Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.513
Filtrar
Más filtros

Intervalo de año de publicación
1.
Development ; 151(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38814743

RESUMEN

Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral to calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. Time-lapse light-sheet imaging of mouse embryos revealed calvarial progenitors intercalate in 3D in the CM above the eye, and exhibit protrusive and crawling activity more apically. CM cells express non-canonical Wnt/planar cell polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand Wnt5a-/- mutants have less dynamic cell rearrangements and protrusive activity. Loss of CM-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of Osx+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.


Asunto(s)
Mesodermo , Morfogénesis , Osteoblastos , Cráneo , Proteínas Wnt , Animales , Osteoblastos/metabolismo , Osteoblastos/citología , Cráneo/embriología , Ratones , Mesodermo/citología , Mesodermo/metabolismo , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Polaridad Celular , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Movimiento Celular , Proliferación Celular
2.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34919126

RESUMEN

Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative-feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear. We show that Pthlha expression in the zebrafish craniofacial skeleton precedes chondrocyte differentiation and restricts where cells undergo hypertrophy, thereby initiating a future GP. Loss of Pthlha leads to an expansion of cells expressing a novel early marker of the hypertrophic zone (HZ), entpd5a, and later HZ markers, such as ihha, whereas local Pthlha misexpression induces ectopic entpd5a expression. Formation of this early pre-HZ correlates with onset of muscle contraction and requires mechanical force; paralysis leads to loss of entpd5a and ihha expression in the pre-HZ, mislocalized pthlha expression and no subsequent ossification. These results suggest that local Pthlh sources combined with force determine HZ locations, establishing the negative-feedback loop that later maintains GPs.


Asunto(s)
Osteogénesis , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Cráneo/metabolismo , Animales , Condrocitos/citología , Condrocitos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/genética , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Transducción de Señal , Cráneo/embriología , Estrés Mecánico , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878091

RESUMEN

A major feature of Saethre-Chotzen syndrome is coronal craniosynostosis, the fusion of the frontal and parietal bones at the coronal suture. It is caused by heterozygous loss-of-function mutations in either of the bHLH transcription factors TWIST1 and TCF12. Although compound heterozygous Tcf12; Twist1 mice display severe coronal synostosis, the individual role of Tcf12 had remained unexplored. Here, we show that Tcf12 controls several key processes in calvarial development, including the rate of frontal and parietal bone growth, and the boundary between sutural and osteogenic cells. Genetic analysis supports an embryonic requirement for Tcf12 in suture formation, as combined deletion of Tcf12 in embryonic neural crest and mesoderm, but not in postnatal suture mesenchyme, disrupts the coronal suture. We also detected asymmetric distribution of mesenchymal cells on opposing sides of the wild-type frontal and parietal bones, which prefigures later bone overlap at the sutures. In Tcf12 mutants, reduced asymmetry is associated with bones meeting end-on-end, possibly contributing to synostosis. Our results support embryonic requirements of Tcf12 in proper formation of the overlapping coronal suture.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Craneosinostosis/metabolismo , Osteogénesis , Cráneo/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Craneosinostosis/embriología , Craneosinostosis/genética , Células Madre Mesenquimatosas/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Cresta Neural/metabolismo , Cráneo/metabolismo
4.
Nature ; 574(7780): 675-678, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645763

RESUMEN

The neural crest, an embryonic stem-cell population, is a vertebrate innovation that has been proposed to be a key component of the 'new head', which imbued vertebrates with predatory behaviour1,2. Here, to investigate how the evolution of neural crest cells affected the vertebrate body plan, we examined the molecular circuits that control neural crest development along the anteroposterior axis of a jawless vertebrate, the sea lamprey. Gene expression analysis showed that the cranial subpopulation of the neural crest of the lamprey lacks most components of a transcriptional circuit that is specific to the cranial neural crest in amniotes and confers the ability to form craniofacial cartilage onto non-cranial neural crest subpopulations3. Consistent with this, hierarchical clustering analysis revealed that the transcriptional profile of the lamprey cranial neural crest is more similar to the trunk neural crest of amniotes. Notably, analysis of the cranial neural crest in little skate and zebrafish embryos demonstrated that the transcriptional circuit that is specific to the cranial neural crest emerged via the gradual addition of network components to the neural crest of gnathostomes, which subsequently became restricted to the cephalic region. Our results indicate that the ancestral neural crest at the base of the vertebrate lineage possessed a trunk-like identity. We propose that the emergence of the cranial neural crest, by progressive assembly of an axial-specific regulatory circuit, allowed the elaboration of the new head during vertebrate evolution.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Cabeza , Cresta Neural , Animales , Regulación del Desarrollo de la Expresión Génica , Cabeza/fisiología , Lampreas/embriología , Cresta Neural/embriología , Cresta Neural/fisiología , Cráneo/embriología , Pez Cebra/embriología , Pez Cebra/genética
5.
Nature ; 569(7757): 556-559, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30996349

RESUMEN

The neurocranium of sarcopterygian fishes was originally divided into an anterior (ethmosphenoid) and posterior (otoccipital) portion by an intracranial joint, and underwent major changes in its overall geometry before fusing into a single unit in lungfishes and early tetrapods1. Although the pattern of these changes is well-documented, the developmental mechanisms that underpin variation in the form of the neurocranium and its associated soft tissues during the evolution of sarcopterygian fishes remain poorly understood. The coelacanth Latimeria is the only known living vertebrate that retains an intracranial joint2,3. Despite its importance for understanding neurocranial evolution, the development of the neurocranium of this ovoviviparous fish remains unknown. Here we investigate the ontogeny of the neurocranium and brain in Latimeria chalumnae using conventional and synchrotron X-ray micro-computed tomography as well as magnetic resonance imaging, performed on an extensive growth series for this species. We describe the neurocranium at the earliest developmental stage known for Latimeria, as well as the major changes that the neurocranium undergoes during ontogeny. Changes in the neurocranium are associated with an extreme reduction in the relative size of the brain along with an enlargement of the notochord. The development of the notochord appears to have a major effect on the surrounding cranial components, and might underpin the formation of the intracranial joint. Our results shed light on the interplay between the neurocranium and its adjacent soft tissues during development in Latimeria, and provide insights into the developmental mechanisms that are likely to have underpinned the evolution of neurocranial diversity in sarcopterygian fishes.


Asunto(s)
Evolución Biológica , Peces/anatomía & histología , Cabeza/anatomía & histología , Cráneo/anatomía & histología , Animales , Encéfalo/anatomía & histología , Encéfalo/embriología , Femenino , Peces/embriología , Cabeza/embriología , Masculino , Ovoviviparidad , Cráneo/embriología , Sincrotrones , Microtomografía por Rayos X
6.
Proc Natl Acad Sci U S A ; 119(31): e2116974119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881792

RESUMEN

Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies, which frequently affect craniofacial development. Here, we describe a cellular and molecular mechanism underlying the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCCs), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCCs particularly sensitive to rRNA synthesis defects. Consistent with this model, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which leads to p53 protein accumulation, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbate the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins syndrome and Acrofacial Dysostosis-Cincinnati type. Mechanistically, we demonstrate that diminished rRNA synthesis causes an imbalance between rRNA and ribosomal proteins. This leads to increased binding of ribosomal proteins Rpl5 and Rpl11 to Mdm2 and concomitantly diminished binding between Mdm2 and p53. Altogether, our results demonstrate a dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of congenital craniofacial disorders.


Asunto(s)
Anomalías Craneofaciales , ARN Polimerasa I , ARN Ribosómico , Proteínas Ribosómicas , Cráneo , Transcripción Genética , Animales , Anomalías Craneofaciales/genética , Disostosis Mandibulofacial/genética , Ratones , Cresta Neural/embriología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , Proteínas Ribosómicas/metabolismo , Cráneo/embriología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Dev Dyn ; 253(10): 940-948, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38481039

RESUMEN

BACKGROUND: Disruption of ALX4 causes autosomal dominant parietal foramina and autosomal recessive frontonasal dysplasia with alopecia, but the mechanisms involving ALX4 in craniofacial and other developmental processes are not well understood. Although mice carrying distinct mutations in Alx4 have been previously reported, the perinatal lethality of homozygous mutants together with dynamic patterns of Alx4 expression in multiple tissues have hindered systematic elucidation of the cellular and molecular mechanisms involving Alx4 in organogenesis and disease pathogenesis. RESULTS: We report generation of Alx4f/f conditional mice and show that tissue-specific Cre-mediated inactivation of Alx4 in cranial neural crest and limb bud mesenchyme, respectively, recapitulated craniofacial and limb developmental defects as found in Alx4-null mice but without affecting postnatal survival. While Alx4-null mice that survive postnatally exhibited dorsal alopecia, mice lacking Alx4 function in the neural crest lineage exhibited a highly restricted region of hair loss over the anterior skull whereas mice lacking Alx4 in the cranial mesoderm lineage exhibited normal hair development, suggesting that Alx4 plays partly redundant roles in multiple cell lineages during hair follicle development. CONCLUSION: The Alx4f/f mice provide a valuable resource for systematic investigation of cell type- and stage-specific function of ALX family transcription factors in development and disease.


Asunto(s)
Proteínas de Unión al ADN , Cresta Neural , Animales , Ratones , Cresta Neural/metabolismo , Cresta Neural/embriología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Cráneo/embriología , Cráneo/metabolismo , Cabello/crecimiento & desarrollo , Cabello/metabolismo , Linaje de la Célula , Anomalías Craneofaciales/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ratones Noqueados , Mesodermo/metabolismo , Mesodermo/embriología , Regulación del Desarrollo de la Expresión Génica
8.
Development ; 148(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34338288

RESUMEN

Proper function of the vertebrate skeleton requires the development of distinct articulating embryonic cartilages. Irx transcription factors are arranged in co-regulated clusters that are expressed in the developing skeletons of the face and appendages. IrxB cluster genes are required for the separation of toes in mice and formation of the hyoid joint in zebrafish, yet whether Irx genes have broader roles in skeletal development remains unclear. Here, we perform a comprehensive loss-of-function analysis of all 11 Irx genes in zebrafish. We uncover conserved requirements for IrxB genes in formation of the fish and mouse scapula. In the face, we find a requirement for IrxAb genes and irx7 in formation of anterior neural crest precursors of the jaw, and for IrxBa genes in formation of endodermal pouches and gill cartilages. We also observe extensive joint loss and cartilage fusions in animals with combinatorial losses of Irx clusters, with in vivo imaging revealing that at least some of these fusions arise through inappropriate chondrogenesis. Our analysis reveals diverse roles for Irx genes in the formation and later segmentation of the facial skeleton.


Asunto(s)
Cartílago/embriología , Condrogénesis/genética , Proteínas de Homeodominio/metabolismo , Familia de Multigenes , Proteínas Mutantes/metabolismo , Cráneo/embriología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Alelos , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Mutación , Cresta Neural/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética
9.
Development ; 148(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33318149

RESUMEN

Mutations in the RNA helicase DDX3 have emerged as a frequent cause of intellectual disability in humans. Because many individuals carrying DDX3 mutations have additional defects in craniofacial structures and other tissues containing neural crest (NC)-derived cells, we hypothesized that DDX3 is also important for NC development. Using Xenopus tropicalis as a model, we show that DDX3 is required for normal NC induction and craniofacial morphogenesis by regulating AKT kinase activity. Depletion of DDX3 decreases AKT activity and AKT-dependent inhibitory phosphorylation of GSK3ß, leading to reduced levels of ß-catenin and Snai1: two GSK3ß substrates that are crucial for NC induction. DDX3 function in regulating these downstream signaling events during NC induction is likely mediated by RAC1, a small GTPase whose translation depends on the RNA helicase activity of DDX3. These results suggest an evolutionarily conserved role of DDX3 in NC development by promoting AKT activity, and provide a potential mechanism for the NC-related birth defects displayed by individuals harboring mutations in DDX3 and its downstream effectors in this signaling cascade.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Xenopus/metabolismo , Animales , Cartílago/embriología , Cartílago/metabolismo , Embrión no Mamífero/metabolismo , Cara/embriología , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Morfogénesis/genética , Fosforilación , Estabilidad Proteica , Cráneo/embriología , Cráneo/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Vía de Señalización Wnt , Xenopus/genética , beta Catenina/metabolismo , Proteína de Unión al GTP rac1/metabolismo
10.
Development ; 148(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33462117

RESUMEN

The regulated expansion of chondrocytes within growth plates and joints ensures proper skeletal development through adulthood. Mutations in the transcription factor NKX3.2 underlie spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD), which is characterized by skeletal defects including scoliosis, large epiphyses, wide growth plates and supernumerary distal limb joints. Whereas nkx3.2 knockdown zebrafish and mouse Nkx3.2 mutants display embryonic lethal jaw joint fusions and skeletal reductions, respectively, they lack the skeletal overgrowth seen in SMMD patients. Here, we report adult viable nkx3.2 mutant zebrafish displaying cartilage overgrowth in place of a missing jaw joint, as well as severe dysmorphologies of the facial skeleton, skullcap and spine. In contrast, cartilage overgrowth and scoliosis are absent in rare viable nkx3.2 knockdown animals that lack jaw joints, supporting post-embryonic roles for Nkx3.2. Single-cell RNA-sequencing and in vivo validation reveal increased proliferation and upregulation of stress-induced pathways, including prostaglandin synthases, in mutant chondrocytes. By generating a zebrafish model for the skeletal overgrowth defects of SMMD, we reveal post-embryonic roles for Nkx3.2 in dampening proliferation and buffering the stress response in joint-associated chondrocytes.


Asunto(s)
Huesos/embriología , Huesos/metabolismo , Proteínas de Homeodominio/metabolismo , Osteocondrodisplasias/embriología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Cartílago/embriología , Cartílago/patología , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Embrión no Mamífero/anomalías , Embrión no Mamífero/patología , Regulación del Desarrollo de la Expresión Génica , Maxilares/embriología , Maxilares/patología , Articulaciones/anomalías , Articulaciones/embriología , Articulaciones/patología , Mitosis/genética , Morfolinos/farmacología , Mutación/genética , RNA-Seq , Análisis de la Célula Individual , Cráneo/anomalías , Cráneo/embriología , Cráneo/patología , Columna Vertebral/anomalías , Columna Vertebral/embriología , Columna Vertebral/patología , Estrés Fisiológico/genética , Regulación hacia Arriba/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
11.
PLoS Genet ; 17(5): e1009579, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34033651

RESUMEN

We sought to understand how perturbation of signaling pathways and their targets generates variable phenotypes. In humans, GATA3 associates with highly variable defects, such as HDR syndrome, microsomia and choanal atresia. We previously characterized a zebrafish point mutation in gata3 with highly variable craniofacial defects to the posterior palate. This variability could be due to residual Gata3 function, however, we observe the same phenotypic variability in gata3 null mutants. Using hsp:GATA3-GFP transgenics, we demonstrate that Gata3 function is required between 24 and 30 hpf. At this time maxillary neural crest cells fated to generate the palate express gata3. Transplantation experiments show that neural crest cells require Gata3 function for palatal development. Via a candidate approach, we determined if Bmp signaling was upstream of gata3 and if this pathway explained the mutant's phenotypic variation. Using BRE:d2EGFP transgenics, we demonstrate that maxillary neural crest cells are Bmp responsive by 24 hpf. We find that gata3 expression in maxillary neural crest requires Bmp signaling and that blocking Bmp signaling, in hsp:DN-Bmpr1a-GFP embryos, can phenocopy gata3 mutants. Palatal defects are rescued in hsp:DN-Bmpr1a-GFP;hsp:GATA3-GFP double transgenic embryos, collectively demonstrating that gata3 is downstream of Bmp signaling. However, Bmp attenuation does not alter phenotypic variability in gata3 loss-of-function embryos, implicating a different pathway. Due to phenotypes observed in hypomorphic shha mutants, the Sonic Hedgehog (Shh) pathway was a promising candidate for this pathway. Small molecule activators and inhibitors of the Shh pathway lessen and exacerbate, respectively, the phenotypic severity of gata3 mutants. Importantly, inhibition of Shh can cause gata3 haploinsufficiency, as observed in humans. We find that gata3 mutants in a less expressive genetic background have a compensatory upregulation of Shh signaling. These results demonstrate that the level of Shh signaling can modulate the phenotypes observed in gata3 mutants.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Factor de Transcripción GATA3/genética , Proteínas Hedgehog/metabolismo , Fenotipo , Transducción de Señal , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Factor de Transcripción GATA3/metabolismo , Haploinsuficiencia , Mutación con Pérdida de Función , Mutación , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo , Organogénesis , Cráneo/citología , Cráneo/embriología , Pez Cebra/embriología
12.
Genes Dev ; 30(21): 2443-2458, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27856617

RESUMEN

Craniofacial development is a complex morphogenetic process, disruptions in which result in highly prevalent human birth defects. While platelet-derived growth factor (PDGF) receptor α (PDGFRα) has well-documented functions in this process, the role of PDGFRß in murine craniofacial development is not well established. We demonstrate that PDGFRα and PDGFRß are coexpressed in the craniofacial mesenchyme of mid-gestation mouse embryos and that ablation of Pdgfrb in the neural crest lineage results in increased nasal septum width, delayed palatal shelf development, and subepidermal blebbing. Furthermore, we show that the two receptors genetically interact in this lineage, as double-homozygous mutant embryos exhibit an overt facial clefting phenotype more severe than that observed in either single-mutant embryo. We reveal a physical interaction between PDGFRα and PDGFRß in the craniofacial mesenchyme and demonstrate that the receptors form functional heterodimers with distinct signaling properties. Our studies thus uncover a novel mode of signaling for the PDGF family during vertebrate development.


Asunto(s)
Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Cráneo/embriología , Animales , Linaje de la Célula , Células Cultivadas , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/genética , Dimerización , Proteínas de la Matriz Extracelular/metabolismo , Mesodermo/embriología , Ratones , Mutación , Cresta Neural/embriología , Fosforilación , Unión Proteica , Transporte de Proteínas/genética
13.
Nature ; 547(7662): 209-212, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28678781

RESUMEN

Despite the wide variety of adaptive modifications in the oral and facial regions of vertebrates, their early oropharyngeal development is considered strictly uniform. It involves sequential formation of the mouth and pharyngeal pouches, with ectoderm outlining the outer surface and endoderm the inner surface, as a rule. At the extreme anterior domain of vertebrate embryos, the ectoderm and endoderm directly juxtapose and initial development of this earliest ecto-endoderm interface, the primary mouth, typically involves ectodermal stomodeal invagination that limits the anterior expansion of the foregut endoderm. Here we present evidence that in embryos of extant non-teleost fishes, oral (stomodeal) formation is preceded by the development of prominent pre-oral gut diverticula (POGD) between the forebrain and roof of the forming mouth. Micro-computed tomography (micro-CT) imaging of bichir, sturgeon and gar embryos revealed that foregut outpocketing at the pre-oral domain begins even before the sequential formation of pharyngeal pouches. The presence of foregut-derived cells in the front of the mouth was further confirmed by in vivo experiments that allowed specific tracing of the early endodermal lining. We show that POGD in sturgeons contribute to the orofacial surface of their larvae, comprising oral teeth, lips, and sensory barbels. To our knowledge, this is the first thorough evidence for endodermal origin of external craniofacial structures in any vertebrate. In bichir and gar embryos, POGD form prominent cranial adhesive organs that are characteristic of the ancient bauplan of free-living chordate larvae. POGD hence seem arguably to be ancestral for all ray-finned fishes, and their topology, pharyngeal-like morphogenesis and gene expression suggest that they are evolutionarily related to the foregut-derived diverticula of early chordate and hemichordate embryos. The formation of POGD might thus represent an ancestral developmental module with deep deuterostome origins.


Asunto(s)
Sistema Digestivo/embriología , Endodermo/embriología , Peces/anatomía & histología , Peces/embriología , Desarrollo Maxilofacial , Boca/embriología , Animales , Peces/clasificación , Peces/genética , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Desarrollo Maxilofacial/genética , Filogenia , Cráneo/embriología , Diente/embriología , Microtomografía por Rayos X
14.
PLoS Genet ; 16(2): e1008300, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32092051

RESUMEN

Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder characterized by craniofacial, skeletal, and neurological anomalies and is caused by mutations in EFNB1. Heterozygous females are more severely affected by CFNS than hemizygous males, a phenomenon called cellular interference that results from EPHRIN-B1 mosaicism. In Efnb1 heterozygous mice, mosaicism for EPHRIN-B1 results in cell sorting and more severe phenotypes than Efnb1 hemizygous males, but how craniofacial dysmorphology arises from cell segregation is unknown and CFNS etiology therefore remains poorly understood. Here, we couple geometric morphometric techniques with temporal and spatial interrogation of embryonic cell segregation in mouse mutant models to elucidate mechanisms underlying CFNS pathogenesis. By generating EPHRIN-B1 mosaicism at different developmental timepoints and in specific cell populations, we find that EPHRIN-B1 regulates cell segregation independently in early neural development and later in craniofacial development, correlating with the emergence of quantitative differences in face shape. Whereas specific craniofacial shape changes are qualitatively similar in Efnb1 heterozygous and hemizygous mutant embryos, heterozygous embryos are quantitatively more severely affected, indicating that Efnb1 mosaicism exacerbates loss of function phenotypes rather than having a neomorphic effect. Notably, neural tissue-specific disruption of Efnb1 does not appear to contribute to CFNS craniofacial dysmorphology, but its disruption within neural crest cell-derived mesenchyme results in phenotypes very similar to widespread loss. EPHRIN-B1 can bind and signal with EPHB1, EPHB2, and EPHB3 receptor tyrosine kinases, but the signaling partner(s) relevant to CFNS are unknown. Geometric morphometric analysis of an allelic series of Ephb1; Ephb2; Ephb3 mutant embryos indicates that EPHB2 and EPHB3 are key receptors mediating Efnb1 hemizygous-like phenotypes, but the complete loss of EPHB1-3 does not fully recapitulate the severity of CFNS-like Efnb1 heterozygosity. Finally, by generating Efnb1+/Δ; Ephb1; Ephb2; Ephb3 quadruple knockout mice, we determine how modulating cumulative receptor activity influences cell segregation in craniofacial development and find that while EPHB2 and EPHB3 play an important role in craniofacial cell segregation, EPHB1 is more important for cell segregation in the brain; surprisingly, complete loss of EPHB1-EPHB3 does not completely abrogate cell segregation. Together, these data advance our understanding of the etiology and signaling interactions underlying CFNS dysmorphology.


Asunto(s)
Movimiento Celular/genética , Anomalías Craneofaciales/genética , Efrina-B1/genética , Cresta Neural/embriología , Cráneo/anomalías , Animales , Anomalías Craneofaciales/diagnóstico , Modelos Animales de Enfermedad , Embrión de Mamíferos , Desarrollo Embrionario/genética , Efrina-B1/metabolismo , Femenino , Heterocigoto , Humanos , Masculino , Ratones , Ratones Noqueados , Mosaicismo , Mutación , Cresta Neural/citología , Fenotipo , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Índice de Severidad de la Enfermedad , Factores Sexuales , Cráneo/embriología , Cromosoma X/genética
15.
Dev Biol ; 471: 119-137, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33316258

RESUMEN

Diversity of neural crest derivatives has been studied with a variety of approaches during embryonic development. In mammals Cre-LoxP lineage tracing is a robust means to fate map neural crest relying on cre driven from regulatory elements of early neural crest genes. Sox10 is an essential transcription factor for normal neural crest development. A variety of efforts have been made to label neural crest derivatives using partial Sox10 regulatory elements to drive cre expression. To date published Sox10-cre lines have focused primarily on lineage tracing in specific tissues or during early fetal development. We describe two new Sox10-cre BAC transgenes, constitutive (cre) and inducible (cre/ERT2), that contain the complete repertoire of Sox10 regulatory elements. We present a thorough expression profile of each, identifying a few novel sites of Sox10 expression not captured by other neural crest cre drivers. Comparative mapping of expression patterns between the Sox10-cre and Sox10-cre/ERT2 transgenes identified a narrow temporal window in which Sox10 expression is present in mesenchymal derivatives prior to becoming restricted to neural elements during embryogenesis. In more caudal structures, such as the intestine and lower urinary tract, our Sox10-cre BAC transgene appears to be more efficient in labeling neural crest-derived cell types than Wnt1-cre. The analysis reveals consistent expression of Sox10 in non-neural crest derived glandular epithelium, including salivary, mammary, and urethral glands of adult mice. These Sox10-cre and Sox10-cre/ERT2 transgenic lines are verified tools that will enable refined temporal and cell-type specific lineage analysis of neural crest derivatives as well as glandular tissues that rely on Sox10 for proper development and function.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Cresta Neural/embriología , Factores de Transcripción SOXE/biosíntesis , Cráneo/embriología , Transgenes , Animales , Mesodermo/citología , Ratones , Ratones Transgénicos , Cresta Neural/citología , Factores de Transcripción SOXE/genética , Cráneo/citología
16.
Dev Biol ; 477: 251-261, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34102166

RESUMEN

BMP signaling plays iterative roles during vertebrate neural crest development from induction through craniofacial morphogenesis. However, far less is known about the role of BMP activity in cranial neural crest epithelial-to-mesenchymal transition and delamination. By measuring canonical BMP signaling activity as a function of time from specification through early migration of avian midbrain neural crest cells, we found elevated BMP signaling during delamination stages. Moreover, inhibition of canonical BMP activity via a dominant negative mutant Type I BMP receptor showed that BMP signaling is required for neural crest migration from the midbrain, independent from an effect on EMT and delamination. Transcriptome profiling on control compared to BMP-inhibited cranial neural crest cells identified novel BMP targets during neural crest delamination and early migration including targets of the Notch pathway that are upregulated following BMP inhibition. These results suggest potential crosstalk between the BMP and Notch pathways in early migrating cranial neural crest and provide novel insight into mechanisms regulated by BMP signaling during early craniofacial development.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Mesencéfalo/embriología , Cresta Neural/metabolismo , Transducción de Señal , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Embrión de Pollo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/metabolismo , Cresta Neural/embriología , Cráneo/embriología , Cráneo/metabolismo , Técnicas de Cultivo de Tejidos
17.
Development ; 146(14)2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31340933

RESUMEN

Oral clefts are common birth defects. Individuals with oral clefts who have identical genetic mutations regularly present with variable penetrance and severity. Epigenetic or chromatin-mediated mechanisms are commonly invoked to explain variable penetrance. However, specific examples of these are rare. Two functional copies of the MOZ (KAT6A, MYST3) gene, encoding a MYST family lysine acetyltransferase chromatin regulator, are essential for human craniofacial development, but the molecular role of MOZ in this context is unclear. Using genetic interaction and genomic studies, we have investigated the effects of loss of MOZ on the gene expression program during mouse development. Among the more than 500 genes differentially expressed after loss of MOZ, 19 genes had previously been associated with cleft palates. These included four distal-less homeobox (DLX) transcription factor-encoding genes, Dlx1, Dlx2, Dlx3 and Dlx5 and DLX target genes (including Barx1, Gbx2, Osr2 and Sim2). MOZ occupied the Dlx5 locus and was required for normal levels of histone H3 lysine 9 acetylation. MOZ affected Dlx gene expression cell-autonomously within neural crest cells. Our study identifies a specific program by which the chromatin modifier MOZ regulates craniofacial development.


Asunto(s)
Huesos Faciales/embriología , Proteínas de Homeodominio/genética , Desarrollo Maxilofacial/genética , Cráneo/embriología , Factores de Transcripción/genética , Animales , Desarrollo Óseo/genética , Células Cultivadas , Embrión de Mamíferos , Huesos Faciales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Histona Acetiltransferasas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Cráneo/metabolismo
18.
Dev Dyn ; 250(8): 1191-1209, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33638290

RESUMEN

BACKGROUND: The highly conserved Grainyhead-like (Grhl) family of transcription factors play critical roles in the development of the neural tube and craniofacial skeleton. In particular, deletion of family member Grainyhead-like 2 (Grhl2) leads to mid-gestational embryonic lethality, maxillary clefting, abdominoschisis, and both cranial and caudal neural tube closure defects. These highly pleiotropic and systemic defects suggest that Grhl2 plays numerous critical developmental roles to ensure correct morphogenesis and patterning. RESULTS: Here, using four separate Cre-lox conditional deletion models, as well as one genetic epistasis approach (Grhl2+/- ;Edn1+/- double heterozygous mice) we have investigated tissue-specific roles of Grhl2 in embryonic development, with a particular focus on the craniofacial skeleton. We find that loss of Grhl2 in the pharyngeal epithelium (using the ShhCre driver) leads to low-penetrance micrognathia, whereas deletion of Grhl2 within the ectoderm of the pharynx (NestinCre ) leads to small, albeit significant, differences in the proximal-distal elongation of both the maxilla and mandible. Loss of Grhl2 in endoderm (Sox17-2aiCre ) resulted in noticeable lung defects and a single instance of secondary palatal clefting, although formation of other endoderm-derived organs such as the stomach, bladder and intestines was not affected. Lastly, deletion of Grhl2 in cells of the neural crest (Wnt1Cre ) did not lead to any discernible defects in craniofacial development, and similarly, our epistasis approach did not detect any phenotypic consequences of loss of a single allele of both Grhl2 and Edn1. CONCLUSION: Taken together, our study identifies a pharyngeal-epithelium intrinsic, non-cell-autonomous role for Grhl2 in the patterning and formation of the craniofacial skeleton, as well as an endoderm-specific role for Grhl2 in the formation and establishment of the mammalian lung.


Asunto(s)
Epistasis Genética , Regulación del Desarrollo de la Expresión Génica , Cráneo/embriología , Factores de Transcripción/genética , Animales , Ratones , Cresta Neural/metabolismo , Tubo Neural/metabolismo , Cráneo/metabolismo , Factores de Transcripción/metabolismo
19.
Dev Dyn ; 250(12): 1796-1809, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34091971

RESUMEN

BACKGROUND: Hand genes are required for the development of the vertebrate jaw, heart, peripheral nervous system, limb, gut, placenta, and decidua. Two Hand paralogues, Hand1 and Hand2, are present in most vertebrates, where they mediate different functions yet overlap in expression. In ray-finned fishes, Hand gene expression and function is only known for the zebrafish, which represents the rare condition of having a single Hand gene, hand2. Here we describe the developmental expression of hand1 and hand2 in the cichlid Copadichromis azureus. RESULTS: hand1 and hand2 are expressed in the cichlid heart, paired fins, pharyngeal arches, peripheral nervous system, gut, and lateral plate mesoderm with different degrees of overlap. CONCLUSIONS: Hand gene expression in the gut, peripheral nervous system, and pharyngeal arches may have already been fixed in the lobe- and ray-finned fish common ancestor. In other embryonic regions, such as paired appendages, hand2 expression was fixed, while hand1 expression diverged in lobe- and ray-finned fish lineages. In the lateral plate mesoderm and arch associated catecholaminergic cells, hand1 and hand2 swapped expression between divergent lineages. Distinct expression of cichlid hand1 and hand2 in the epicardium and myocardium of the developing heart may represent the ancestral pattern for bony fishes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cíclidos/embriología , Desarrollo Embrionario/genética , Aletas de Animales/embriología , Aletas de Animales/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Región Branquial/embriología , Región Branquial/metabolismo , Cíclidos/genética , Cíclidos/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Intestinos/embriología , Intestinos/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Miocardio/metabolismo , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Homología de Secuencia , Cráneo/embriología , Cráneo/metabolismo , Diente/embriología , Diente/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Genesis ; 59(5-6): e23420, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33891366

RESUMEN

Upon endoplasmic reticulum (ER) stress, inositol-requiring enzyme 1 (IRE1) is activated and catalyzes nonconventional splicing of an unspliced X-box binding protein 1 (XBP1U) mRNA to yield a spliced XBP1 (XBP1S) mRNA that encodes a potent XBP1S transcription factor. XBP1S is a key mediator of the IRE1 branch that is essential for alleviating ER stress. We generated a novel mouse strain (referred to as "Xbp1CS/+ " mice) that constitutively expressed XBP1S after Cre recombinase-mediated recombination. Further breeding of these mice with Twist2 Cre recombinase (Twist2-Cre) knock-in mice generated Twist2-Cre;Xbp1CS/+ mice. Most Twist2-Cre;Xbp1CS/+ mice died shortly after birth. Reverse-transcription polymerase chain reaction (RT-PCR) showed that constitutive expression of XBP1S occurred in various mouse tissues examined, but not in the brain. Immunohistochemistry confirmed that although the immunostaining signals for total XBP1 (XBP1U and XBP1S) were found in the calvarial bones in both Twist2-Cre;Xbp1CS/+ and control mice, the signals for XBP1S were only detected in the Twist2-Cre;Xbp1CS/+ mice, but not in the control mice. These results suggest that a precise control of XBP1S production is essential for normal mouse development.


Asunto(s)
Proteína 1 de Unión a la X-Box/genética , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Técnicas de Sustitución del Gen/métodos , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Empalme del ARN , Cráneo/embriología , Cráneo/metabolismo , Transgenes , Proteína 1 de Unión a la X-Box/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA