Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.000
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 623(7985): 132-138, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37853126

RESUMEN

Hospital-based transmission had a dominant role in Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV) epidemics1,2, but large-scale studies of its role in the SARS-CoV-2 pandemic are lacking. Such transmission risks spreading the virus to the most vulnerable individuals and can have wider-scale impacts through hospital-community interactions. Using data from acute hospitals in England, we quantify within-hospital transmission, evaluate likely pathways of spread and factors associated with heightened transmission risk, and explore the wider dynamical consequences. We estimate that between June 2020 and March 2021 between 95,000 and 167,000 inpatients acquired SARS-CoV-2 in hospitals (1% to 2% of all hospital admissions in this period). Analysis of time series data provided evidence that patients who themselves acquired SARS-CoV-2 infection in hospital were the main sources of transmission to other patients. Increased transmission to inpatients was associated with hospitals having fewer single rooms and lower heated volume per bed. Moreover, we show that reducing hospital transmission could substantially enhance the efficiency of punctuated lockdown measures in suppressing community transmission. These findings reveal the previously unrecognized scale of hospital transmission, have direct implications for targeting of hospital control measures and highlight the need to design hospitals better equipped to limit the transmission of future high-consequence pathogens.


Asunto(s)
COVID-19 , Infección Hospitalaria , Transmisión de Enfermedad Infecciosa , Pacientes Internos , Pandemias , Humanos , Control de Enfermedades Transmisibles , COVID-19/epidemiología , COVID-19/transmisión , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Infección Hospitalaria/transmisión , Transmisión de Enfermedad Infecciosa/prevención & control , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Inglaterra/epidemiología , Hospitales , Pandemias/prevención & control , Pandemias/estadística & datos numéricos , Cuarentena/estadística & datos numéricos , SARS-CoV-2
2.
Mol Cell ; 81(11): 2261-2265, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34087174

RESUMEN

COVID-19 altered our lives and pushed scientific research to operate at breakneck speed, leading to significant breakthroughs in record time. We asked experts in the field about the challenges they faced in transitioning, rapidly but safely, to working on the virus while navigating the shutdown. Their voices converge on the importance of teamwork, forging new collaborations, and working toward a shared goal.


Asunto(s)
Investigación Biomédica , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias , Cuarentena , SARS-CoV-2 , Humanos , Poesía como Asunto
5.
Nature ; 601(7893): 380-387, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35046607

RESUMEN

Nitrogen dioxide (NO2) is an important contributor to air pollution and can adversely affect human health1-9. A decrease in NO2 concentrations has been reported as a result of lockdown measures to reduce the spread of COVID-1910-20. Questions remain, however, regarding the relationship of satellite-derived atmospheric column NO2 data with health-relevant ambient ground-level concentrations, and the representativeness of limited ground-based monitoring data for global assessment. Here we derive spatially resolved, global ground-level NO2 concentrations from NO2 column densities observed by the TROPOMI satellite instrument at sufficiently fine resolution (approximately one kilometre) to allow assessment of individual cities during COVID-19 lockdowns in 2020 compared to 2019. We apply these estimates to quantify NO2 changes in more than 200 cities, including 65 cities without available ground monitoring, largely in lower-income regions. Mean country-level population-weighted NO2 concentrations are 29% ± 3% lower in countries with strict lockdown conditions than in those without. Relative to long-term trends, NO2 decreases during COVID-19 lockdowns exceed recent Ozone Monitoring Instrument (OMI)-derived year-to-year decreases from emission controls, comparable to 15 ± 4 years of reductions globally. Our case studies indicate that the sensitivity of NO2 to lockdowns varies by country and emissions sector, demonstrating the critical need for spatially resolved observational information provided by these satellite-derived surface concentration estimates.


Asunto(s)
Atmósfera/química , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles/estadística & datos numéricos , Indicadores Ambientales , Dióxido de Nitrógeno/análisis , Altitud , Humanos , Ozono/análisis , Cuarentena/estadística & datos numéricos , Imágenes Satelitales , Factores de Tiempo
6.
Nature ; 607(7919): 512-520, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794485

RESUMEN

Social-evaluative stressors-experiences in which people feel they could be judged negatively-pose a major threat to adolescent mental health1-3 and can cause young people to disengage from stressful pursuits, resulting in missed opportunities to acquire valuable skills. Here we show that replicable benefits for the stress responses of adolescents can be achieved with a short (around 30-min), scalable 'synergistic mindsets' intervention. This intervention, which is a self-administered online training module, synergistically targets both growth mindsets4 (the idea that intelligence can be developed) and stress-can-be-enhancing mindsets5 (the idea that one's physiological stress response can fuel optimal performance). In six double-blind, randomized, controlled experiments that were conducted with secondary and post-secondary students in the United States, the synergistic mindsets intervention improved stress-related cognitions (study 1, n = 2,717; study 2, n = 755), cardiovascular reactivity (study 3, n = 160; study 4, n = 200), daily cortisol levels (study 5, n = 118 students, n = 1,213 observations), psychological well-being (studies 4 and 5), academic success (study 5) and anxiety symptoms during the 2020 COVID-19 lockdowns (study 6, n = 341). Heterogeneity analyses (studies 3, 5 and 6) and a four-cell experiment (study 4) showed that the benefits of the intervention depended on addressing both mindsets-growth and stress-synergistically. Confidence in these conclusions comes from a conservative, Bayesian machine-learning statistical method for detecting heterogeneous effects6. Thus, our research has identified a treatment for adolescent stress that could, in principle, be scaled nationally at low cost.


Asunto(s)
Intervención basada en la Internet , Psicología del Adolescente , Estrés Psicológico , Éxito Académico , Adolescente , Ansiedad/prevención & control , Teorema de Bayes , COVID-19 , Fenómenos Fisiológicos Cardiovasculares , Cognición , Método Doble Ciego , Humanos , Hidrocortisona/análisis , Aprendizaje Automático , Salud Mental , Cuarentena/psicología , Autoadministración , Estrés Psicológico/prevención & control , Estrés Psicológico/psicología , Estrés Psicológico/terapia , Estudiantes/psicología , Estados Unidos
7.
Nature ; 610(7930): 154-160, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35952712

RESUMEN

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , COVID-19/virología , Ciudades/epidemiología , Trazado de Contacto , Inglaterra/epidemiología , Genoma Viral/genética , Humanos , Cuarentena/legislación & jurisprudencia , SARS-CoV-2/genética , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/aislamiento & purificación , Viaje/legislación & jurisprudencia
8.
9.
Nature ; 600(7889): 506-511, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34649268

RESUMEN

The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Genoma Viral/genética , Genómica , SARS-CoV-2/genética , Sustitución de Aminoácidos , COVID-19/transmisión , Inglaterra/epidemiología , Monitoreo Epidemiológico , Humanos , Epidemiología Molecular , Mutación , Cuarentena/estadística & datos numéricos , SARS-CoV-2/clasificación , Análisis Espacio-Temporal , Glicoproteína de la Espiga del Coronavirus/genética
10.
Nature ; 594(7863): 408-412, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33979832

RESUMEN

The COVID-19 pandemic has seen the emergence of digital contact tracing to help to prevent the spread of the disease. A mobile phone app records proximity events between app users, and when a user tests positive for COVID-19, their recent contacts can be notified instantly. Theoretical evidence has supported this new public health intervention1-6, but its epidemiological impact has remained uncertain7. Here we investigate the impact of the National Health Service (NHS) COVID-19 app for England and Wales, from its launch on 24 September 2020 to the end of December 2020. It was used regularly by approximately 16.5 million users (28% of the total population), and sent approximately 1.7 million exposure notifications: 4.2 per index case consenting to contact tracing. We estimated that the fraction of individuals notified by the app who subsequently showed symptoms and tested positive (the secondary attack rate (SAR)) was 6%, similar to the SAR for manually traced close contacts. We estimated the number of cases averted by the app using two complementary approaches: modelling based on the notifications and SAR gave an estimate of 284,000 (central 95% range of sensitivity analyses 108,000-450,000), and statistical comparison of matched neighbouring local authorities gave an estimate of 594,000 (95% confidence interval 317,000-914,000). Approximately one case was averted for each case consenting to notification of their contacts. We estimated that for every percentage point increase in app uptake, the number of cases could be reduced by 0.8% (using modelling) or 2.3% (using statistical analysis). These findings support the continued development and deployment of such apps in populations that are awaiting full protection from vaccines.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Trazado de Contacto/instrumentación , Trazado de Contacto/métodos , Aplicaciones Móviles/estadística & datos numéricos , Número Básico de Reproducción , COVID-19/mortalidad , COVID-19/transmisión , Inglaterra/epidemiología , Humanos , Mortalidad , Programas Nacionales de Salud , Cuarentena , Gales/epidemiología
11.
Trends Biochem Sci ; 47(6): 518-530, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35361526

RESUMEN

Protein kinase C (PKC) isozymes are maintained in a 'ready-to-go' but 'safe' autoinhibited conformation until second messenger binding unleashes an autoinhibitory pseudosubstrate to allow substrate phosphorylation. However, to gain this 'ready-to-go' conformation, PKC must be processed by a series of complex priming phosphorylations, the mechanism of which was enigmatic until now. Recent findings snapped the pieces of the phosphorylation puzzle into place to unveil a process that involves a newly described motif (TOR interaction motif, TIM), a well-described kinase [mechanistic target of rapamycin complex 2 (mTORC2)], and an often-used mechanism (autophosphorylation) to prime PKC to signal. This review highlights new insights into how phosphorylation controls PKC and discusses them in the context of common mechanisms for AGC kinase regulation by phosphorylation and autophosphorylation.


Asunto(s)
Proteína Quinasa C , Cuarentena , Isoenzimas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo
12.
Nature ; 585(7825): 410-413, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32365354

RESUMEN

On 11 March 2020, the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) a pandemic1. The strategies based on non-pharmaceutical interventions that were used to contain the outbreak in China appear to be effective2, but quantitative research is still needed to assess the efficacy of non-pharmaceutical interventions and their timings3. Here, using epidemiological data on COVID-19 and anonymized data on human movement4,5, we develop a modelling framework that uses daily travel networks to simulate different outbreak and intervention scenarios across China. We estimate that there were a total of 114,325 cases of COVID-19 (interquartile range 76,776-164,576) in mainland China as of 29 February 2020. Without non-pharmaceutical interventions, we predict that the number of cases would have been 67-fold higher (interquartile range 44-94-fold) by 29 February 2020, and we find that the effectiveness of different interventions varied. We estimate that early detection and isolation of cases prevented more infections than did travel restrictions and contact reductions, but that a combination of non-pharmaceutical interventions achieved the strongest and most rapid effect. According to our model, the lifting of travel restrictions from 17 February 2020 does not lead to an increase in cases across China if social distancing interventions can be maintained, even at a limited level of an on average 25% reduction in contact between individuals that continues until late April. These findings improve our understanding of the effects of non-pharmaceutical interventions on COVID-19, and will inform response efforts across the world.


Asunto(s)
Trazado de Contacto/métodos , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Desinfección de las Manos/métodos , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Cuarentena/métodos , Aislamiento Social , Viaje/legislación & jurisprudencia , COVID-19 , China/epidemiología , Infecciones por Coronavirus/transmisión , Humanos , Neumonía Viral/transmisión , Medición de Riesgo , Factores de Tiempo
13.
Nature ; 584(7820): 262-267, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32512578

RESUMEN

Governments around the world are responding to the coronavirus disease 2019 (COVID-19) pandemic1, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with unprecedented policies designed to slow the growth rate of infections. Many policies, such as closing schools and restricting populations to their homes, impose large and visible costs on society; however, their benefits cannot be directly observed and are currently understood only through process-based simulations2-4. Here we compile data on 1,700 local, regional and national non-pharmaceutical interventions that were deployed in the ongoing pandemic across localities in China, South Korea, Italy, Iran, France and the United States. We then apply reduced-form econometric methods, commonly used to measure the effect of policies on economic growth5,6, to empirically evaluate the effect that these anti-contagion policies have had on the growth rate of infections. In the absence of policy actions, we estimate that early infections of COVID-19 exhibit exponential growth rates of approximately 38% per day. We find that anti-contagion policies have significantly and substantially slowed this growth. Some policies have different effects on different populations, but we obtain consistent evidence that the policy packages that were deployed to reduce the rate of transmission achieved large, beneficial and measurable health outcomes. We estimate that across these 6 countries, interventions prevented or delayed on the order of 61 million confirmed cases, corresponding to averting approximately 495 million total infections. These findings may help to inform decisions regarding whether or when these policies should be deployed, intensified or lifted, and they can support policy-making in the more than 180 other countries in which COVID-19 has been reported7.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Cuarentena/métodos , Número Básico de Reproducción , COVID-19 , China/epidemiología , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/transmisión , Francia/epidemiología , Humanos , Irán/epidemiología , Italia/epidemiología , Neumonía Viral/mortalidad , Neumonía Viral/transmisión , República de Corea/epidemiología , Instituciones Académicas/organización & administración , Aislamiento Social , Estados Unidos/epidemiología
14.
Proc Natl Acad Sci U S A ; 120(2): e2208111120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36608294

RESUMEN

We examine how policymakers react to a pandemic with uncertainty around key epidemiological and economic policy parameters by embedding a macroeconomic SIR model in a robust control framework. Uncertainty about disease virulence and severity leads to stricter and more persistent quarantines, while uncertainty about the economic costs of mitigation leads to less stringent quarantines. On net, an uncertainty-averse planner adopts stronger mitigation measures. Intuitively, the cost of underestimating the pandemic is out-of-control growth and permanent loss of life, while the cost of underestimating the economic consequences of quarantine is more transitory.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Incertidumbre , Cuarentena , Pandemias/prevención & control
15.
Proc Natl Acad Sci U S A ; 119(34): e2200652119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969766

RESUMEN

Although testing, contact tracing, and case isolation programs can mitigate COVID-19 transmission and allow the relaxation of social distancing measures, few countries worldwide have succeeded in scaling such efforts to levels that suppress spread. The efficacy of test-trace-isolate likely depends on the speed and extent of follow-up and the prevalence of SARS-CoV-2 in the community. Here, we use a granular model of COVID-19 transmission to estimate the public health impacts of test-trace-isolate programs across a range of programmatic and epidemiological scenarios, based on testing and contact tracing data collected on a university campus and surrounding community in Austin, TX, between October 1, 2020, and January 1, 2021. The median time between specimen collection from a symptomatic case and quarantine of a traced contact was 2 days (interquartile range [IQR]: 2 to 3) on campus and 5 days (IQR: 3 to 8) in the community. Assuming a reproduction number of 1.2, we found that detection of 40% of all symptomatic cases followed by isolation is expected to avert 39% (IQR: 30% to 45%) of COVID-19 cases. Contact tracing is expected to increase the cases averted to 53% (IQR: 42% to 58%) or 40% (32% to 47%), assuming the 2- and 5-day delays estimated on campus and in the community, respectively. In a tracing-accelerated scenario, in which 75% of contacts are notified the day after specimen collection, cases averted increase to 68% (IQR: 55% to 72%). An accelerated contact tracing program leveraging rapid testing and electronic reporting of test results can significantly curtail local COVID-19 transmission.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Trazado de Contacto , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Prueba de COVID-19/normas , Prueba de COVID-19/estadística & datos numéricos , Trazado de Contacto/estadística & datos numéricos , Humanos , Cuarentena , SARS-CoV-2 , Texas/epidemiología
16.
Brain Behav Immun ; 119: 275-285, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599498

RESUMEN

The long-term mental health consequences of COVID-19 in children and adolescents remain unclear. We investigated the impact of COVID-19 infection on mental health after China's zero-COVID policy relaxation, focusing on symptom-specific and social-family risk factors for mental health issues in children and adolescents. In a longitudinal study, 8348 youths (aged 10-18) were assessed twice (T1: September to October 2022 and T2: April to May 2023). Mental health changes (Δ=T1-T2) were compared between COVID-19-infected (COVID+, n = 4108) and non-infected (COVID-, n = 4240). After balancing social-family confounding factors at T1 with propensity score-based inverse probability weights, multivariable logistic regression was employed to assess associations between COVID-19 infection and the onset/worsening of mental health symptoms. Multivariable logistic regression was conducted to explore specific acute COVID-19 symptoms and social-family risk factors associated with the onset/worsening of mental health symptoms in COVID + group. Compared to COVID- group, COVID + group exhibited lower overall mental health improvement (Δ). COVID + group was associated with increased risks of depression worsening (OR 1.20, 95 % CI 1.04-1.39), anxiety worsening (OR 1.30, 95 % CI 1.15-1.47), stress worsening (OR 1.23, 95 % CI 1.03-1.46), insomnia worsening (OR 1.21, 95 % CI 1.05-1.39), and emotional symptoms worsening (OR 1.72, 95 % CI 1.27-2.33). Moderate-to-severe difficulty thinking, breathlessness, and gastrointestinal symptoms were specific COVID-19 symptoms associated with worsening of various mental health outcomes. Furthermore, academic difficulties, economic disadvantages, family conflicts, food addiction, and alcohol consumption were identified as social-family risk factors for worsening mental health symptoms in COVID + youths. COVID-19 infection leaves lasting mental health scars in youths, extending beyond the acute phase. Specific symptoms, particularly cognitive dysfunction and respiratory/gastrointestinal distress play a significant role in this vulnerability. Social-family factors further modulate these effects, highlighting the need for comprehensive interventions that address both biological and psychosocial aspects. This study provides valuable insights for tailoring mental health support to youths navigating the consequences of the COVID-19 pandemic.


Asunto(s)
Ansiedad , COVID-19 , Depresión , Salud Mental , SARS-CoV-2 , Humanos , COVID-19/psicología , COVID-19/epidemiología , Adolescente , Masculino , Femenino , Estudios Longitudinales , Niño , China/epidemiología , Ansiedad/epidemiología , Ansiedad/psicología , Depresión/epidemiología , Depresión/psicología , Factores de Riesgo , Cuarentena/psicología
17.
PLoS Comput Biol ; 19(12): e1011187, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38100528

RESUMEN

Quarantine has been long used as a public health response to emerging infectious diseases, particularly at the onset of an epidemic when the infected proportion of a population remains identifiable and logistically tractable. In theory, the same logic should apply to low-incidence infections; however, the application and impact of quarantine in low prevalence settings appears less common and lacks a formal analysis. Here, we present a quantitative framework using a series of progressively more biologically realistic models of canine rabies in domestic dogs and from dogs to humans, a suitable example system to characterize dynamical changes under varying levels of dog quarantine. We explicitly incorporate health-seeking behaviour data to inform the modelling of contact-tracing and exclusion of rabies suspect and probable dogs that can be identified through bite-histories of patients presenting at anti-rabies clinics. We find that a temporary quarantine of rabies suspect and probable dogs provides a powerful tool to curtail rabies transmission, especially in settings where optimal vaccination coverage is yet to be achieved, providing a critical stopgap to reduce the number of human and animal deaths due to rabid bites. We conclude that whilst comprehensive measures including sensitive surveillance and large-scale vaccination of dogs will be required to achieve disease elimination and sustained freedom given the persistent risk of rabies re-introductions, quarantine offers a low-cost community driven solution to intersectoral health burden.


Asunto(s)
Enfermedades de los Perros , Rabia , Humanos , Animales , Perros , Rabia/epidemiología , Rabia/prevención & control , Rabia/veterinaria , Cuarentena , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/prevención & control , Erradicación de la Enfermedad , Salud Pública
18.
PLoS Comput Biol ; 19(10): e1011535, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37851640

RESUMEN

During the COVID-19 pandemic, control measures, especially massive contact tracing following prompt quarantine and isolation, play an important role in mitigating the disease spread, and quantifying the dynamic contact rate and quarantine rate and estimate their impacts remain challenging. To precisely quantify the intensity of interventions, we develop the mechanism of physics-informed neural network (PINN) to propose the extended transmission-dynamics-informed neural network (TDINN) algorithm by combining scattered observational data with deep learning and epidemic models. The TDINN algorithm can not only avoid assuming the specific rate functions in advance but also make neural networks follow the rules of epidemic systems in the process of learning. We show that the proposed algorithm can fit the multi-source epidemic data in Xi'an, Guangzhou and Yangzhou cities well, and moreover reconstruct the epidemic development trend in Hainan and Xinjiang with incomplete reported data. We inferred the temporal evolution patterns of contact/quarantine rates, selected the best combination from the family of functions to accurately simulate the contact/quarantine time series learned by TDINN algorithm, and consequently reconstructed the epidemic process. The selected rate functions based on the time series inferred by deep learning have epidemiologically reasonable meanings. In addition, the proposed TDINN algorithm has also been verified by COVID-19 epidemic data with multiple waves in Liaoning province and shows good performance. We find the significant fluctuations in estimated contact/quarantine rates, and a feedback loop between the strengthening/relaxation of intervention strategies and the recurrence of the outbreaks. Moreover, the findings show that there is diversity in the shape of the temporal evolution curves of the inferred contact/quarantine rates in the considered regions, which indicates variation in the intensity of control strategies adopted in various regions.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Pandemias/prevención & control , Cuarentena , Trazado de Contacto , Redes Neurales de la Computación
19.
BMC Infect Dis ; 24(1): 309, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481147

RESUMEN

BACKGROUND: Early during the COVID-19 pandemic, it was important to better understand transmission dynamics of SARS-CoV-2, the virus that causes COVID-19. Household contacts of infected individuals are particularly at risk for infection, but delays in contact tracing, delays in testing contacts, and isolation and quarantine posed challenges to accurately capturing secondary household cases. METHODS: In this study, 346 households in the Seattle region were provided with respiratory specimen collection kits and remotely monitored using web-based surveys for respiratory illness symptoms weekly between October 1, 2020, and June 20, 2021. Symptomatic participants collected respiratory specimens at symptom onset and mailed specimens to the central laboratory in Seattle. Specimens were tested for SARS-CoV-2 using RT-PCR with whole genome sequencing attempted when positive. SARS-CoV-2-infected individuals were notified, and their household contacts submitted specimens every 2 days for 14 days. RESULTS: In total, 1371 participants collected 2029 specimens that were tested; 16 individuals (1.2%) within 6 households tested positive for SARS-CoV-2 during the study period. Full genome sequences were generated from 11 individuals within 4 households. Very little genetic variation was found among SARS-CoV-2 viruses sequenced from different individuals in the same household, supporting transmission within the household. CONCLUSIONS: This study indicates web-based surveillance of respiratory symptoms, combined with rapid and longitudinal specimen collection and remote contact tracing, provides a viable strategy to monitor households and detect household transmission of SARS-CoV-2. TRIAL REGISTRATION IDENTIFIER: NCT04141930, Date of registration 28/10/2019.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Pandemias , Cuarentena , SARS-CoV-2/genética , Washingtón/epidemiología
20.
BMC Infect Dis ; 24(1): 469, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702610

RESUMEN

South Korea's remarkable success in controlling the spread of COVID-19 during the pre-Omicron period was based on extensive contact tracing and large-scale testing. Here we suggest a general criterion for tracing and testing based on South Korea's experience, and propose a new framework to assess tracing and testing. We reviewed papers on South Korea's response to COVID-19 to capture its concept of tracing and testing. South Korea expanded its testing capabilities to enable group tracing combined with preemptive testing, and to conduct open testing. According to our proposed model, COVID-19 cases are classified into 4 types: confirmed in quarantine, source known, source unknown, and unidentified. The proportion of the first two case types among confirmed cases is defined as "traced proportion", and used as the indicator of tracing and testing effectiveness. In conclusion, South Korea successfully suppressed COVID-19 transmission by maintaining a high traced proportion (> 60%) using group tracing in conjunction with preemptive testing as a complementary strategy to traditional contact tracing.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Trazado de Contacto , SARS-CoV-2 , República de Corea/epidemiología , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Humanos , Trazado de Contacto/métodos , Prueba de COVID-19/métodos , SARS-CoV-2/aislamiento & purificación , Cuarentena
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA