6-3.1 Å. Remarkably, each of the GSIs occupies the same general location on presenilin 1 (PS1) that accommodates the ß strand from amyloid precursor protein or Notch, interfering with substrate recruitment. L685,458 directly coordinates the two catalytic aspartate residues of PS1. E2012 binds to an allosteric site of γ-secretase on the extracellular side, potentially explaining its modulating activity. Structural analysis reveals a set of shared themes and variations for inhibitor and modulator recognition that will guide development of the next-generation substrate-selective inhibitors.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Preparaciones Farmacéuticas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/ultraestructura , Azepinas/farmacología , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Biológicos , Modelos Moleculares , Oxadiazoles/química , Oxadiazoles/farmacología , Presenilina-1/química , Presenilina-1/metabolismo , Unión Proteica/efectos de los fármacos , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato/efectos de los fármacos , Sulfonamidas/química , Sulfonamidas/farmacología
15.
Cell ; 184(25): 6052-6066.e18, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34852239

RESUMEN

The human monoclonal antibody C10 exhibits extraordinary cross-reactivity, potently neutralizing Zika virus (ZIKV) and the four serotypes of dengue virus (DENV1-DENV4). Here we describe a comparative structure-function analysis of C10 bound to the envelope (E) protein dimers of the five viruses it neutralizes. We demonstrate that the C10 Fab has high affinity for ZIKV and DENV1 but not for DENV2, DENV3, and DENV4. We further show that the C10 interaction with the latter viruses requires an E protein conformational landscape that limits binding to only one of the three independent epitopes per virion. This limited affinity is nevertheless counterbalanced by the particle's icosahedral organization, which allows two different dimers to be reached by both Fab arms of a C10 immunoglobulin. The epitopes' geometric distribution thus confers C10 its exceptional neutralization breadth. Our results highlight the importance not only of paratope/epitope complementarity but also the topological distribution for epitope-focused vaccine design.


Asunto(s)
Anticuerpos Neutralizantes , Virus del Dengue , Dengue , Proteínas del Envoltorio Viral , Infección por el Virus Zika , Virus Zika , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/inmunología , Línea Celular , Chlorocebus aethiops , Reacciones Cruzadas/inmunología , Dengue/inmunología , Dengue/virología , Virus del Dengue/inmunología , Virus del Dengue/fisiología , Drosophila melanogaster , Células HEK293 , Humanos , Unión Proteica , Conformación Proteica , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Virus Zika/inmunología , Virus Zika/fisiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
16.
Cell ; 184(20): 5151-5162.e11, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34520724

RESUMEN

The heartbeat is initiated by voltage-gated sodium channel NaV1.5, which opens rapidly and triggers the cardiac action potential; however, the structural basis for pore opening remains unknown. Here, we blocked fast inactivation with a mutation and captured the elusive open-state structure. The fast inactivation gate moves away from its receptor, allowing asymmetric opening of pore-lining S6 segments, which bend and rotate at their intracellular ends to dilate the activation gate to ∼10 Å diameter. Molecular dynamics analyses predict physiological rates of Na+ conductance. The open-state pore blocker propafenone binds in a high-affinity pose, and drug-access pathways are revealed through the open activation gate and fenestrations. Comparison with mutagenesis results provides a structural map of arrhythmia mutations that target the activation and fast inactivation gates. These results give atomic-level insights into molecular events that underlie generation of the action potential, open-state drug block, and fast inactivation of cardiac sodium channels, which initiate the heartbeat.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Arritmias Cardíacas/genética , Microscopía por Crioelectrón , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Activación del Canal Iónico , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación/genética , Miocardio , Canal de Sodio Activado por Voltaje NAV1.5/aislamiento & purificación , Canal de Sodio Activado por Voltaje NAV1.5/ultraestructura , Propafenona/farmacología , Conformación Proteica , Ratas , Sodio/metabolismo , Factores de Tiempo , Agua/química
17.
Cell ; 184(10): 2779-2792.e18, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33915107

RESUMEN

Ligands can induce G protein-coupled receptors (GPCRs) to adopt a myriad of conformations, many of which play critical roles in determining the activation of specific signaling cascades associated with distinct functional and behavioral consequences. For example, the 5-hydroxytryptamine 2A receptor (5-HT2AR) is the target of classic hallucinogens, atypical antipsychotics, and psychoplastogens. However, currently available methods are inadequate for directly assessing 5-HT2AR conformation both in vitro and in vivo. Here, we developed psychLight, a genetically encoded fluorescent sensor based on the 5-HT2AR structure. PsychLight detects behaviorally relevant serotonin release and correctly predicts the hallucinogenic behavioral effects of structurally similar 5-HT2AR ligands. We further used psychLight to identify a non-hallucinogenic psychedelic analog, which produced rapid-onset and long-lasting antidepressant-like effects after a single administration. The advent of psychLight will enable in vivo detection of serotonin dynamics, early identification of designer drugs of abuse, and the development of 5-HT2AR-dependent non-hallucinogenic therapeutics.


Asunto(s)
Técnicas Biosensibles , Drogas de Diseño/química , Drogas de Diseño/farmacología , Descubrimiento de Drogas/métodos , Alucinógenos/química , Alucinógenos/farmacología , Receptor de Serotonina 5-HT2A/química , Animales , Evaluación Preclínica de Medicamentos/métodos , Femenino , Fluorescencia , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fotometría , Conformación Proteica , Ingeniería de Proteínas , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Serotonina/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
18.
Cell ; 184(7): 1884-1894.e14, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33743210

RESUMEN

G-protein-coupled receptors (GPCRs) represent a ubiquitous membrane protein family and are important drug targets. Their diverse signaling pathways are driven by complex pharmacology arising from a conformational ensemble rarely captured by structural methods. Here, fluorine nuclear magnetic resonance spectroscopy (19F NMR) is used to delineate key functional states of the adenosine A2A receptor (A2AR) complexed with heterotrimeric G protein (Gαsß1γ2) in a phospholipid membrane milieu. Analysis of A2AR spectra as a function of ligand, G protein, and nucleotide identifies an ensemble represented by inactive states, a G-protein-bound activation intermediate, and distinct nucleotide-free states associated with either partial- or full-agonist-driven activation. The Gßγ subunit is found to be critical in facilitating ligand-dependent allosteric transmission, as shown by 19F NMR, biochemical, and computational studies. The results provide a mechanistic basis for understanding basal signaling, efficacy, precoupling, and allostery in GPCRs.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/química , Receptor de Adenosina A2A/química , Regulación Alostérica , Sitios de Unión , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Cinética , Ligandos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Nanoestructuras/química , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal
19.
Nat Rev Mol Cell Biol ; 24(12): 912-933, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37684425

RESUMEN

Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.


Asunto(s)
Amiloide , Pliegue de Proteína , Conformación Proteica , Amiloide/metabolismo , Péptidos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
20.
Cell ; 183(1): 244-257.e16, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931735

RESUMEN

Many bacteria use the flagellum for locomotion and chemotaxis. Its bidirectional rotation is driven by a membrane-embedded motor, which uses energy from the transmembrane ion gradient to generate torque at the interface between stator units and rotor. The structural organization of the stator unit (MotAB), its conformational changes upon ion transport, and how these changes power rotation of the flagellum remain unknown. Here, we present ~3 Å-resolution cryoelectron microscopy reconstructions of the stator unit in different functional states. We show that the stator unit consists of a dimer of MotB surrounded by a pentamer of MotA. Combining structural data with mutagenesis and functional studies, we identify key residues involved in torque generation and present a detailed mechanistic model for motor function and switching of rotational direction.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Flagelos/ultraestructura , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón/métodos , Flagelos/metabolismo , Conformación Proteica , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA