Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.608
Filtrar
Más filtros

Intervalo de año de publicación
1.
Epilepsy Behav ; 157: 109866, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38820680

RESUMEN

Natural compounds are increasingly being studied for their potential neuroprotective effects against inflammatory neurological diseases. Epilepsy is a common neurological disease associated with inflammatory processes, and around 30% of people with epilepsy do not respond to traditional treatments. Some flavonoids, when taken along with antiseizure medications can help reduce the likelihood of drug-resistant epilepsy. Baicalin, a plant-based compound, has been shown to possess pharmacological properties such as anti-inflammatory, neuroprotective, anticonvulsant, and antioxidant activities. In this study, we tested the effect of baicalin on an established model of pharmacologically induced seizure in zebrafish using measures of both locomotor behavior and calcium imaging of neuronal activity. The results of our study showed that, at the tested concentration, and contrary to other studies in rodents, baicalin did not have an anti-seizure effect in zebrafish larvae. However, given its known properties, other concentrations and approaches should be explored to determine if it could potentially have other beneficial effects, either alone or when administered in combination with classic antiseizure medications.


Asunto(s)
Calcio , Flavonoides , Larva , Neuronas , Pentilenotetrazol , Convulsiones , Pez Cebra , Animales , Flavonoides/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Larva/efectos de los fármacos , Calcio/metabolismo , Neuronas/efectos de los fármacos , Modelos Animales de Enfermedad , Anticonvulsivantes/farmacología , Relación Dosis-Respuesta a Droga , Convulsivantes/toxicidad , Locomoción/efectos de los fármacos , Actividad Motora/efectos de los fármacos
2.
Neurobiol Dis ; 178: 106014, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702319

RESUMEN

Status epilepticus (SE) is a life-threatening medical emergency with significant morbidity and mortality. SE is associated with a robust and sustained increase in serum glucocorticoids, reaching concentrations sufficient to activate the dense population of glucocorticoid receptors (GRs) expressed among hippocampal excitatory neurons. Glucocorticoid exposure can increase hippocampal neuron excitability; however, whether activation of hippocampal GRs during SE exacerbates seizure severity remains unknown. To test this, a viral strategy was used to delete GRs from a subset of hippocampal excitatory neurons in adult male and female mice, producing hippocampal GR knockdown mice. Two weeks after GR knockdown, mice were challenged with the convulsant drug pilocarpine to induce SE. GR knockdown had opposing effects on early vs late seizure behaviors, with sex influencing responses. For both male and female mice, the onset of mild behavioral seizures was accelerated by GR knockdown. In contrast, GR knockdown delayed the onset of more severe convulsive seizures and death in male mice. Concordantly, GR knockdown also blunted the SE-induced rise in serum corticosterone in male mice. GR knockdown did not alter survival times or serum corticosterone in females. To assess whether loss of GR affected susceptibility to SE-induced cell death, within-animal analyses were conducted comparing local GR knockdown rates to local cell loss. GR knockdown did not affect the degree of localized neuronal loss, suggesting cell-intrinsic GR signaling neither protects nor sensitizes neurons to acute SE-induced death. Overall, the findings reveal that hippocampal GRs exert an anti-convulsant role in both males and females in the early stages of SE, followed by a switch to a pro-convulsive role for males only. Findings reveal an unexpected complexity in the interaction between hippocampal GR activation and the progression of SE.


Asunto(s)
Receptores de Glucocorticoides , Estado Epiléptico , Ratones , Masculino , Femenino , Animales , Receptores de Glucocorticoides/metabolismo , Corticosterona , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Hipocampo/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Glucocorticoides/metabolismo , Pilocarpina/toxicidad , Convulsivantes
3.
J Neurosci ; 41(20): 4367-4377, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33827934

RESUMEN

Early-life inflammatory stress increases seizure susceptibility later in life. However, possible sex- and age-specific differences and the associated mechanisms are largely unknown. C57BL/6 mice were bred in house, and female and male pups were injected with lipopolysaccharide (LPS; 100 µg/kg, i.p.) or vehicle control (saline solution) at postnatal day 14 (P14). Seizure threshold was assessed in response to pentylenetetrazol (1% solution, i.v.) in adolescence (∼P40) and adulthood (∼P60). We found that adult, but not adolescent, mice treated with LPS displayed ∼34% lower seizure threshold compared with controls. Females and males showed similar increased seizure susceptibility, suggesting that altered brain excitability was age dependent, but not sex dependent. Whole-cell recordings revealed no differences in excitatory synaptic activity onto CA1 pyramidal neurons from control or neonatally inflamed adolescent mice of either sex. However, adult mice of both sexes previously exposed to LPS displayed spontaneous EPSC frequency approximately twice that of controls, but amplitude was unchanged. Although these changes were not associated with alterations in dendritic spines or in the NMDA/AMPA receptor ratio, they were linked to an increased glutamate release probability from Schaffer collateral, but not temporoammonic pathway. This glutamate increase was associated with reduced activity of presynaptic GABAB receptors and was independent of the endocannabinoid-mediated suppression of excitation. Our new findings demonstrate that early-life inflammation leads to long-term increased hippocampal excitability in adult female and male mice associated with changes in glutamatergic synaptic transmission. These alterations may contribute to enhanced vulnerability of the brain to subsequent pathologic challenges such as epileptic seizures.SIGNIFICANCE STATEMENT Adult physiology has been shown to be affected by early-life inflammation. Our data reveal that early-life inflammation increases excitatory synaptic transmission onto hippocampal CA1 pyramidal neurons in an age-dependent manner through disrupted presynaptic GABAB receptor activity on Schaffer collaterals. This hyperexcitability was seen only in adult, and not in adolescent, animals of either sex. The data suggest a maturation process, independent of sex, in the priming action of early-life inflammation and highlight the importance of studying mature brains to reveal cellular changes associated with early-life interventions.


Asunto(s)
Inflamación/fisiopatología , Células Piramidales/fisiología , Convulsiones/fisiopatología , Transmisión Sináptica/fisiología , Animales , Convulsivantes/toxicidad , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Pentilenotetrazol/toxicidad , Convulsiones/inducido químicamente
4.
Ann Neurol ; 89(5): 1023-1035, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33604927

RESUMEN

OBJECTIVE: Sudden unexpected death in epilepsy (SUDEP) is an unpredictable and devastating comorbidity of epilepsy that is believed to be due to cardiorespiratory failure immediately after generalized convulsive seizures. METHODS: We performed cardiorespiratory monitoring of seizure-induced death in mice carrying either a p.Arg1872Trp or p.Asn1768Asp mutation in a single Scn8a allele-mutations identified from patients who died from SUDEP-and of seizure-induced death in pentylenetetrazole-treated wild-type mice. RESULTS: The primary cause of seizure-induced death for all mice was apnea, as (1) apnea began during a seizure and continued for tens of minutes until terminal asystole, and (2) death was prevented by mechanical ventilation. Fatal seizures always included a tonic phase that was coincident with apnea. This tonic phase apnea was not sufficient to produce death, as it also occurred during many nonfatal seizures; however, all seizures that were fatal had tonic phase apnea. We also made the novel observation that continuous tonic diaphragm contraction occurred during tonic phase apnea, which likely contributes to apnea by preventing exhalation, and this was only fatal when breathing did not resume after the tonic phase ended. Finally, recorded seizures from a patient with developmental epileptic encephalopathy with a previously undocumented SCN8A likely pathogenic variant (p.Leu257Val) revealed similarities to those of the mice, namely, an extended tonic phase that was accompanied by apnea. INTERPRETATION: We conclude that apnea coincident with the tonic phase of a seizure, and subsequent failure to resume breathing, are the determining events that cause seizure-induced death in Scn8a mutant mice. ANN NEUROL 2021;89:1023-1035.


Asunto(s)
Apnea/complicaciones , Epilepsia/complicaciones , Muerte Súbita e Inesperada en la Epilepsia , Animales , Convulsivantes , Diafragma/fisiopatología , Electroencefalografía , Electromiografía , Femenino , Humanos , Lactante , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.6/genética , Pentilenotetrazol , Embarazo , Respiración Artificial , Mecánica Respiratoria
5.
Biomed Microdevices ; 24(4): 31, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-36138255

RESUMEN

Electrocorticography signals, the intracranial recording of electrical signatures of the brain, are recorded by non-penetrating planar electrode arrays placed on the cortical surface. Flexible electrode arrays minimize the tissue damage upon implantation. This work shows the design and development of a 32-channel flexible microelectrode array to record electrocorticography signals from the rat's brain. The array was fabricated on a biocompatible flexible polyimide substrate. A titanium/gold layer was patterned as electrodes, and a thin polyimide layer was used for insulation. The fabricated microelectrode array was mounted on the exposed somatosensory cortex of the right hemisphere of a rat after craniotomy and incision of the dura. The signals were recorded using OpenBCI Cyton Daisy Biosensing Boards. The array faithfully recorded the baseline electrocorticography signals, the induced epileptic activities after applying a convulsant, and the recovered baseline signals after applying an antiepileptic drug. The signals recorded by such fabricated microelectrode array from anesthetized rats demonstrate its potential to monitor electrical signatures corresponding to epilepsy. Finally, the time-frequency analyses highlight the difference in spatiotemporal features of baseline and evoked epileptic discharges.


Asunto(s)
Electrocorticografía , Titanio , Animales , Anticonvulsivantes , Convulsivantes , Electrodos Implantados , Oro , Microelectrodos , Ratas , Roedores
6.
Neurochem Res ; 47(2): 422-433, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34623565

RESUMEN

Asparagus racemosus Willd. (Family Liliaceae), also known as female reproductive tonic, is traditionally used across the Sub-Himalayan region in Uttarakhand, India for treatment of epilepsy and disorders of female reproductive system. Therefore, in this study, we investigated the anticonvulsant effect of A. racemosus in a mouse model of catamenial epilepsy. We artificially increased progesterone and neurosteroid levels (a state of pseudo-pregnancy) in adult Swiss albino female mice by injecting pregnant mares' serum gonadotropin (PMSG) (5 IU s.c.), followed by human chorionic gonadotropin (HCG) (5 IU s.c.) after 46 h. In the following 10 days, A. racemosus treatment was given along with measurement of progesterone, estradiol, and corticosterone levels in the blood. Neurosteroid withdrawal was induced by finasteride (50 mg/kg, i.p.) on treatment day 9. Twenty-four hours after finasteride administration (day 10 of treatment), seizure susceptibility was evaluated with the sub-convulsant pentylenetetrazole (PTZ) dose (40 mg/kg i.p.). Four hours after PTZ, animals were assessed for depression like phenotypes followed by euthanasia and separation of brain parts (cortex and hippocampus). The results showed that PMSG and HCG treatment elevated progesterone and estradiol levels. Treatment with finasteride increased seizure susceptibility and depression due to decreased progesterone and elevated estrogen levels coupled with decreased monoamine and elevated corticosterone levels. A. racemosus treatment, on the other hand, significantly decreased seizure susceptibility and depression like behaviors, possibly because of increased progesterone, restored estradiol, corticosterone, and monoamine levels. We concluded that herbal formulations using A. racemosus root extracts may be used as monotherapy or adjuvant therapy along with available AEDs for the better and safe management of catamenial epilepsy as well as comorbid depression.


Asunto(s)
Anticonvulsivantes , Epilepsia Refleja , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Convulsivantes , Epilepsia Refleja/tratamiento farmacológico , Femenino , Caballos , Ratones , Pentilenotetrazol/farmacología , Embarazo , Progesterona/uso terapéutico , Convulsiones/tratamiento farmacológico
7.
Headache ; 62(7): 908-910, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35856604

RESUMEN

BACKGROUND: Essential oils (EOs) with pro-convulsant properties are known to cause seizures and may worsen migraine. Here we report five cases of cluster headache (CH) secondary to the usage of toothpastes containing pro-convulsant EOs. METHODS: Patients were identified from the headache clinics of three tertiary care hospitals in south India. Detailed history, examination, and brain magnetic resonance imaging were done in all patients. CH was diagnosed according to the International Classification of Headache Disorders, 3rd edition. Descriptive statistics were used to analyze data. RESULTS: We had five cases of EO-related CH (EORCH), from February 2020 to August 2021; three females and two males, with age ranging from 19 to 54 years. Three had new onset CH, while two had previous cluster attacks which had become refractory to medications for the past 1 year. The toothpastes contained EOs of camphor, eucalyptus, sage, thujone, clove, and fennel in various combinations. These toothpastes were used for a period of at least 3 months in those with new onset CH and for 12 months or more by those with chronic CH. After stopping the usage of these toothpastes, the CH attacks resolved completely within 5-10 days in all patients. In one patient we re-challenged with the same toothpaste and got the CH attack after a period of 2 months. None of the patients had recurrence of CH attacks at follow-up, ranging from 1 to 2 years. CONCLUSION: EOs with pro-convulsive properties may trigger and sustain CH. Physicians may consider inquiring about the exposure to these pro-convulsant EOs in patients with CH and may consider advising the discontinuation of products like toothpastes containing them as a possible means of CH remission.


Asunto(s)
Cefalalgia Histamínica , Trastornos Relacionados con Sustancias , Adulto , Cefalalgia Histamínica/diagnóstico , Convulsivantes , Femenino , Cefalea , Humanos , Masculino , Persona de Mediana Edad , Pastas de Dientes , Adulto Joven
8.
J Integr Neurosci ; 21(1): 15, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164451

RESUMEN

Vanillic acid (VA) exhibited antioxidant and neuroprotective properties in some neurodegenerative disorders. So, the current study examined the neuroprotective potential of VA as an antiepileptic agent in pentylenetetrazole (PTZ)-induced epileptic rats and the prospective role of Insulin like growth factor-1 (IGF-1) and nuclear factor-2 erythroid-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in this respect. Thirty male albino rats were equally subdivided into 3 groups; (1) normal control (NC) group, (2) PTZ-group: received PTZ (50 mg/Kg, i.p. every other day) for 14 days, and (3) PTZ + VA group: received PTZ and VA (50 mg/Kg daily for 2 weeks). The seizure score and latency were evaluated after PTZ injection. Also, the markers of oxidative stress (malondialdehyde (MDA), catalase, and reduced glutathione (GSH)), histopathological examination, the expression of glial fibrillary acidic protein (GFAP) (a marker of astrocytes) IGF-1, Nrf2, and HO-1 were assessed in the brain tissues by the end of the experiment. PTZ caused significant decrease in seizure latency and significant increase in seizure score by the end of the experiment (p < 0.01). This was associated with significant increase in MDA and GFAP with significant decrease in GSH, total antioxidant capacity (TAC) and IGF-1 in brain tissues compared to normal group (p < 0.01). On the other hand, treatment with VA caused significant attenuation in PTZ-induced seizures which was associated with significant improvement in oxidative stress markers and downregulation in GFAP and upregulation of Nrf2, HO-1 and IGF-1 in CA3 hippocampal region (p < 0.01). VA showed neuroprotective and anti-epileptic effects against PTZ-induced epilepsy which probably might be due to its antioxidant properties and upregulation of Nrf2/HO-1 pathway and IGF-1.


Asunto(s)
Anticonvulsivantes/farmacología , Antioxidantes/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Hemo Oxigenasa (Desciclizante)/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/efectos de los fármacos , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Ácido Vanílico/farmacología , Animales , Anticonvulsivantes/administración & dosificación , Antioxidantes/administración & dosificación , Convulsivantes/farmacología , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Masculino , Pentilenotetrazol/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , Ácido Vanílico/administración & dosificación
9.
J Integr Neurosci ; 21(1): 21, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164457

RESUMEN

The current study investigated the effects of stevia extracts on a PTZ-induced epileptic rat model and its potential mechanism. Thirty male Sprague-Dawley rats were equally subdivided into 3 groups; (1) normal control (NC) group, (2) PTZ-group: received PTZ (50 mg/kg, i.p. every other day) for 2 weeks, and (3) PTZ+ Stevia group: received PTZ and stevia (200 mg/kg orally daily) for 4 weeks (2 weeks before the start of PTZ treatment and 2 weeks with PTZ administration). The first jerk latency and the seizure score were assessed in rats. Also, brain tissue samples were collected by the end of the experiment, and oxidative stress markers (catalase, MDA, and total antioxidant capacity (TAC)) were measured by biochemical analysis in hippocampal brain homogenates. Also, in the hippocampus, the expression of IL6 and Bcl-2 at the mRNA level and expression of Sirt-1, P53, caspase-3, GFAP, and NF-kB in CA3 hippocampal region by immunohistochemistry was investigated. PTZ substantially increased the seizure score and decreased the seizure latency. Also, PTZ significantly increased MDA, GFAP, IL-6, NF-kB, caspase-3, and p53 and significantly reduced Sirt-1, TAC, and Bcl-2 in hippocampal tissues compared to the control group (p < 0.01). However, Stevia Rebaudiana Bertoni (Stevia R.) significantly attenuated the PTZ-induced seizures, improved oxidative stress markers, downregulated GFAP, IL-6, NF-kB, caspase-3, and p53, and upregulated Sirt-1 and Bcl-2 in the CA3 hippocampal region (p < 0.01). In conclusion, Stevia R. exhibits neuroprotective and antiepileptic actions in PTZ-induced epilepsy due to its antioxidant, anti-apoptotic, and anti-inflammatory effects. Additionally, the Sirt-1 pathway might be involved in the antiepileptic and neuroprotective effects of stevia in PTZ-kindled epileptic rat model.


Asunto(s)
Anticonvulsivantes/farmacología , Antioxidantes/farmacología , Epilepsia/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Extractos Vegetales/farmacología , Stevia , Animales , Anticonvulsivantes/administración & dosificación , Antioxidantes/administración & dosificación , Apoptosis , Convulsivantes/farmacología , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/inmunología , Epilepsia/metabolismo , Hipocampo/inmunología , Hipocampo/metabolismo , Masculino , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Pentilenotetrazol/farmacología , Extractos Vegetales/administración & dosificación , Ratas , Ratas Sprague-Dawley , Sirtuina 1/efectos de los fármacos , Sirtuina 1/metabolismo
10.
Drug Chem Toxicol ; 45(2): 625-632, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32249606

RESUMEN

Organophosphates can damage the brain in systemic intoxication. In this study, the effects of a minimum toxic dose (MTD) of diazinon (DZ) on amygdala afterdischarge threshold (ADT), kindling acquisition and kindled seizure parameters were evaluated. Intact male rats were stereotactically implanted with a tripolar and two monopolar electrodes in the amygdala and dura respectively. After recovery, animals received daily either, olive oil (control), 15 or 30 mg/kg (MTD) of DZ intraperitoneally, and ADT, afterdischarge duration (ADD) at each stage (S1 to S5) of kindling and number of trials for kindling acquisition were determined daily. Also, the effect of DZ on stage 4 latency (S4L), ADD, stage 5 duration (S5D) and the activity of the red blood cholinesterase (ChE) were evaluated. The ADT was lower and the ADD was longer significantly in DZ treated group in comparison to control (p < 0.01) and the number of trials to reach each stage of kindling acquisition was reduced (p < 0.001). The total amount of ADDs during the kindling procedure increased significantly 5 days after DZ treatment. While the S4L was reduced, the S5D increased significantly after DZ treatment. The ChE activity was inhibited significantly after 20 min of DZ treatment and continued till 24 h (p < 0.01). Data indicate that even half of the MTD of DZ could increase the sensitivity and excitability of the CNS to the epileptic activity at least via reduction of stimulation threshold and AD prolongation. Furthermore, repeated exposure to the low concentrations of organophosphates may be pro-convulsant and should be restricted.


Asunto(s)
Convulsivantes , Excitación Neurológica , Amígdala del Cerebelo/fisiología , Animales , Convulsivantes/farmacología , Diazinón/toxicidad , Excitación Neurológica/fisiología , Masculino , Ratas , Ratas Wistar
11.
Mol Pharmacol ; 99(1): 78-91, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33109687

RESUMEN

Tetramethylenedisulfotetramine (TETS) is a so-called "caged" convulsant that is responsible for thousands of accidental and malicious poisonings. Similar to the widely used GABA receptor type A (GABAA) antagonist picrotoxinin, TETS has been proposed to bind to the noncompetitive antagonist (NCA) site in the pore of the receptor channel. However, the TETS binding site has never been experimentally mapped, and we here set out to gain atomistic level insights into how TETS inhibits the human α 2 ß 3 γ 2 GABAA receptor. Using the Rosetta molecular modeling suite, we generated three homology models of the α 2 ß 3 γ 2 receptor in the open, desensitized, and closed/resting state. Three different ligand-docking algorithms (RosettaLigand, Glide, and Swissdock) identified two possible TETS binding sites in the channel pore. Using a combination of site-directed mutagenesis, electrophysiology, and modeling to probe both sites, we demonstrate that TETS binds at the T6' ring in the closed/resting-state model, in which it shows perfect space complementarity and forms hydrogen bonds or makes hydrophobic interactions with all five pore-lining threonine residues of the pentameric receptor. Mutating T6' in either the α 2 or ß 3 subunit reduces the IC50 of TETS by ∼700-fold in whole-cell patch-clamp experiments. TETS is thus interacting at the NCA site in the pore of the GABAA receptor at a location that is overlapping but not identical to the picrotoxinin binding site. SIGNIFICANCE STATEMENT: Our study identifies the binding site of the highly toxic convulsant tetramethylenedisulfotetramine (TETS), which is classified as a threat agent by the World Health Organization. Using a combination of homology protein modeling, ligand docking, site-directed mutagenesis, and electrophysiology, we show that TETS is binding in the pore of the α2ß3γ2 GABA receptor type A receptor at the so-called T6' ring, wherein five threonine residues line the permeation pathway of the pentameric receptor channel.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/metabolismo , Convulsivantes/metabolismo , Receptores de GABA-A/metabolismo , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Hidrocarburos Aromáticos con Puentes/química , Convulsivantes/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de GABA-A/química
12.
Neurobiol Dis ; 152: 105297, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33581254

RESUMEN

Increased neuronal expression of the Na-K-2Cl cotransporter NKCC1 has been implicated in the generation of seizures and epilepsy. However, conclusions from studies on the NKCC1-specific inhibitor, bumetanide, are equivocal, which is a consequence of the multiple potential cellular targets and poor brain penetration of this drug. Here, we used Nkcc1 knockout (KO) and wildtype (WT) littermate control mice to study the ictogenic and epileptogenic effects of intrahippocampal injection of kainate. Kainate (0.23 µg in 50 nl) induced limbic status epilepticus (SE) in both KO and WT mice with similar incidence, latency to SE onset, and SE duration, but the number of intermittent generalized convulsive seizures during SE was significantly higher in Nkcc1 KO mice, indicating increased SE severity. Following SE, spontaneous recurrent seizures (SRS) were recorded by continuous (24/7) video/EEG monitoring at 0-1, 4-5, and 12-13 weeks after kainate, using depth electrodes in the ipsilateral hippocampus. Latency to onset of electrographic SRS and the incidence of electrographic SRS were similar in WT and KO mice. However, the frequency of electrographic seizures was lower whereas the frequency of electroclinical seizures was higher in Nkcc1 KO mice, indicating a facilitated progression from electrographic to electroclinical seizures during chronic epilepsy, and a more severe epileptic phenotype, in the absence of NKCC1. The present findings suggest that NKCC1 is dispensable for the induction, progression and manifestation of epilepsy, and they do not support the widely held notion that inhibition of NKCC1 in the brain is a useful strategy for preventing or modifying epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/inducido químicamente , Femenino , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
13.
Neurobiol Dis ; 148: 105222, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309937

RESUMEN

Since neonatal hypoxia-ischemia (HI) disrupts the hippocampal (Hp) GABAergic network in the mouse and Hp injury in this model correlates with flurothyl seizure susceptibility only in male mice, we hypothesized that GABAergic disruption correlates with flurothyl seizure susceptibility in a sex-specific manner. C57BL6 mice were exposed to HI (Vannucci model) versus sham procedures at P10, randomized to normothermia (NT) or therapeutic hypothermia (TH), and subsequently underwent flurothyl seizure testing at P18. Only in male mice, Hp atrophy correlated with seizure susceptibility. The number of Hp parvalbumin positive interneurons (PV+INs) decreased after HI in both sexes, but TH attenuated this deficit only in females. In males only, seizure susceptibility directly correlated with the number of PV+INs, but not somatostatin or calretinin expressing INs. Hp GABAB receptor subunit levels were decreased after HI, but unrelated to later seizure susceptibility. In contrast, Hp GABAA receptor α1 subunit (GABAARα1) levels were increased after HI. Adjusting the number of PV+ INs for their GABAARα1 expression strengthened the correlation with seizure susceptibility in male mice. Thus, we identified a novel Hp sex-specific GABA-mediated mechanism of compensation after HI that correlates with flurothyl seizure susceptibility warranting further study to better understand potential clinical translation.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Interneuronas/metabolismo , Animales , Animales Recién Nacidos , Convulsivantes/toxicidad , Susceptibilidad a Enfermedades , Flurotilo/toxicidad , Neuronas GABAérgicas/fisiología , Hipocampo/fisiopatología , Hipoxia-Isquemia Encefálica/fisiopatología , Interneuronas/fisiología , Ratones , Parvalbúminas , Convulsiones/inducido químicamente , Factores Sexuales
14.
Neurobiol Dis ; 150: 105244, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33385516

RESUMEN

There is a growing body of evidence demonstrating the significant involvement of the sigma-1 chaperone protein in the modulation of seizures. Several sigma-1 receptor (Sig1R) ligands have been demonstrated to regulate the seizure threshold in acute and chronic seizure models. However, the mechanism by which Sig1R modulates the excitatory and inhibitory pathways in the brain has not been elucidated. The aim of this study was to compare the susceptibility to seizures of wild type (WT) and Sig1R knockout (Sig1R-/-) mice in intravenous pentylenetetrazol (PTZ) and (+)-bicuculline (BIC) infusion-induced acute seizure and Sig1R antagonist NE-100-induced seizure models. To determine possible molecular mechanisms, we used quantitative PCR, Western blotting and immunohistochemistry to assess the possible involvement of several seizure-related genes and proteins. Peripheral tissue contractile response of WT and Sig1R-/- mice was studied in an isolated vasa deferentia model. The most important finding was the significantly decreased expression of the R2 subunit of the GABA-B receptor in the hippocampus and habenula of Sig1R-/- mice. Our results demonstrated that Sig1R-/- mice have decreased thresholds for PTZ- and BIC-induced tonic seizures. In the NE-100-induced seizure model, Sig1R-/- animals demonstrated lower seizure scores, shorter durations and increased latency times of seizures compared to WT mice. Sig1R-independent activities of NE-100 included downregulation of the gene expression of iNOS and GABA-A γ2 and inhibition of KCl-induced depolarization in both WT and Sig1R-/- animals. In conclusion, the results of this study indicate that the lack of Sig1R resulted in decreased expression of the R2 subunit of the GABA-B receptor and increased susceptibility to seizures. Our results confirm that Sig1R is a significant molecular target for seizure modulation and warrants further investigation for the development of novel anti-seizure drugs.


Asunto(s)
Convulsivantes/toxicidad , Habénula/metabolismo , Hipocampo/metabolismo , Receptores de GABA-B/genética , Receptores sigma/genética , Convulsiones/genética , Animales , Anisoles/toxicidad , Bicuculina/toxicidad , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Predisposición Genética a la Enfermedad , Habénula/efectos de los fármacos , Hipocampo/efectos de los fármacos , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Pentilenotetrazol/toxicidad , Propilaminas/toxicidad , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Receptores de GABA-B/metabolismo , Convulsiones/inducido químicamente , Receptor Sigma-1
15.
Toxicol Appl Pharmacol ; 426: 115643, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34265354

RESUMEN

The chemical threat agent tetramethylenedisulfotetramine (TETS) is a γ-aminobutyric acid type A receptor (GABA AR) antagonist that causes life threatening seizures. Currently, there is no specific antidote for TETS intoxication. TETS-induced seizures are typically treated with benzodiazepines, which function as nonselective positive allosteric modulators (PAMs) of synaptic GABAARs. The major target of TETS was recently identified as the GABAAR α2ß3γ2 subtype in electrophysiological studies using recombinantly expressed receptor combinations. Here, we tested whether these in vitro findings translate in vivo by comparing the efficacy of GABAAR subunit-selective PAMs in reducing TETS-induced seizure behavior in larval zebrafish. We tested PAMs targeting α1, α2, α2/3/5, α6, ß2/3, ß1/2/3, and δ subunits and compared their efficacy to the benzodiazepine midazolam (MDZ). The data demonstrate that α2- and α6-selective PAMs (SL-651,498 and SB-205384, respectively) were effective at mitigating TETS-induced seizure-like behavior. Combinations of SB-205384 and MDZ or SL-651,498 and 2-261 (ß2/3-selective) mitigated TETS-induced seizure-like behavior at concentrations that did not elicit sedating effects in a photomotor behavioral assay, whereas MDZ alone caused sedation at the concentration required to stop seizure behavior. Isobologram analyses suggested that SB-205384 and MDZ interacted in an antagonistic fashion, while the effects of SL-651,498 and 2-261 were additive. These results further elucidate the molecular mechanism by which TETS induces seizures and provide mechanistic insight regarding specific countermeasures against this chemical convulsant.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Convulsivantes , Moduladores del GABA/farmacología , Hipnóticos y Sedantes/farmacología , Subunidades de Proteína/fisiología , Receptores de GABA-A/fisiología , Convulsiones/inducido químicamente , Animales , Conducta Animal/efectos de los fármacos , Larva , Locomoción/efectos de los fármacos , Midazolam/farmacología , Subunidades de Proteína/genética , Receptores de GABA-A/genética , Convulsiones/fisiopatología , Pez Cebra
16.
Toxicol Appl Pharmacol ; 430: 115725, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34536444

RESUMEN

An effective in vitro screening assay to detect seizure liability in preclinical development can contribute to better lead molecule optimization prior to candidate selection, providing higher throughput and overcoming potential brain exposure limitations in animal studies. This study explored effects of 26 positive and 14 negative reference pharmacological agents acting through different mechanisms, including 18 reference agents acting on glutamate signaling pathways, in a brain slice assay (BSA) of adult rat to define the assay's sensitivity, specificity, and limitations. Evoked population spikes (PS) were recorded from CA1 pyramidal neurons of hippocampus (HPC) in the BSA. Endpoints for analysis were PS area and PS number. Most positive references (24/26) elicited a concentration-dependent increase in PS area and/or PS number. The negative references (14/14) had little effect on the PS. Moreover, we studied the effects of 15 reference agents testing positive in the BSA on spontaneous activity in E18 rat HPC neurons monitored with microelectrode arrays (MEA), and compared these effects to the BSA results. From these in vitro studies we conclude that the BSA provides 93% sensitivity and 100% specificity in prediction of drug-induced seizure liability, including detecting seizurogenicity by 3 groups of metabotropic glutamate receptor (mGluR) ligands. The MEA results seemed more variable, both quantitatively and directionally, particularly for endpoints capturing synchronized electrical activity. We discuss these results from the two models, comparing each with published results, and provide potential explanations for differences and future directions.


Asunto(s)
Convulsivantes/toxicidad , Potenciales Evocados/efectos de los fármacos , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Convulsiones/inducido químicamente , Pruebas de Toxicidad , Animales , Células Cultivadas , Femenino , Edad Gestacional , Ácido Glutámico/metabolismo , Hipocampo/embriología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Técnicas In Vitro , Ligandos , Masculino , Neuronas/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Glutamato Metabotrópico/metabolismo , Reproducibilidad de los Resultados , Medición de Riesgo , Convulsiones/metabolismo , Convulsiones/fisiopatología , Transducción de Señal
17.
Epilepsia ; 62(7): 1569-1583, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33955001

RESUMEN

OBJECTIVE: Growing evidence suggests that dysfunctional astrocytes are crucial players in the development of mesial temporal lobe epilepsy (MTLE). Using a mouse model closely recapitulating key alterations of chronic human MTLE with hippocampal sclerosis, here we asked whether death of astrocytes contributes to the initiation of the disease and investigated potential underlying molecular mechanisms. METHODS: Antibody staining was combined with confocal imaging and semiquantitative real-time polymerase chain reaction analysis to identify markers of different cellular death mechanisms between 4 h and 3 days after epilepsy induction. RESULTS: Four hours after kainate-mediated induction of status epilepticus (SE), we found a significant reduction in the density of astrocytes in the CA1 stratum radiatum (SR) of the ipsilateral hippocampus. This reduction was transient, as within the next 3 days, astrocyte cell numbers recovered to the initial values, which was accompanied by enhanced proliferation. Four hours after SE induction, a small proportion of astrocytes in the ipsilateral CA1 SR expressed autophagy-related genes and proteins, whereas we did not find astrocytes positive for cleaved caspase 3 or terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick-end labeling, ruling out apoptosis-related astrocytic death. Importantly, at the same early time point post-SE, many astrocytes in the ipsilateral CA1 SR showed strong expression of genes encoding pro-necroptosis factors, including receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Phosphorylation of MLKL (pMLKL), formation of necrosome complexes composed of RIPK3 and pMLKL, and translocation of pMLKL to the nucleus and to the plasma membrane were often observed in astrocytes of the ipsilateral hippocampus 4 h post-SE. SIGNIFICANCE: The present study revealed that astrocytes die shortly after induction of SE. Our expression data and immunohistochemistry suggest that necroptosis and autophagy contribute to astrocytic death. These findings help to better understand how dysfunctional and pathological remodeling of astrocytes contributes to the initiation of temporal lobe epilepsy.


Asunto(s)
Astrocitos/patología , Región CA1 Hipocampal/patología , Muerte Celular , Epilepsia/patología , Animales , Autofagia/genética , Caspasa 3/genética , Recuento de Células , Proliferación Celular , Convulsivantes , Epilepsia/inducido químicamente , Ácido Kaínico , Masculino , Ratones , Microglía/patología , Proteínas Quinasas/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología
18.
Epilepsia ; 62(7): 1505-1517, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33979453

RESUMEN

OBJECTIVE: One of the challenges in treating patients with drug-resistant epilepsy is that the mechanisms of seizures are unknown. Most current interventions are based on the assumption that epileptic activity recruits neurons and progresses by synaptic transmission. However, several experimental studies have shown that neural activity in rodent hippocampi can propagate independently of synaptic transmission. Recent studies suggest these waves are self-propagating by electric field (ephaptic) coupling. In this study, we tested the hypothesis that neural recruitment during seizures can occur by electric field coupling. METHODS: 4-Aminopyridine was used in both in vivo and in vitro preparation to trigger seizures or epileptiform activity. A transection was made in the in vivo hippocampus and in vitro hippocampal and cortical slices to study whether the induced seizure activity can recruit neurons across the gap. A computational model was built to test whether ephaptic coupling alone can account for neural recruitment across the transection. The model prediction was further validated by in vitro experiments. RESULTS: Experimental results show that electric fields generated by seizure-like activity in the hippocampus both in vitro and in vivo can recruit neurons locally and through a transection of the tissue. The computational model suggests that the neural recruitment across the transection is mediated by electric field coupling. With in vitro experiments, we show that a dielectric material can block the recruitment of epileptiform activity across a transection, and that the electric fields measured within the gap are similar to those predicted by model simulations. Furthermore, this nonsynaptic neural recruitment is also observed in cortical slices, suggesting that this effect is robust in brain tissue. SIGNIFICANCE: These results indicate that ephaptic coupling, a nonsynaptic mechanism, can underlie neural recruitment by a small electric field generated by seizure activity and could explain the low success rate of surgical transections in epilepsy patients.


Asunto(s)
Campos Electromagnéticos , Epilepsia/fisiopatología , Reclutamiento Neurofisiológico , 4-Aminopiridina , Animales , Corteza Cerebral/fisiopatología , Simulación por Computador , Convulsivantes , Epilepsia/diagnóstico , Femenino , Hipocampo/fisiopatología , Masculino , Ratones Transgénicos , Modelos Neurológicos , Valor Predictivo de las Pruebas , Ratas , Ratas Sprague-Dawley , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Transmisión Sináptica
19.
Epilepsia ; 62(7): 1677-1688, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34080183

RESUMEN

OBJECTIVE: The kainic acid (KA)-induced status epilepticus (SE) model in rats is a well-defined model of epileptogenesis. This model closely recapitulates many of the clinical and pathological characteristics of human temporal lobe epilepsy (TLE) that arise following SE or another neurological insult. Spontaneous recurrent seizures (SRS) in TLE can present after a latent period following a neurological insult (traumatic brain injury, SE event, viral infection, etc.). Moreover, this model is suitable for preclinical studies to evaluate the long-term process of epileptogenesis and screen putative disease-modifying/antiepileptogenic agents. The burden of human TLE is highly variable, similar to the post-KA SE rat model. In this regard, this model may have broad translational relevance. This report thus details the pharmacological characterization and methodological refinement of a moderate-throughput drug screening program using the post-KA-induced SE model of epileptogenesis in male Sprague Dawley rats to identify potential agents that may prevent or modify the burden of SRS. Specifically, we sought to demonstrate whether our protocol could prevent the development of SRS or lead to a reduced frequency/severity of SRS. METHODS: Rats were administered either everolimus (2-3 mg/kg po) beginning 1, 2, or 24 h after SE onset, or phenobarbital (60 mg/kg ip) beginning 1 h after SE onset. All treatments were administered once/day for 5-7 days. Rats in all studies (n = 12/treatment dose/study) were then monitored intermittently by video-electroencephalography (2 weeks on, 2 weeks off, 2 weeks on epochs) to determine latency to onset of SRS and disease burden. RESULTS: Although no adverse side effects were observed in our studies, no treatment significantly modified disease or prevented the presentation of SRS by 6 weeks after SE onset. SIGNIFICANCE: Neither phenobarbital nor everolimus administered at several time points after SE onset prevented the development of SRS. Nonetheless, we demonstrate a practical and moderate-throughput screen for potential antiepileptogenic agents in a rat model of TLE.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia del Lóbulo Temporal/prevención & control , Everolimus/uso terapéutico , Fenobarbital/uso terapéutico , Animales , Anticonvulsivantes/efectos adversos , Peso Corporal , Convulsivantes , Costo de Enfermedad , Modelos Animales de Enfermedad , Composición de Medicamentos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Electroencefalografía , Epilepsia del Lóbulo Temporal/inducido químicamente , Everolimus/efectos adversos , Ensayos Analíticos de Alto Rendimiento , Ácido Kaínico , Masculino , Fenobarbital/efectos adversos , Ratas , Ratas Sprague-Dawley , Convulsiones/prevención & control , Investigación Biomédica Traslacional
20.
Epilepsia ; 62(7): 1701-1714, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34002378

RESUMEN

OBJECTIVE: Early life seizures (ELSs) alter activity-dependent maturation of neuronal circuits underlying learning and memory. The pathophysiological mechanisms underpinning seizure-induced cognitive impairment are not fully understood, and critical variables such as sex and dynamic brain states with regard to cognitive outcomes have not been explored. We hypothesized that in comparison to control (CTL) rats, ELS rats would exhibit deficits in spatial cognition correlating with impaired dynamic neural signal coordination between the hippocampus and medial prefrontal cortex (mPFC). METHODS: Male and female rat pups were given 50 flurothyl-induced seizures over 10 days starting at postnatal Day 15. As adults, spatial cognition was tested through active avoidance on a rotating arena. Microwire tetrodes were implanted in the mPFC and CA1 subfield. Single cells and local field potentials were recorded and analyzed in each region during active avoidance and sleep. RESULTS: ELS males exhibited avoidance impairments, whereas female rats were unaffected. During avoidance, hippocampus-mPFC coherence was higher in CTL females than CTL males across bandwidths. In comparison to CTL males, ELS male learners exhibit increased coherence within theta bandwidth as well as altered burst-timing in mPFC cell activity. Hippocampus-mPFC coherence levels are predictive of cognitive outcome in the active avoidance spatial task. SIGNIFICANCE: Spatial cognitive outcome post-ELS is sex-dependent, as females fare better than males. ELS males that learn the task exhibit increased mPFC coherence levels at low-theta frequency, which may compensate for ELS effects on mPFC cell timing. These results suggest that coherence may serve as a biomarker for spatial cognitive outcome post-ELS and emphasize the significance of analyzing sex and dynamic cognition as variables in understanding seizure effects on the developing brain.


Asunto(s)
Encéfalo/patología , Hipocampo/patología , Red Nerviosa/patología , Corteza Prefrontal/patología , Convulsiones/patología , Animales , Reacción de Prevención , Encéfalo/fisiopatología , Región CA1 Hipocampal/patología , Cognición , Convulsivantes , Electrodos Implantados , Electroencefalografía , Femenino , Flurotilo , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Sprague-Dawley , Convulsiones/inducido químicamente , Convulsiones/psicología , Caracteres Sexuales , Sueño , Percepción Espacial , Ritmo Teta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA