Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(1): e2310288120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38154062

RESUMEN

Cytochrome c oxidase deficiency (COXD) is an inherited disorder characterized by the absence or mutation in the genes encoding for the cytochrome c oxidase protein (COX). COX deficiency results in severe muscle weakness, heart, liver, and kidney disorders, as well as brain damage in infants and adolescents, leading to death in many cases. With no cure for this disorder, finding an efficient, inexpensive, and early means of diagnosis is essential to minimize symptoms and long-term disabilities. Furthermore, muscle biopsy, the traditional detection method, is invasive, expensive, and time-consuming. This study demonstrates the applicability of scanning electrochemical microscopy to quantify COX activity in living human fibroblast cells. Taking advantage of the interaction between the redox mediator N, N, N', N'-tetramethyl-para-phenylene-diamine, and COX, the enzymatic activity was successfully quantified by monitoring current changes using a platinum microelectrode and determining the apparent heterogeneous rate constant k0 using numerical modeling. This study provides a foundation for developing a diagnostic method for detecting COXD in infants, which has the potential to increase treatment effectiveness and improve the quality of life of affected individuals.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa , Lactante , Humanos , Adolescente , Deficiencia de Citocromo-c Oxidasa/genética , Microscopía Electroquímica de Rastreo , Calidad de Vida , Complejo IV de Transporte de Electrones/metabolismo , Fibroblastos/metabolismo
2.
PLoS Genet ; 16(3): e1008604, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130224

RESUMEN

The influence of environmental insults on the onset and progression of mitochondrial diseases is unknown. To evaluate the effects of infection on mitochondrial disease we used a mouse model of Leigh Syndrome, where a missense mutation in the Taco1 gene results in the loss of the translation activator of cytochrome c oxidase subunit I (TACO1) protein. The mutation leads to an isolated complex IV deficiency that mimics the disease pathology observed in human patients with TACO1 mutations. We infected Taco1 mutant and wild-type mice with a murine cytomegalovirus and show that a common viral infection exacerbates the complex IV deficiency in a tissue-specific manner. We identified changes in neuromuscular morphology and tissue-specific regulation of the mammalian target of rapamycin pathway in response to viral infection. Taken together, we report for the first time that a common stress condition, such as viral infection, can exacerbate mitochondrial dysfunction in a genetic model of mitochondrial disease.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Infecciones por Citomegalovirus/genética , Complejo IV de Transporte de Electrones/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Muromegalovirus/patogenicidad , Animales , Deficiencia de Citocromo-c Oxidasa/virología , Infecciones por Citomegalovirus/virología , Modelos Animales de Enfermedad , Enfermedad de Leigh/genética , Enfermedad de Leigh/virología , Ratones , Ratones Endogámicos C57BL , Enfermedades Mitocondriales/virología , Mutación/genética , Serina-Treonina Quinasas TOR/genética
3.
Brain ; 144(8): 2457-2470, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-33751098

RESUMEN

Sensory neuronopathies are a rare and distinct subgroup of peripheral neuropathies, characterized by degeneration of the dorsal root ganglia neurons. About 50% of sensory neuronopathies are idiopathic and genetic causes remain to be clarified. Through a combination of homozygosity mapping and whole exome sequencing, we linked an autosomal recessive sensory neuronopathy to pathogenic variants in the COX20 gene. We identified eight unrelated families from the eastern Chinese population carrying a founder variant c.41A>G (p.Lys14Arg) within COX20 in either a homozygous or compound heterozygous state. All patients displayed sensory ataxia with a decrease in non-length-dependent sensory potentials. COX20 encodes a key transmembrane protein implicated in the assembly of mitochondrial complex IV. We showed that COX20 variants lead to reduction of COX20 protein in patient's fibroblasts and transfected cell lines, consistent with a loss-of-function mechanism. Knockdown of COX20 expression in ND7/23 sensory neuron cells resulted in complex IV deficiency and perturbed assembly of complex IV, which subsequently compromised cell spare respiratory capacity and reduced cell proliferation under metabolic stress. Consistent with mitochondrial dysfunction in knockdown cells, reduced complex IV assembly, enzyme activity and oxygen consumption rate were also found in patients' fibroblasts. We speculated that the mechanism of COX20 was similar to other causative genes (e.g. SURF1, COX6A1, COA3 and SCO2) for peripheral neuropathies, all of which are functionally important in the structure and assembly of complex IV. Our study identifies a novel causative gene for the autosomal recessive sensory neuronopathy, whose vital function in complex IV and high expression in the proprioceptive sensory neuron further underlines loss of COX20 contributing to mitochondrial bioenergetic dysfunction as a mechanism in peripheral sensory neuron disease.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Complejo IV de Transporte de Electrones/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Pérdida de Heterocigocidad , Mitocondrias/genética , Adolescente , Adulto , Proliferación Celular/genética , Niño , Preescolar , Deficiencia de Citocromo-c Oxidasa/fisiopatología , Femenino , Neuropatías Hereditarias Sensoriales y Autónomas/fisiopatología , Humanos , Masculino , Nervio Mediano/fisiopatología , Mutación , Conducción Nerviosa/fisiología , Linaje , Nervio Radial/fisiopatología , Nervio Cubital/fisiopatología
4.
Hum Mutat ; 42(2): 135-141, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33169484

RESUMEN

COX16 is involved in the biogenesis of cytochrome-c-oxidase (complex IV), the terminal complex of the mitochondrial respiratory chain. We present the first report of two unrelated patients with the homozygous nonsense variant c.244C>T(p. Arg82*) in COX16 with hypertrophic cardiomyopathy, encephalopathy and severe fatal lactic acidosis, and isolated complex IV deficiency. The absence of COX16 protein expression leads to a complete loss of the holo-complex IV, as detected by Western blot in patient fibroblasts. Lentiviral transduction of patient fibroblasts with wild-type COX16 complementary DNA rescued complex IV biosynthesis. We hypothesize that COX16 could play a role in the copper delivery route of the COX2 module as part of the complex IV assembly. Our data provide clear evidence for the pathogenicity of the COX16 variant as a cause for the observed clinical features and the isolated complex IV deficiency in these two patients and that COX16 deficiency is a cause for mitochondrial disease.


Asunto(s)
Acidosis Láctica , Encefalopatías , Cardiomiopatías , Deficiencia de Citocromo-c Oxidasa , Hepatopatías , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Acidosis Láctica/genética , Cardiomiopatías/genética , Deficiencia de Citocromo-c Oxidasa/genética , Humanos , Recién Nacido , Proteínas Mitocondriales/metabolismo
5.
Hum Mol Genet ; 28(22): 3792-3804, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31276579

RESUMEN

The m.8993T>G mutation of the mitochondrial MT-ATP6 gene has been associated with numerous cases of neuropathy, ataxia and retinitis pigmentosa and maternally inherited Leigh syndrome, which are diseases known to result from abnormalities affecting mitochondrial energy transduction. We previously reported that an equivalent point mutation severely compromised proton transport through the ATP synthase membrane domain (FO) in Saccharomyces cerevisiae and reduced the content of cytochrome c oxidase (Complex IV or COX) by 80%. Herein, we report that overexpression of the mitochondrial oxodicarboxylate carrier (Odc1p) considerably increases Complex IV abundance and tricarboxylic acid-mediated substrate-level phosphorylation of ADP coupled to conversion of α-ketoglutarate into succinate in m.8993T>G yeast. Consistently in m.8993T>G yeast cells, the retrograde signaling pathway was found to be strongly induced in order to preserve α-ketoglutarate production; when Odc1p was overexpressed, this stress pathway returned to an almost basal activity. Similar beneficial effects were induced by a partial uncoupling of the mitochondrial membrane with the proton ionophore, cyanide m-chlorophenyl hydrazone. This chemical considerably improved the glutamine-based, respiration-dependent growth of human cytoplasmic hybrid cells that are homoplasmic for the m.8993T>G mutation. These findings shed light on the interdependence between ATP synthase and Complex IV biogenesis, which could lay the groundwork for the creation of nutritional or metabolic interventions for attenuating the effects of mtDNA mutations.


Asunto(s)
Mitocondrias/metabolismo , Miopatías Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Retinitis Pigmentosa/metabolismo , Adenosina Trifosfato/metabolismo , Ataxia/genética , Deficiencia de Citocromo-c Oxidasa/genética , ADN Mitocondrial/genética , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Transporte Iónico , Enfermedad de Leigh , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mutación , Retinitis Pigmentosa/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Ann Neurol ; 86(2): 193-202, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31155743

RESUMEN

OBJECTIVE: Cytochrome c oxidase (COX) deficiency is a major mitochondrial respiratory chain defect that has vast genetic and phenotypic heterogeneity. This study aims to identify novel causative genes of COX deficiency with only striated muscle-specific symptoms. METHODS: Whole exome sequencing was performed in 2 unrelated individuals who were diagnosed with congenital myopathy and presented COX deficiency in muscle pathology. We assessed the COX6A2 variants using measurements of enzymatic activities and assembly of mitochondrial respiratory chain complexes in the samples from the patients and knockout mice. RESULTS: Both patients presented muscle weakness and hypotonia in 4 limbs along with facial muscle weakness. One patient had cardiomyopathy. Neither patient exhibited involvement from other organs. Whole exome sequencing identified biallelic missense variants in COX6A2, which is expressed only in the skeletal muscle and heart. The variants detected were homozygous c.117C > A (p.Ser39Arg) and compound heterozygous c.117C > A (p.Ser39Arg) and c.127T > C (p.Cys43Arg). We found specific reductions in complex IV activities in the skeletal muscle of both individuals. Assembly of complex IV and its supercomplex formation were impaired in the muscle. INTERPRETATION: This study indicates that biallelic variants in COX6A2 cause a striated muscle-specific form of COX deficiency. ANN NEUROL 2019;86:193-202.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/diagnóstico por imagen , Deficiencia de Citocromo-c Oxidasa/genética , Complejo IV de Transporte de Electrones/genética , Variación Genética/genética , Proteínas Musculares/genética , Músculo Esquelético/patología , Adolescente , Secuencia de Aminoácidos , Animales , Resultado Fatal , Células HEK293 , Células HeLa , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linaje
7.
Am J Physiol Cell Physiol ; 317(1): C58-C67, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30995105

RESUMEN

Leigh syndrome French Canadian type (LSFC) is a mitochondrial disease caused by mutations in the leucine-rich pentatricopeptide repeat-containing (LRPPRC) gene leading to a reduction of cytochrome-c oxidase (COX) expression reaching 50% in skin fibroblasts. We have shown that under basal conditions, LSFC and control cells display similar ATP levels. We hypothesized that this occurs through upregulation of mechanistic target of rapamycin (mTOR)-mediated metabolic reprogramming. Our results showed that compared with controls, LSFC cells exhibited an upregulation of the mTOR complex 1 (mTORC1)/p70 ribosomal S6 kinase pathway and higher levels of hypoxia-inducible factor 1α (HIF-1α) and its downstream target pyruvate dehydrogenase kinase 1 (PDHK1), a regulator of mitochondrial pyruvate dehydrogenase 1 (PDH1). Consistent with these signaling alterations, LSFC cells displayed a 40-61% increase in [U-13C6]glucose contribution to pyruvate, lactate, and alanine formation, as well as higher levels of the phosphorylated and inactive form of PDH1-α. Interestingly, inhibition of mTOR with rapamycin did not alter HIF-1α or PDHK1 protein levels in LSFC fibroblasts. However, this treatment increased PDH1-α phosphorylation in control and LSFC cells and reduced ATP levels in control cells. Rapamycin also decreased LRPPRC expression by 41 and 11% in LSFC and control cells, respectively, and selectively reduced COX subunit IV expression in LSFC fibroblasts. Taken together, our data demonstrate the importance of mTORC1, independent of the HIF-1α/PDHK1 axis, in maintaining LRPPRC and COX expression in LSFC cells.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Fibroblastos/enzimología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Enfermedad de Leigh/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Neoplasias/metabolismo , Piel/enzimología , Adenosina Trifosfato/metabolismo , Células Cultivadas , Niño , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/patología , Complejo IV de Transporte de Electrones/genética , Metabolismo Energético , Femenino , Fibroblastos/patología , Regulación Enzimológica de la Expresión Génica , Glucosa/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mitocondrias/enzimología , Mitocondrias/patología , Proteínas de Neoplasias/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Quebec , Transducción de Señal , Piel/patología
8.
Hum Mol Genet ; 26(16): 3186-3201, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28575497

RESUMEN

The French-Canadian variant of Leigh Syndrome (LSFC) is an autosomal recessive oxidative phosphorylation (OXPHOS) disorder caused by a mutation in LRPPRC, coding for a protein involved in the stability of mitochondrially-encoded mRNAs. Low levels of LRPPRC are present in all patient tissues, but result in a disproportionately severe OXPHOS defect in the brain and liver, leading to unpredictable subacute metabolic crises. To investigate the impact of the OXPHOS defect in the liver, we analyzed the mitochondrial phenotype in mice harboring an hepatocyte-specific inactivation of Lrpprc. Loss of LRPPRC in the liver caused a generalized growth delay, and typical histological features of mitochondrial hepatopathy. At the molecular level, LRPPRC deficiency caused destabilization of polyadenylated mitochondrial mRNAs, altered mitochondrial ultrastructure, and a severe complex IV (CIV) and ATP synthase (CV) assembly defect. The impact of LRPPRC deficiency was not limited to OXPHOS, but also included impairment of long-chain fatty acid oxidation, a striking dysregulation of the mitochondrial permeability transition pore, and an unsuspected alteration of trans-membrane H2O2 diffusion, which was traced to the ATP synthase assembly defect, and to changes in the lipid composition of mitochondrial membranes. This study underscores the value of mitochondria phenotyping to uncover complex and unexpected mechanisms contributing to the pathophysiology of mitochondrial disorders.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Permeabilidad de la Membrana Celular/genética , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Hepatocitos/metabolismo , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Hígado/metabolismo , Masculino , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Fosforilación Oxidativa , Poliadenilación , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial
9.
J Pathol ; 245(3): 311-323, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29660116

RESUMEN

Defects in the respiratory chain, interfering with energy production in the cell, are major underlying causes of mitochondrial diseases. In spite of this, the surprising variety of clinical symptoms, disparity between ages of onset, as well as the involvement of mitochondrial impairment in ageing and age-related diseases continue to challenge our understanding of the pathogenic processes. This complexity can be in part attributed to the unique metabolic needs of organs or of various cell types. In this view, it remains essential to investigate mitochondrial dysfunction at the cellular level. For this purpose, we developed a novel enzyme histochemical method that enables precise quantification in fresh-frozen tissues using competing redox reactions which ultimately lead to the reduction of tetrazolium salts and formazan deposition in cytochrome c oxidase-deficient mitochondria. We demonstrate that the loss of oxidative activity is detected at very low levels - this achievement is unequalled by previous techniques and opens up new opportunities for the study of early disease processes or comparative investigations. Moreover, human biopsy samples of mitochondrial disease patients of diverse genotypic origins were used and the successful detection of COX-deficient cells suggests a broad application for this new method. Lastly, the assay can be adapted to a wide range of tissues in the mouse and extends to other animal models, which we show here with the fruit fly, Drosophila melanogaster. Overall, the new assay provides the means to quantify and map, on a cell-by-cell basis, the full extent of COX deficiency in tissues, thereby expending new possibilities for future investigation. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/diagnóstico , Complejo IV de Transporte de Electrones/metabolismo , Análisis de la Célula Individual/métodos , Coloración y Etiquetado/métodos , Animales , Deficiencia de Citocromo-c Oxidasa/enzimología , Deficiencia de Citocromo-c Oxidasa/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Metabolismo Energético , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Metosulfato de Metilfenazonio/química , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Mutación , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Nitroazul de Tetrazolio/química , Oxidación-Reducción , Valor Predictivo de las Pruebas , ARN de Transferencia de Alanina/genética
10.
Biochim Biophys Acta Bioenerg ; 1859(9): 893-900, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29886046

RESUMEN

Mitochondrial cytochrome c oxidase (COX, respiratory chain complex IV), contributes to ATP production via oxidative phosphorylation (OXPHOS). Clinical presentation of COX deficiency is heterogeneous ranging from mild to severe neuromuscular diseases. Anemia is among the symptoms and we have previously reported Fanconi anemia like features in COX4-1 deficiency, suggesting genomic instability and our preliminary results detected nuclear double stranded DNA breaks (DSB). We now quantified the DSB by phospho histone H2AX Ser139 staining of COX4-1 and COX6B1 deficient fibroblasts (225% and 215% of normal, respectively) and confirmed their occurrence by neutral comet assay. We further explored the mechanism of DNA damage by studying normal fibroblasts treated with micromolar concentrations of cyanide (KCN). Present results demonstrate elevated nuclear DSB in cells treated with 50 µM KCN for 24 h (170% of normal) in high-glucose medium conditions where ROS and ATP remain normal, although Glutathione content was partially decreased. In glucose-free and serum-free medium, where growth is hampered, DSB were not elevated. Additionally we demonstrate the benefit of nicotinamide riboside (NR) which ameliorated DSB in COX4-1, COX6B1 and KCN treated cells (130%, 154% and 87% of normal cells, respectively). Conversely a negative effect of a poly[ADP-ribose] polymerase (PARP) inhibitor was found. Although additional investigation is needed, our findings raise the possibility that the pathomechanism of COX deficiency and possibly also in other OXPHOS defects, include nuclear DNA damage resulting from nicotinamide adenine dinucleotide (NAD+) deficit combined with a replicative state, rather than oxidative stress and energy depletion.


Asunto(s)
Núcleo Celular/genética , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/patología , Daño del ADN , Complejo IV de Transporte de Electrones/genética , Fibroblastos/patología , Mitocondrias/patología , Células Cultivadas , Complejo IV de Transporte de Electrones/metabolismo , Fibroblastos/metabolismo , Humanos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Estrés Oxidativo
11.
Am J Pathol ; 187(1): 110-121, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27855277

RESUMEN

The relationships between the molecular abnormalities in mitochondrial respiratory chain complexes and their negative contributions to mitochondrial and cellular functions have been proved to be essential for better understandings in mitochondrial medicine. Herein, we established the method to identify disease phenotypic differences among patients with muscle histopathological cytochrome c oxidase (COX) deficiency, as one of the representative clinical features in mitochondrial diseases, by using patients' myoblasts that are derived from biopsied skeletal muscle tissues. We identified two obviously different severities in molecular diagnostic criteria of COX deficiency among patients: structurally stable, but functionally mild/moderate defect and severe functional defect with the disrupted COX holoenzyme structure. COX holoenzyme disorganization actually triggered several mitochondrial dysfunctions, including the decreased ATP level, the increased oxidative stress level, and the damaged membrane potential level, all of which lead to the deteriorated cellular growth, the accelerated cellular senescence, and the induced apoptotic cell death. Our cell-based in vitro diagnostic approaches would be widely applicable to understanding patient-specific pathomechanism in various types of mitochondrial diseases, including other respiratory chain complex deficiencies and other mitochondrial metabolic enzyme deficiencies.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/enzimología , Deficiencia de Citocromo-c Oxidasa/patología , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Deficiencia de Citocromo-c Oxidasa/diagnóstico , Deficiencia de Citocromo-c Oxidasa/genética , Holoenzimas/metabolismo , Homeostasis , Humanos , Modelos Biológicos , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Hum Genet ; 136(6): 759-769, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28386624

RESUMEN

The genetic basis of the many progressive, multi systemic, mitochondrial diseases that cause a lack of cellular ATP production is heterogeneous, with defects found both in the mitochondrial genome as well as in the nuclear genome. Many different mutations have been found in the genes encoding subunits of the enzyme complexes of the oxidative phosphorylation system. In addition, mutations in genes encoding proteins involved in the assembly of these complexes are known to cause mitochondrial disorders. Here we describe two sisters with a mitochondrial disease characterized by lesions in the medulla oblongata, as demonstrated by brain magnetic resonance imaging, and an isolated complex IV deficiency and reduced levels of individual complex IV subunits. Whole exome sequencing revealed a homozygous nonsense mutation resulting in a premature stop codon in the gene encoding Pet117, a small protein that has previously been predicted to be a complex IV assembly factor. PET117 has not been identified as a mitochondrial disease gene before. Lentiviral complementation of patient fibroblasts with wild-type PET117 restored the complex IV deficiency, proving that the gene defect is responsible for the complex IV deficiency in the patients, and indicating a pivotal role of this protein in the proper functioning of complex IV. Although previous studies had suggested a possible role of this protein in the insertion of copper into complex IV, studies in patient fibroblasts could not confirm this. This case presentation thus implicates mutations in PET117 as a novel cause of mitochondrial disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Sistema Nervioso Central/patología , Deficiencia de Citocromo-c Oxidasa/genética , Bulbo Raquídeo/patología , Mutación , Células Cultivadas , Preescolar , Femenino , Humanos , Masculino , Fosforilación Oxidativa , Linaje
13.
Am J Hum Genet ; 94(2): 209-22, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24462369

RESUMEN

Leigh syndrome (LS) is a severe neurodegenerative disorder with characteristic bilateral lesions, typically in the brainstem and basal ganglia. It usually presents in infancy and is genetically heterogeneous, but most individuals with mitochondrial complex IV (or cytochrome c oxidase) deficiency have mutations in the biogenesis factor SURF1. We studied eight complex IV-deficient LS individuals from six families of Lebanese origin. They differed from individuals with SURF1 mutations in having seizures as a prominent feature. Complementation analysis suggested they had mutation(s) in the same gene but targeted massively parallel sequencing (MPS) of 1,034 genes encoding known mitochondrial proteins failed to identify a likely candidate. Linkage and haplotype analyses mapped the location of the gene to chromosome 19 and targeted MPS of the linkage region identified a homozygous c.3G>C (p.Met1?) mutation in C19orf79. Abolishing the initiation codon could potentially still allow initiation at a downstream methionine residue but we showed that this would not result in a functional protein. We confirmed that mutation of this gene was causative by lentiviral-mediated phenotypic correction. C19orf79 was recently renamed PET100 and predicted to encode a complex IV biogenesis factor. We showed that it is located in the mitochondrial inner membrane and forms a ∼300 kDa subcomplex with complex IV subunits. Previous proteomic analyses of mitochondria had overlooked PET100 because its small size was below the cutoff for annotating bona fide proteins. The mutation was estimated to have arisen at least 520 years ago, explaining how the families could have different religions and different geographic origins within Lebanon.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/etnología , Deficiencia de Citocromo-c Oxidasa/genética , Efecto Fundador , Enfermedad de Leigh/etnología , Enfermedad de Leigh/genética , Proteínas Mitocondriales/genética , Cromosomas Humanos Par 19/genética , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Deficiencia de Citocromo-c Oxidasa/complicaciones , ADN Mitocondrial/genética , ADN Mitocondrial/aislamiento & purificación , Femenino , Prueba de Complementación Genética , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Haplotipos , Homocigoto , Humanos , Lactante , Líbano , Enfermedad de Leigh/complicaciones , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Linaje , Polimorfismo de Nucleótido Simple , Proteómica , Análisis de Secuencia de ADN
14.
J Med Genet ; 53(12): 846-849, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27683825

RESUMEN

BACKGROUND: Assembly of cytochrome c oxidase (COX, complex IV, cIV), the terminal component of the mitochondrial respiratory chain, is assisted by several factors, most of which are conserved from yeast to humans. However, some of them, including COA7, are found in humans but not in yeast. COA7 is a 231aa-long mitochondrial protein present in animals, containing five Sel1-like tetratricopeptide repeat sequences, which are likely to interact with partner proteins. METHODS: Whole exome sequencing was carried out on a 19 year old woman, affected by early onset, progressive severe ataxia and peripheral neuropathy, mild cognitive impairment and a cavitating leukodystrophy of the brain with spinal cord hypotrophy. Biochemical analysis of the mitochondrial respiratory chain revealed the presence of isolated deficiency of cytochrome c oxidase (COX) activity in skin fibroblasts and skeletal muscle. Mitochondrial localization studies were carried out in isolated mitochondria and mitoplasts from immortalized control human fibroblasts. RESULTS: We found compound heterozygous mutations in COA7: a paternal c.410A>G, p.Y137C, and a maternal c.287+1G>T variants. Lentiviral-mediated expression of recombinant wild-type COA7 cDNA in the patient fibroblasts led to the recovery of the defect in COX activity and restoration of normal COX amount. In mitochondrial localization experiments, COA7 behaved as the soluble matrix protein Citrate Synthase. CONCLUSIONS: We report here the first patient carrying pathogenic mutations of COA7, causative of isolated COX deficiency and progressive neurological impairment. We also show that COA7 is a soluble protein localized to the matrix, rather than in the intermembrane space as previously suggested.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/metabolismo , Leucoencefalopatías/metabolismo , Proteínas Mitocondriales/genética , Mutación , Secuencia de Aminoácidos , Deficiencia de Citocromo-c Oxidasa/genética , Análisis Mutacional de ADN , Femenino , Humanos , Leucoencefalopatías/genética , Mitocondrias , Proteínas Mitocondriales/química , Alineación de Secuencia , Adulto Joven
15.
PLoS Genet ; 10(6): e1004424, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24901367

RESUMEN

Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN) mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.


Asunto(s)
Transferasas Alquil y Aril/genética , Enfermedades Mitocondriales/genética , Sulfurtransferasas/genética , Células Cultivadas , Deficiencia de Citocromo-c Oxidasa/genética , Citosol , ADN Mitocondrial/genética , Transporte de Electrón/genética , Complejo IV de Transporte de Electrones/genética , Femenino , Humanos , Masculino , Mitocondrias/genética , Biosíntesis de Proteínas/genética , ARN/genética , ARN Mitocondrial , ARN de Transferencia/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
16.
Hum Mol Genet ; 23(17): 4612-20, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24740879

RESUMEN

Large-scale mitochondrial DNA (mtDNA) deletions are an important cause of mitochondrial disease, while somatic mtDNA deletions cause focal respiratory chain deficiency associated with ageing and neurodegenerative disorders. As mtDNA deletions only cause cellular pathology at high levels of mtDNA heteroplasmy, an mtDNA deletion must accumulate to levels which can result in biochemical dysfunction-a process known as clonal expansion. A number of hypotheses have been proposed for clonal expansion of mtDNA deletions, including a replicative advantage for deleted mitochondrial genomes inferred by their smaller size--implying that the largest mtDNA deletions would also display a replicative advantage over smaller mtDNA deletions. We proposed that in muscle fibres from patients with mtDNA maintenance disorders, which lead to the accumulation of multiple mtDNA deletions, we would observe the largest mtDNA deletions spreading the furthest longitudinally through individual muscle fibres by means of a greater rate of clonal expansion. We characterized mtDNA deletions in patients with mtDNA maintenance disorders from a range of 'large' and 'small' cytochrome c oxidase (COX)-deficient regions in skeletal muscle fibres. We measured the size of clonally expanded deletions in 62 small and 60 large individual COX-deficient f regions. No significant difference was observed in individual patients or in the total dataset (small fibre regions mean 6.59 kb--large fibre regions mean 6.51 kb). Thus no difference existed in the rate of clonal expansion throughout muscle fibres between mtDNA deletions of different sizes; smaller mitochondrial genomes therefore do not appear to have an inherent replicative advantage in human muscle.


Asunto(s)
ADN Mitocondrial/genética , Músculo Esquelético/patología , Eliminación de Secuencia/genética , Anciano , Anciano de 80 o más Años , Deficiencia de Citocromo-c Oxidasa/genética , Humanos , Microdisección , Persona de Mediana Edad , Fibras Musculares Esqueléticas
17.
Hum Mol Genet ; 23(11): 2901-13, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24403053

RESUMEN

Cytochrome c oxidase (CIV) deficiency is one of the most common respiratory chain defects in patients presenting with mitochondrial encephalocardiomyopathies. CIV biogenesis is complicated by the dual genetic origin of its structural subunits, and assembly of a functional holoenzyme complex requires a large number of nucleus-encoded assembly factors. In general, the functions of these assembly factors remain poorly understood, and mechanistic investigations of human CIV biogenesis have been limited by the availability of model cell lines. Here, we have used small interference RNA and transcription activator-like effector nucleases (TALENs) technology to create knockdown and knockout human cell lines, respectively, to study the function of the CIV assembly factor COX20 (FAM36A). These cell lines exhibit a severe, isolated CIV deficiency due to instability of COX2, a mitochondrion-encoded CIV subunit. Mitochondria lacking COX20 accumulate CIV subassemblies containing COX1 and COX4, similar to those detected in fibroblasts from patients carrying mutations in the COX2 copper chaperones SCO1 and SCO2. These results imply that in the absence of COX20, COX2 is inefficiently incorporated into early CIV subassemblies. Immunoprecipitation assays using a stable COX20 knockout cell line expressing functional COX20-FLAG allowed us to identify an interaction between COX20 and newly synthesized COX2. Additionally, we show that SCO1 and SCO2 act on COX20-bound COX2. We propose that COX20 acts as a chaperone in the early steps of COX2 maturation, stabilizing the newly synthesized protein and presenting COX2 to its metallochaperone module, which in turn facilitates the incorporation of mature COX2 into the CIV assembly line.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclooxigenasa 2/metabolismo , Deficiencia de Citocromo-c Oxidasa/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Portadoras/genética , Línea Celular , Ciclooxigenasa 2/genética , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Humanos , Proteínas de la Membrana/genética , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Chaperonas Moleculares , Estabilidad Proteica
18.
Hum Mol Genet ; 23(8): 2078-93, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24293544

RESUMEN

Mitochondrial dysfunction is a significant factor in human disease, ranging from systemic disorders of childhood to cardiomyopathy, ischaemia and neurodegeneration. Cytochrome oxidase, the terminal enzyme of the mitochondrial respiratory chain, is a frequent target. Lower eukaryotes possess alternative respiratory-chain enzymes that provide non-proton-translocating bypasses for respiratory complexes I (single-subunit reduced nicotinamide adenine dinucleotide dehydrogenases, e.g. Ndi1 from yeast) or III + IV [alternative oxidase (AOX)], under conditions of respiratory stress or overload. In previous studies, it was shown that transfer of yeast Ndi1 or Ciona intestinalis AOX to Drosophila was able to overcome the lethality produced by toxins or partial knockdown of complex I or IV. Here, we show that AOX can provide a complete or substantial rescue of a range of phenotypes induced by global or tissue-specific knockdown of different cIV subunits, including integral subunits required for catalysis, as well as peripheral subunits required for multimerization and assembly. AOX was also able to overcome the pupal lethality produced by muscle-specific knockdown of subunit CoVb, although the rescued flies were short lived and had a motility defect. cIV knockdown in neurons was not lethal during development but produced a rapidly progressing locomotor and seizure-sensitivity phenotype, which was substantially alleviated by AOX. Expression of Ndi1 exacerbated the neuronal phenotype produced by cIV knockdown. Ndi1 expressed in place of essential cI subunits produced a distinct residual phenotype of delayed development, bang sensitivity and male sterility. These findings confirm the potential utility of alternative respiratory chain enzymes as tools to combat mitochondrial disease, while indicating important limitations thereof.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Deficiencia de Citocromo-c Oxidasa/complicaciones , Discapacidades del Desarrollo/prevención & control , Drosophila melanogaster/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Infertilidad Masculina/prevención & control , Proteínas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Western Blotting , Células Cultivadas , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/metabolismo , Discapacidades del Desarrollo/etiología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/genética , Femenino , Humanos , Técnicas para Inmunoenzimas , Infertilidad Masculina/etiología , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Enfermedades Neurodegenerativas/etiología , Oxidorreductasas/genética , Fenotipo , Proteínas de Plantas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
EMBO J ; 31(2): 443-56, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22045337

RESUMEN

Regulation of mtDNA expression is critical for maintaining cellular energy homeostasis and may, in principle, occur at many different levels. The leucine-rich pentatricopeptide repeat containing (LRPPRC) protein regulates mitochondrial mRNA stability and an amino-acid substitution of this protein causes the French-Canadian type of Leigh syndrome (LSFC), a neurodegenerative disorder characterized by complex IV deficiency. We have generated conditional Lrpprc knockout mice and show here that the gene is essential for embryonic development. Tissue-specific disruption of Lrpprc in heart causes mitochondrial cardiomyopathy with drastic reduction in steady-state levels of most mitochondrial mRNAs. LRPPRC forms an RNA-dependent protein complex that is necessary for maintaining a pool of non-translated mRNAs in mammalian mitochondria. Loss of LRPPRC does not only decrease mRNA stability, but also leads to loss of mRNA polyadenylation and the appearance of aberrant mitochondrial translation. The translation pattern without the presence of LRPPRC is misregulated with excessive translation of some transcripts and no translation of others. Our findings point to the existence of an elaborate machinery that regulates mammalian mtDNA expression at the post-transcriptional level.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Enfermedad de Leigh/genética , Mitocondrias Cardíacas/fisiología , Proteínas de Neoplasias/fisiología , Poliadenilación/fisiología , Biosíntesis de Proteínas/fisiología , Animales , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/análisis , Células HeLa , Humanos , Sustancias Macromoleculares , Ratones , Ratones Noqueados , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Especificidad de Órganos , Polinucleotido Adenililtransferasa , Estabilidad del ARN , ARN Mensajero , Proteínas de Unión al ARN/metabolismo
20.
Clin Sci (Lond) ; 130(6): 393-407, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26846578

RESUMEN

As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Animales , Células Cultivadas , Deficiencia de Citocromo-c Oxidasa/terapia , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA