Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.153
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 82(8): 1604-1604.e1, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35452619

RESUMEN

Organelles are continuously turned over as part of cellular homeostasis and adaptation. Most organelles, even including the nucleus, are degraded by lysosomes via different pathways, such as macroautophagy, microautophagy, organelle-derived vesicle degradation, and crinophagy. In some specific cases-for example, in lens fiber cells-organelles are degraded by cytosolic phospholipases. To view this SnapShot, open or download the PDF.


Asunto(s)
Autofagia , Cristalino , Citosol , Cristalino/metabolismo , Lisosomas , Orgánulos/metabolismo
2.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38240393

RESUMEN

The spheroidal shape of the eye lens is crucial for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that, in the mouse lens, membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating that lamellipodium formation is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controlling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin and actin reduced the height of both early and later fibers, indicating that elongation of these fibers relies on actomyosin contractility. Consistent with this, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose that it does so through regulation of Rho activity.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Cristalino , Ratones , Animales , Cristalino/metabolismo , Epitelio/metabolismo , Actinas/metabolismo , Diferenciación Celular/fisiología
3.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180241

RESUMEN

Ocular lens development entails epithelial to fiber cell differentiation, defects in which cause congenital cataracts. We report the first single-cell multiomic atlas of lens development, leveraging snRNA-seq, snATAC-seq and CUT&RUN-seq to discover previously unreported mechanisms of cell fate determination and cataract-linked regulatory networks. A comprehensive profile of cis- and trans-regulatory interactions, including for the cataract-linked transcription factor MAF, is established across a temporal trajectory of fiber cell differentiation. Furthermore, we identify an epigenetic paradigm of cellular differentiation, defined by progressive loss of the H3K27 methylation writer Polycomb repressive complex 2 (PRC2). PRC2 localizes to heterochromatin domains across master-regulator transcription factor gene bodies, suggesting it safeguards epithelial cell fate. Moreover, we demonstrate that FGF hyper-stimulation in vivo leads to MAF network activation and the emergence of novel lens cell states. Collectively, these data depict a comprehensive portrait of lens fiber cell differentiation, while defining regulatory effectors of cell identity and cataract formation.


Asunto(s)
Catarata , Cristalino , Humanos , Multiómica , Catarata/genética , Diferenciación Celular/genética , Ojo
4.
Nature ; 592(7855): 634-638, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854238

RESUMEN

The eye lens of vertebrates is composed of fibre cells in which all membrane-bound organelles undergo degradation during terminal differentiation to form an organelle-free zone1. The mechanism that underlies this large-scale organelle degradation remains largely unknown, although it has previously been shown to be independent of macroautophagy2,3. Here we report that phospholipases in the PLAAT (phospholipase A/acyltransferase, also known as HRASLS) family-Plaat1 (also known as Hrasls) in zebrafish and PLAAT3 (also known as HRASLS3, PLA2G16, H-rev107 or AdPLA) in mice4-6-are essential for the degradation of lens organelles such as mitochondria, the endoplasmic reticulum and lysosomes. Plaat1 and PLAAT3 translocate from the cytosol to various organelles immediately before organelle degradation, in a process that requires their C-terminal transmembrane domain. The translocation of Plaat1 to organelles depends on the differentiation of fibre cells and damage to organelle membranes, both of which are mediated by Hsf4. After the translocation of Plaat1 or PLAAT3 to membranes, the phospholipase induces extensive organelle rupture that is followed by complete degradation. Organelle degradation by PLAAT-family phospholipases is essential for achieving an optimal transparency and refractive function of the lens. These findings expand our understanding of intracellular organelle degradation and provide insights into the mechanism by which vertebrates acquired transparent lenses.


Asunto(s)
Cristalino/citología , Cristalino/enzimología , Orgánulos/metabolismo , Fosfolipasas A2 Calcio-Independiente/metabolismo , Fosfolipasas A/metabolismo , Proteínas de Pez Cebra/metabolismo , Aciltransferasas/metabolismo , Animales , Catarata/metabolismo , Línea Celular , Femenino , Factores de Transcripción del Choque Térmico/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas , Pez Cebra/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(6): e2213765120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36719917

RESUMEN

Small heat-shock proteins (sHSPs) are a widely expressed family of ATP-independent molecular chaperones that are among the first responders to cellular stress. Mechanisms by which sHSPs delay aggregation of client proteins remain undefined. sHSPs have high intrinsic disorder content of up to ~60% and assemble into large, polydisperse homo- and hetero-oligomers, making them challenging structural and biochemical targets. Two sHSPs, HSPB4 and HSPB5, are present at millimolar concentrations in eye lens, where they are responsible for maintaining lens transparency over the lifetime of an organism. Together, HSPB4 and HSPB5 compose the hetero-oligomeric chaperone known as α-crystallin. To identify the determinants of sHSP function, we compared the effectiveness of HSPB4 and HSPB5 homo-oligomers and HSPB4/HSPB5 hetero-oligomers in delaying the aggregation of the lens protein γD-crystallin. In chimeric versions of HSPB4 and HSPB5, chaperone activity tracked with the identity of the 60-residue disordered N-terminal regions (NTR). A short 10-residue stretch in the middle of the NTR ("Critical sequence") contains three residues that are responsible for high HSPB5 chaperone activity toward γD-crystallin. These residues affect structure and dynamics throughout the NTR. Abundant interactions involving the NTR Critical sequence reveal it to be a hub for a network of interactions within oligomers. We propose a model whereby the NTR critical sequence influences local structure and NTR dynamics that modulate accessibility of the NTR, which in turn modulates chaperone activity.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Cristalino , alfa-Cristalinas , Humanos , alfa-Cristalinas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Cadena B de alfa-Cristalina/metabolismo , Cristalino/metabolismo
7.
Am J Pathol ; 194(6): 1090-1105, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403162

RESUMEN

Changes in the anterior segment of the eye due to type 2 diabetes mellitus (T2DM) are not well-characterized, in part due to the lack of a reliable animal model. This study evaluated changes in the anterior segment, including crystalline lens health, corneal endothelial cell density, aqueous humor metabolites, and ciliary body vasculature, in a rat model of T2DM compared with human eyes. Male Sprague-Dawley rats were fed a high-fat diet (45% fat) or normal diet, and rats fed the high-fat diet were injected with streptozotocin intraperitoneally to generate a model of T2DM. Cataract formation and corneal endothelial cell density were assessed using microscopic analysis. Diabetes-related rat aqueous humor alterations were assessed using metabolomics screening. Transmission electron microscopy was used to assess qualitative ultrastructural changes ciliary process microvessels at the site of aqueous formation in the eyes of diabetic rats and humans. Eyes from the diabetic rats demonstrated cataracts, lower corneal endothelial cell densities, altered aqueous metabolites, and ciliary body ultrastructural changes, including vascular endothelial cell activation, pericyte degeneration, perivascular edema, and basement membrane reduplication. These findings recapitulated diabetic changes in human eyes. These results support the use of this model for studying ocular manifestations of T2DM and support a hypothesis postulating blood-aqueous barrier breakdown and vascular leakage at the ciliary body as a mechanism for diabetic anterior segment pathology.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas Sprague-Dawley , Animales , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Ratas , Humanos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Segmento Anterior del Ojo/patología , Humor Acuoso/metabolismo , Catarata/patología , Catarata/metabolismo , Cristalino/patología , Cristalino/metabolismo , Cristalino/ultraestructura , Cuerpo Ciliar/patología , Cuerpo Ciliar/metabolismo , Dieta Alta en Grasa/efectos adversos
8.
Mol Cell Proteomics ; 22(1): 100453, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36470534

RESUMEN

The eye lens is responsible for focusing and transmitting light to the retina. The lens does this in the absence of organelles, yet maintains transparency for at least 5 decades before onset of age-related nuclear cataract (ARNC). It is hypothesized that oxidative stress contributes significantly to ARNC formation. It is in addition hypothesized that transparency is maintained by a microcirculation system that delivers antioxidants to the lens nucleus and exports small molecule waste. Common data-dependent acquisition methods are hindered by dynamic range of lens protein expression and provide limited context to age-related changes in the lens. In this study, we utilized data-independent acquisition mass spectrometry to analyze the urea-insoluble membrane protein fractions of 16 human lenses subdivided into three spatially distinct lens regions to characterize age-related changes, particularly concerning the lens microcirculation system and oxidative stress response. In this pilot cohort, we measured 4788 distinct protein groups, 46,681 peptides, and 7592 deamidated sequences, more than in any previous human lens data-dependent acquisition approach. Principally, we demonstrate that a significant proteome remodeling event occurs at approximately 50 years of age, resulting in metabolic preference for anaerobic glycolysis established with organelle degradation, decreased abundance of protein networks involved in calcium-dependent cell-cell contacts while retaining networks related to oxidative stress response. Furthermore, we identified multiple antioxidant transporter proteins not previously detected in the human lens and describe their spatiotemporal and age-related abundance changes. Finally, we demonstrate that aquaporin-5, among other proteins, is modified with age by post-translational modifications including deamidation and truncation. We suggest that the continued accumulation of each of these age-related outcomes in proteome remodeling contribute to decreased fiber cell permeability and result in ARNC formation.


Asunto(s)
Catarata , Cristalino , Humanos , Proteoma/metabolismo , Cristalino/química , Cristalino/metabolismo , Catarata/metabolismo , Antioxidantes/metabolismo
9.
Biochem J ; 481(1): 17-32, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38032258

RESUMEN

Aquaporin-0 (AQP0) is the main water channel in the mammalian lens and is involved in accommodation and maintaining lens transparency. AQP0 binds the Ca2+-sensing protein calmodulin (CaM) and this interaction is believed to gate its water permeability by closing the water-conducting pore. Here, we express recombinant and functional human AQP0 in Pichia pastoris and investigate how phosphorylation affects the interaction with CaM in vitro as well as the CaM-dependent water permeability of AQP0 in proteoliposomes. Using microscale thermophoresis and surface plasmon resonance technology we show that the introduction of the single phospho-mimicking mutations S229D and S235D in AQP0 reduces CaM binding. In contrast, CaM interacts with S231D with similar affinity as wild type, but in a different manner. Permeability studies of wild-type AQP0 showed that the water conductance was significantly reduced by CaM in a Ca2+-dependent manner, whereas AQP0 S229D, S231D and S235D were all locked in an open state, insensitive to CaM. We propose a model in which phosphorylation of AQP0 control CaM-mediated gating in two different ways (1) phosphorylation of S229 or S235 abolishes binding (the pore remains open) and (2) phosphorylation of S231 results in CaM binding without causing pore closure, the functional role of which remains to be elucidated. Our results suggest that site-dependent phosphorylation of AQP0 dynamically controls its CaM-mediated gating. Since the level of phosphorylation increases towards the lens inner cortex, AQP0 may become insensitive to CaM-dependent gating along this axis.


Asunto(s)
Acuaporinas , Calmodulina , Animales , Humanos , Acuaporinas/genética , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Cristalino/metabolismo , Mamíferos/metabolismo , Fosforilación , Agua/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(48): e2212051119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417439

RESUMEN

Crystallins comprise the protein-rich tissue of the eye lens. Of the three most common vertebrate subtypes, ß-crystallins exhibit the widest degree of polydispersity due to their complex multimerization properties in situ. While polydispersity enables precise packing densities across the concentration gradient of the lens for vision, it is unclear why there is such a high degree of structural complexity within the ß-crystallin subtype and what the role of this feature is in the lens. To investigate this, we first characterized ß-crystallin polydispersity and then established a method to dynamically disrupt it in a process that is dependent on isoform composition and the presence of divalent cationic salts (CaCl2 or MgCl2). We used size-exclusion chromatography together with dynamic light scattering and mass spectrometry to show how high concentrations of divalent cations dissociate ß-crystallin oligomers, reduce polydispersity, and shift the overall protein surface charge-properties that can be reversed when salts are removed. While the direct, physiological relevance of these divalent cations in the lens is still under investigation, our results support that specific isoforms of ß-crystallin modulate polydispersity through multiple chemical equilibria and that this native state is disrupted by cation binding. This dynamic process may be essential to facilitating the molecular packing and optical function of the lens.


Asunto(s)
Cristalino , beta-Cristalinas , Cationes Bivalentes , Calcio , Sales (Química) , Calcio de la Dieta
11.
Differentiation ; 138: 100792, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935992

RESUMEN

The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm and is regulated by transcription factor Pax6 and secreted BMP4. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2, a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.


Asunto(s)
Matriz Extracelular , Regulación del Desarrollo de la Expresión Génica , Cristalino , Factor de Transcripción PAX6 , Animales , Matriz Extracelular/metabolismo , Ratones , Cristalino/metabolismo , Cristalino/crecimiento & desarrollo , Cristalino/citología , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción PAX6/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/genética , Embrión de Pollo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Pollos/genética , Ojo/metabolismo , Ojo/crecimiento & desarrollo , Ojo/embriología
12.
Am J Physiol Cell Physiol ; 326(2): C414-C428, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145302

RESUMEN

The human lens is an avascular organ, and its transparency is dependent on gap junction (GJ)-mediated microcirculation. Lens GJs are composed of three connexins with Cx46 and Cx50 being expressed in lens fiber cells and Cx43 and Cx50 in the epithelial cells. Impairment of GJ communication by either Cx46 or Cx50 mutations has been shown to be one of the main molecular mechanisms of congenital cataracts in mutant carrier families. The docking compatibility and formation of functional heterotypic GJs for human lens connexins have not been studied. Previous study on rodent lens connexins revealed that Cx46 can form functional heterotypic GJs with Cx50 and Cx43, but Cx50 cannot form heterotypic GJ with Cx43 due to its second extracellular (EL2) domain. To study human lens connexin docking and formation of functional heterotypic GJs, we developed a genetically engineered HEK293 cell line with endogenously expressed Cx43 and Cx45 ablated. The human lens connexins showed docking compatibility identical to those found in the rodent connexins. To reveal the structural mechanisms of the docking incompatibility between Cx50 and Cx43, we designed eight variants based on the differences between the EL2 of Cx50 and Cx46. We found that Cx50I177L is sufficient to establish heterotypic docking with Cx43 with some interesting gating properties. Our structure models indicate this residue is important for interdomain interactions within a single connexin, Cx50 I177L showed an increased interdomain interaction which might alter the docking interface structure to be compatible with Cx43.NEW & NOTEWORTHY The human lens is an avascular organ, and its transparency is partially dependent on gap junction (GJ) network composed of Cx46, Cx50, and Cx43. We found that human Cx46 can dock and form functional heterotypic GJs with Cx50 and Cx43, but Cx50 is unable to form functional heterotypic GJs with Cx43. Through mutagenesis and patch-clamp study of several designed variants, we found that Cx50 I177L was sufficient to form functional heterotypic GJs with Cx43.


Asunto(s)
Conexina 43 , Cristalino , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Células HEK293 , Uniones Comunicantes/metabolismo , Conexinas/genética , Conexinas/metabolismo , Canales Iónicos/metabolismo , Cristalino/metabolismo
13.
Dev Biol ; 504: 25-37, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37722500

RESUMEN

A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.


Asunto(s)
Epigénesis Genética , Cristalino , Multiómica , Regulación de la Expresión Génica , Diferenciación Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/metabolismo , Cristalino/metabolismo
14.
J Biol Chem ; 299(8): 104953, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356717

RESUMEN

Crystallin proteins are a class of main structural proteins of the vertebrate eye lens, and their solubility and stability directly determine transparency and refractive power of the lens. Mutation in genes that encode these crystallin proteins is the most common cause for congenital cataracts. Despite extensive studies, the pathogenic and molecular mechanisms that effect congenital cataracts remain unclear. In this study, we identified a novel mutation in CRYBB1 from a congenital cataract family, and demonstrated that this mutation led to an early termination of mRNA translation, resulting in a 49-residue C-terminally truncated CRYßB1 protein. We show this mutant is susceptible to proteolysis, which allowed us to determine a 1.2-Å resolution crystal structure of CRYßB1 without the entire C-terminal domain. In this crystal lattice, we observed that two N-terminal domain monomers form a dimer that structurally resembles the WT monomer, but with different surface characteristics. Biochemical analyses and cell-based data also suggested that this mutant is significantly more liable to aggregate and degrade compared to WT CRYßB1. Taken together, our results provide an insight into the mechanism regarding how a mutant crystalin contributes to the development of congenital cataract possibly through alteration of inter-protein interactions that result in protein aggregation.


Asunto(s)
Catarata , Cristalinas , Cristalino , Humanos , Catarata/metabolismo , Cristalinas/genética , Cristalino/metabolismo , Mutación , Agregado de Proteínas
15.
J Biol Chem ; 299(3): 102965, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736424

RESUMEN

Connexin (Cx)-forming channels play essential roles in maintaining lens homeostasis and transparency. We showed here channel-independent roles of Cx50 in cell-cell adhesion and confirmed the second extracellular (E2) domain as a critical domain for cell adhesion function. We found that cell adhesion decreased in cells expressing chimeric Cx50 in which the E2 domain was swapped with the E2 domain of either Cx43 or Cx46. In contrast, adhesion increased in cells expressing chimeric Cx43 and Cx46 with the Cx50 (E2) domain. This function is Cx channel-independent and Cx50 E2 domain-dependent cell adhesion acting in both homotypic and heterotypic manners. In addition, we generated eight site mutations of unique residues between Cx50 and the other two lens Cxs and found that mutation of any one of the residues abolished the adhesive function. Moreover, expression of adhesive-impaired mutants decreased adhesion-related proteins, N-cadherin and ß-catenin. Expression of the adhesion-impaired Cx50W188P mutant in embryonic chick lens caused enlarged extracellular spaces, distorted fiber organization, delayed nuclear condensation, and cortical cataracts. In summary, the results from both in vitro and in vivo studies demonstrate the importance of the adhesive function of Cx50 in the lens.


Asunto(s)
Adhesión Celular , Conexinas , Cristalino , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular , Conexinas/metabolismo , Proteínas del Ojo/metabolismo , Uniones Comunicantes/metabolismo , Cristalino/metabolismo , Cadherinas/metabolismo
16.
J Biol Chem ; 299(8): 104935, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37331601

RESUMEN

Connexin mutant mice develop cataracts containing calcium precipitates. To test whether pathologic mineralization is a general mechanism contributing to the disease, we characterized the lenses from a nonconnexin mutant mouse cataract model. By cosegregation of the phenotype with a satellite marker and genomic sequencing, we identified the mutant as a 5-bp duplication in the γC-crystallin gene (Crygcdup). Homozygous mice developed severe cataracts early, and heterozygous animals developed small cataracts later in life. Immunoblotting studies showed that the mutant lenses contained decreased levels of crystallins, connexin46, and connexin50 but increased levels of resident proteins of the nucleus, endoplasmic reticulum, and mitochondria. The reductions in fiber cell connexins were associated with a scarcity of gap junction punctae as detected by immunofluorescence and significant reductions in gap junction-mediated coupling between fiber cells in Crygcdup lenses. Particles that stained with the calcium deposit dye, Alizarin red, were abundant in the insoluble fraction from homozygous lenses but nearly absent in wild-type and heterozygous lens preparations. Whole-mount homozygous lenses were stained with Alizarin red in the cataract region. Mineralized material with a regional distribution similar to the cataract was detected in homozygous lenses (but not wild-type lenses) by micro-computed tomography. Attenuated total internal reflection Fourier-transform infrared microspectroscopy identified the mineral as apatite. These results are consistent with previous findings that loss of lens fiber cell gap junctional coupling leads to the formation of calcium precipitates. They also support the hypothesis that pathologic mineralization contributes to the formation of cataracts of different etiologies.


Asunto(s)
Catarata , Cristalinas , Minerales , Animales , Ratones , Calcio/metabolismo , Catarata/genética , Catarata/fisiopatología , Conexinas/genética , Conexinas/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Cristalino/patología , Minerales/metabolismo , Microtomografía por Rayos X , Modelos Animales de Enfermedad
17.
J Cell Physiol ; 239(5): e31211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38304971

RESUMEN

Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.


Asunto(s)
Calcinosis , Catarata , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Glucosa , Hiperglucemia , Factor 1 Inducible por Hipoxia , Cristalino , Humanos , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/genética , Calcinosis/etiología , Calcinosis/metabolismo , Calcinosis/patología , Catarata/etiología , Catarata/metabolismo , Catarata/patología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Glucosa/metabolismo , Hiperglucemia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Cristalino/metabolismo , Cristalino/patología , Osteocalcina/metabolismo , Osteocalcina/genética , Transducción de Señal , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo
18.
Mol Vis ; 30: 37-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586607

RESUMEN

Purpose: Congenital cataract affects 1-15 per 10,000 newborns worldwide, and 20,000-40,000 children are born every year with developmental bilateral cataracts. Mutations in the crystallin genes are known to cause congenital cataracts. Crystallins, proteins present in the eye lens, are made up of four Greek key motifs separated into two domains. Greek key motifs play an important role in compact folding to provide the necessary refractive index and transparency. The present study was designed to understand the importance of the fourth Greek key motif in maintaining lens transparency by choosing a naturally reported Y134X mutant human γD- crystallin in a Danish infant and its relationship to lens opacification and cataract. Methods: Human γD-crystallin complementary DNA (cDNA) was cloned into the pET-21a vector, and the Y134X mutant clone was generated by site-directed mutagenesis. Wild-type and mutant proteins were overexpressed in the BL21 DE3 pLysS cells of E. coli. Wild-type protein was purified from the soluble fraction using the ion exchange and gel filtration chromatography methods. Mutant protein was predominantly found in insoluble fraction and purified from inclusion bodies. The structure, stability, aggregational, and amyloid fibril formation properties of the mutant were compared to those of the wild type using the fluorescence and circular dichroism spectroscopy methods. Results: Loss of the fourth Greek key motif in human γD-crystallin affects the backbone conformation, alters the tryptophan micro-environment, and exposes a nonpolar hydrophobic core to the surface. Mutant is less stable and opens its Greek key motifs earlier with a concentration midpoint (CM) of unfolding curve of 1.5 M compared to the wild type human γD-crystallin (CM: 2.5 M). Mutant is capable of forming self-aggregates immediately in response to heating at 48.6 °C. Conclusions: Loss of 39 amino acids in the fourth Greek key motif of human γD-crystallin affects the secondary and tertiary structures and exposes the hydrophobic residues to the solvent. These changes make the molecule less stable, resulting in the formation of light-scattering particles, which explains the importance of the fourth Greek key in the underlying mechanism of opacification and cataract.


Asunto(s)
Catarata , Cristalino , gamma-Cristalinas , Recién Nacido , Niño , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , gamma-Cristalinas/química , Cristalino/metabolismo , Catarata/genética , Catarata/metabolismo , Mutación , Mutagénesis Sitio-Dirigida
19.
Exp Eye Res ; 241: 109858, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467176

RESUMEN

The eye lens is responsible for focusing objects at various distances onto the retina and its refractive power is determined by its surface curvature as well as its internal gradient refractive index (GRIN). The lens continues to grow with age resulting in changes to the shape and to the GRIN profile. The present study aims to investigate how the ageing process may influence lens optical development. Murine lenses of accelerated senescence-prone strain (SAMP8) aged from 4 to 50 weeks; senescence-resistant strain (SAMR1) aged from 5 to 52 weeks as well as AKR strain (served as control) aged from 6 to 70 weeks were measured using the X-ray interferometer at the SPring-8 synchrotron Japan within three consecutive years from 2020 to 2022. Three dimensional distributions of the lens GRIN were reconstructed using the measured data and the lens shapes were determined using image segmentation in MatLab. Variations in the parameters describing the lens shape and the GRIN profile with age were compared amongst three mouse strains. With advancing age, both the lens anterior and posterior surface flattens and the lens sagittal thickness increase in all three mouse strains (Anterior radius of curvature increase at 0.008 mm/week, 0.007 mm/week and 0.002 mm/week while posterior radius of curvature increase at 0.002 mm/week, 0.007 mm/week and 0.003 mm/week respectively in AKR, SAMP8 and SAMR1 lenses). Compared with the AKR strain, the SAMP8 samples demonstrate a higher rate of increase in the posterior curvature radius (0.007 mm/week) and the thickness (0.015 mm/week), whilst the SAMR1 samples show slower increases in the anterior curvature radius (0.002 mm/week) and its thickness (0.013 mm/week). There are similar age-related trends in GRIN shape in the radial direction (in all three types of murine lenses nr2 and nr6 increase with age while nr4 decrease with age consistently) but not in the axial direction amongst three mouse strains (nz1 of AKR lens decrease while of SAMP8 and SAMR1 increase with age; nz2 of all three models increase with age; nz3 of AKR lens increase while of SAMP8 and SAMR1 decrease with age). The ageing process can influence the speed of lens shape change and affect the GRIN profile mainly in the axial direction, contributing to an accelerated decline rate of the optical power in the senescence-prone strain (3.5 D/week compared to 2.3 D/week in the AKR control model) but a retardatory decrease in the senescence-resistant strain (2.1 D/week compared to the 2.3D/week in the AKR control model).


Asunto(s)
Envejecimiento , Cristalino , Ratones , Animales , Japón
20.
Exp Eye Res ; 243: 109908, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657787

RESUMEN

Zebrafish are an outstanding model for assessing the involvement of genes in paediatric cataracts. Gene discovery for cataracts is enhanced by manipulation of the genome of zebrafish embryos and comparing the phenotypes of mutant progeny with the wildtype embryos. However, wildtype laboratory fish can also develop cataracts, potentially confounding the results. In this study, we compared the baseline cataract rate between two commonly used wildtype laboratory strains, AB and TL, and also an outbred transgenic line with mCherry reporter. We assessed a total of 805 lens images of fish at 4 days post-fertilisation for cataracts and scored each cataract observed as mild, moderate or severe. We found that the AB strain had a cataract rate of 16.2%, TL had 8.9%, and mCherry had 0.7% and these rates were significantly different. We found that TL strain had a lower rate of mild cataracts than AB fish, however, the rate of moderate and severe phenotypes in the AB and the TL strain was similar. Overall, we showed that the baseline cataract rate varies significantly between the strains housed in a single facility and conclude that baseline rates of cataracts should be assessed when planning experiments to assess the genetic causes of cataracts.


Asunto(s)
Animales Modificados Genéticamente , Catarata , Modelos Animales de Enfermedad , Cristalino , Fenotipo , Pez Cebra , Animales , Pez Cebra/genética , Catarata/genética , Cristalino/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA