Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.654
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 183(1): 46-61.e21, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32941802

RESUMEN

Metazoan organisms rely on conserved stress response pathways to alleviate adverse conditions and preserve cellular integrity. Stress responses are particularly important in stem cells that provide lifetime support for tissue formation and repair, but how these protective systems are integrated into developmental programs is poorly understood. Here we used myoblast differentiation to identify the E3 ligase CUL2FEM1B and its substrate FNIP1 as core components of the reductive stress response. Reductive stress, as caused by prolonged antioxidant signaling or mitochondrial inactivity, reverts the oxidation of invariant Cys residues in FNIP1 and allows CUL2FEM1B to recognize its target. The ensuing proteasomal degradation of FNIP1 restores mitochondrial activity to preserve redox homeostasis and stem cell integrity. The reductive stress response is therefore built around a ubiquitin-dependent rheostat that tunes mitochondrial activity to redox needs and implicates metabolic control in coordination of stress and developmental signaling.


Asunto(s)
Proteínas Portadoras/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Proteínas Portadoras/genética , Diferenciación Celular , Células HEK293 , Homeostasis , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Mitocondrias , Desarrollo de Músculos/fisiología , Mioblastos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
2.
Development ; 151(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39289869

RESUMEN

Skeletal muscle development is a complex process involving myoblast fusion to generate multinucleated fibers. Myonuclei first align in the center of the myotubes before migrating to the periphery of the myofiber. Blood vessels (BVs) are important contributors to the correct development of skeletal muscle, and myonuclei are found next to BVs in adult muscle. Here, we show that most myonuclear migration to the periphery occurs between embryonic day 17.5 and postnatal day 1 in mouse. Furthermore, myonuclear accretion after postnatal day 7 does not result in centrally nucleated myofibers as observed in the embryo. Instead, myonuclei remain at the periphery of the myofiber without moving to the center. Finally, we show that hypovascularization of skeletal muscle alters the interaction between myonuclei and BVs, suggesting that BVs may contribute to myonuclear positioning during skeletal muscle postnatal development. Overall, this work provides a comprehensive analysis of skeletal muscle development during the highly dynamic postnatal period, bringing new insights about myonuclear positioning and its interaction with BVs.


Asunto(s)
Núcleo Celular , Desarrollo de Músculos , Músculo Esquelético , Animales , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Desarrollo de Músculos/fisiología , Ratones , Núcleo Celular/metabolismo , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/embriología , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Animales Recién Nacidos , Ratones Endogámicos C57BL
3.
Proc Natl Acad Sci U S A ; 121(23): e2217971121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805272

RESUMEN

Myogenesis is a multistep process that requires a spatiotemporal regulation of cell events resulting finally in myoblast fusion into multinucleated myotubes. Most major insights into the mechanisms underlying fusion seem to be conserved from insects to mammals and include the formation of podosome-like protrusions (PLPs) that exert a driving force toward the founder cell. However, the machinery that governs this process remains poorly understood. In this study, we demonstrate that MTM1 is the main enzyme responsible for the production of phosphatidylinositol 5-phosphate, which in turn fuels PI5P 4-kinase α to produce a minor and functional pool of phosphatidylinositol 4,5-bisphosphate that concentrates in PLPs containing the scaffolding protein Tks5, Dynamin-2, and the fusogenic protein Myomaker. Collectively, our data reveal a functional crosstalk between a PI-phosphatase and a PI-kinase in the regulation of PLP formation.


Asunto(s)
Fusión Celular , Mioblastos , Fosfatos de Fosfatidilinositol , Podosomas , Animales , Fosfatos de Fosfatidilinositol/metabolismo , Ratones , Mioblastos/metabolismo , Mioblastos/citología , Podosomas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Desarrollo de Músculos/fisiología
4.
Semin Cell Dev Biol ; 143: 66-74, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35241367

RESUMEN

Mitochondria play a major role in apoptotic signaling. In addition to its role in eliminating dysfunctional cells, mitochondrial apoptotic signaling is implicated as a key component of myogenic differentiation and skeletal muscle atrophy. For example, the activation of cysteine-aspartic proteases (caspases; CASP's) can aid in the initial remodeling stages of myogenic differentiation by cleaving protein kinases, transcription factors, and cytoskeletal proteins. Precise regulation of these signals is needed to prevent excessive cell disassemble and subsequent cell death. During skeletal muscle atrophy, the activation of CASP's and mitochondrial derived nucleases participate in myonuclear fragmentation, a potential loss of myonuclei, and cleavage of contractile structures within skeletal muscle. The B cell leukemia/lymphoma 2 (BCL2) family of proteins play a significant role in regulating myogenesis and skeletal muscle atrophy by governing the initiating steps of mitochondrial apoptotic signaling. This review discusses the role of mitochondrial apoptotic signaling in skeletal muscle remodeling during myogenic differentiation and skeletal muscle pathological states, including aging, disuse, and muscular dystrophy.


Asunto(s)
Mitocondrias Musculares , Desarrollo de Músculos , Músculo Esquelético , Atrofia Muscular , Humanos , Apoptosis/fisiología , Caspasas/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Mitocondrias Musculares/metabolismo
5.
FASEB J ; 38(14): e23808, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38994637

RESUMEN

Muscle development is a multistep process regulated by diverse gene networks, and circRNAs are considered novel regulators mediating myogenesis. Here, we systematically analyzed the role and underlying regulatory mechanisms of circRBBP7 in myoblast proliferation and differentiation. Results showed that circRBBP7 has a typical circular structure and encodes a 13 -kDa protein. By performing circRBBP7 overexpression and RNA interference, we found that the function of circRBBP7 was positively correlated with the proliferation and differentiation of myoblasts. Using RNA sequencing, we identified 1633 and 532 differentially expressed genes (DEGs) during myoblast proliferation or differentiation, respectively. The DEGs were found mainly enriched in cell cycle- and skeletal muscle development-related pathways, such as the MDM2/p53 and PI3K-Akt signaling pathways. Further co-IP and IF co-localization analysis revealed that VEGFR-1 is a target of circRBBP7 in myoblasts. qRT-PCR and WB analysis further confirmed the positive correlation between VEGFR-1 and circRBBP7. Moreover, we found that in vivo transfection of circRBBP7 into injured muscle tissues significantly promoted the regeneration and repair of myofibers in mice. Therefore, we speculate that circRBBP7 may affect the activity of MDM2 by targeting VEGFR-1, altering the expression of muscle development-related genes by mediating p53 degradation, and ultimately promoting myoblast development and muscle regeneration. This study provides essential evidence that circRBBP7 can serve as a potential target for myogenesis regulation and a reference for the application of circRBBP7 in cattle genetic breeding and muscle injury treatment.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Desarrollo de Músculos , Mioblastos , ARN Circular , Animales , Masculino , Ratones , Línea Celular , Ratones Endogámicos C57BL , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Mioblastos/metabolismo , Mioblastos/citología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Circular/genética , ARN Circular/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
FASEB J ; 38(13): e23797, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963344

RESUMEN

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.


Asunto(s)
Diferenciación Celular , Chaperón BiP del Retículo Endoplásmico , Músculo Esquelético , Mioblastos , Receptor IGF Tipo 1 , Transducción de Señal , Tunicamicina , Animales , Ratones , Glicosilación , Mioblastos/metabolismo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Tunicamicina/farmacología , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Músculo Esquelético/metabolismo , Desarrollo de Músculos/fisiología , Línea Celular , Ratones Transgénicos , Estrés del Retículo Endoplásmico , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética
7.
FASEB J ; 38(14): e23841, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39051762

RESUMEN

Skeletal muscles undergo robust regeneration upon injury, and infiltrating immune cells play a major role in not only clearing damaged tissues but also regulating the myogenic process through secreted cytokines. Chemokine C-C motif ligand 8 (Ccl8), along with Ccl2 and Ccl7, has been reported to mediate inflammatory responses to suppress muscle regeneration. Ccl8 is also expressed by muscle cells, but a role of the muscle cell-derived Ccl8 in myogenesis has not been reported. In this study, we found that knockdown of Ccl8, but not Ccl2 or Ccl7, led to increased differentiation of C2C12 myoblasts. Analysis of existing single-cell transcriptomic datasets revealed that both immune cells and muscle stem cells (MuSCs) in regenerating muscles express Ccl8, with the expression by MuSCs at a much lower level, and that the temporal patterns of Ccl8 expression were different in MuSCs and macrophages. To probe a function of muscle cell-derived Ccl8 in vivo, we utilized a mouse system in which Cas9 was expressed in Pax7+ myogenic progenitor cells (MPCs) and Ccl8 gene editing was induced by AAV9-delivered sgRNA. Depletion of Ccl8 in Pax7+ MPCs resulted in accelerated muscle regeneration after barium chloride-induced injury in both young and middle-aged mice, and intramuscular administration of a recombinant Ccl8 reversed the phenotype. Accelerated regeneration was also observed when Ccl8 was depleted in Myf5+ or MyoD+ MPCs by similar approaches. Our results suggest that muscle cell-derived Ccl8 plays a unique role in regulating the initiation of myogenic differentiation during injury-induced muscle regeneration.


Asunto(s)
Diferenciación Celular , Quimiocina CCL8 , Desarrollo de Músculos , Músculo Esquelético , Mioblastos , Regeneración , Animales , Ratones , Regeneración/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/lesiones , Desarrollo de Músculos/fisiología , Quimiocina CCL8/metabolismo , Quimiocina CCL8/genética , Mioblastos/metabolismo , Mioblastos/fisiología , Ratones Endogámicos C57BL , Línea Celular , Masculino , Quimiocina CCL7/metabolismo , Quimiocina CCL7/genética , Macrófagos/metabolismo
8.
Am J Physiol Cell Physiol ; 327(2): C415-C422, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38912737

RESUMEN

Although studies have identified characteristics of quiescent satellite cells (SCs), their isolation has been hampered by the fact that the isolation procedures result in the activation of these cells into their rapidly proliferating progeny (myoblasts). Thus, the use of myoblasts for therapeutic (regenerative medicine) or industrial applications (cellular agriculture) has been impeded by the limited proliferative and differentiative capacity of these myogenic progenitors. Here we identify a subpopulation of satellite cells isolated from mouse skeletal muscle using flow cytometry that is highly Pax7-positive, exhibit a very slow proliferation rate (7.7 ± 1.2 days/doubling), and are capable of being maintained in culture for at least 3 mo without a change in phenotype. These cells can be activated from quiescence using a p38 inhibitor or by exposure to freeze-thaw cycles. Once activated, these cells proliferate rapidly (22.7 ± 0.2 h/doubling), have reduced Pax7 expression (threefold decrease in Pax7 fluorescence vs. quiescence), and differentiate into myotubes with a high efficiency. Furthermore, these cells withstand freeze-thawing readily without a significant loss of viability (83.1 ± 2.1% live). The results presented here provide researchers with a method to isolate quiescent satellite cells, allowing for more detailed examinations of the factors affecting satellite cell quiescence/activation and providing a cell source that has a unique potential in the regenerative medicine and cellular agriculture fields.NEW & NOTEWORTHY We provide a method to isolate quiescent satellite cells from skeletal muscle. These cells are highly Pax7-positive, exhibit a very slow proliferation rate, and are capable of being maintained in culture for months without a change in phenotype. The use of these cells by muscle researchers will allow for more detailed examinations of the factors affecting satellite cell quiescence/activation and provide a novel cell source for the regenerative medicine and cellular agriculture fields.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Factor de Transcripción PAX7 , Células Satélite del Músculo Esquelético , Animales , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Ratones , Diferenciación Celular/fisiología , Células Cultivadas , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BL , Separación Celular/métodos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología , Desarrollo de Músculos/fisiología , Masculino
9.
Development ; 148(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33462116

RESUMEN

SMAD2 is a transcription factor, the activity of which is regulated by members of the transforming growth factor ß (TGFß) superfamily. Although activation of SMAD2 and SMAD3 downstream of TGFß or myostatin signaling is known to inhibit myogenesis, we found that SMAD2 in the absence of TGFß signaling promotes terminal myogenic differentiation. We found that, during myogenic differentiation, SMAD2 expression is induced. Knockout of SMAD2 expression in primary myoblasts did not affect the efficiency of myogenic differentiation but produced smaller myotubes with reduced expression of the terminal differentiation marker myogenin. Conversely, overexpression of SMAD2 stimulated myogenin expression, and enhanced both differentiation and fusion, and these effects were independent of classical activation by the TGFß receptor complex. Loss of Smad2 in muscle satellite cells in vivo resulted in decreased muscle fiber caliber and impaired regeneration after acute injury. Taken together, we demonstrate that SMAD2 is an important positive regulator of myogenic differentiation, in part through the regulation of Myog.


Asunto(s)
Diferenciación Celular/fisiología , Desarrollo de Músculos/fisiología , Miogenina/metabolismo , Proteína Smad2/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Miogenina/genética , Miostatina , Transducción de Señal , Proteína Smad2/genética , Proteína smad3 , Factor de Crecimiento Transformador beta/metabolismo
10.
J Anat ; 245(5): 663-673, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39075878

RESUMEN

This study aimed to observe human trapezius muscle (TpzM) development during early fetal period and apply diffusion tensor imaging (DTI) analysis to describe the muscle architecture that leads to physiological functions. Human embryonic and early fetal specimens were selected for this study. TpzM was first detected at Carnegie stage 20. The position of the TpzM changed with the formation of the scapula, clavicle, and vertebrae, which are its insertions and origins. DTI revealed the fiber orientation from each vertebral level to dissect each muscle. Fiber orientation in the ventral view gradually changed from the cervical to thoracic vertebrae, except for the middle part at which the insertions changed, which was almost similar in all early fetal specimens. The TpzM volume increased from C1 to C7 in the upper part, reached local maxima at C6 and C7 in the middle, and then decreased. These muscles can be categorized into three parts according to their insertions and presented with the features of each part. The fiber orientation and distribution of the three parts at the vertebral level were almost constant during the early fetal period. The border between the upper and middle parts was mainly located around the C6 and C7 vertebral levels, whereas the middle and lower parts were between the Th1 and Th2 vertebral levels. A three-dimensional change in the fiber orientation in the upper part of the TpzM according to the vertebral level was noticeable. Our data will help to elucidate the developmental processes of TpzM.


Asunto(s)
Imagen de Difusión Tensora , Feto , Músculos Superficiales de la Espalda , Humanos , Músculos Superficiales de la Espalda/embriología , Feto/anatomía & histología , Desarrollo de Músculos/fisiología , Desarrollo Fetal/fisiología , Femenino
11.
Acta Neuropathol ; 148(1): 43, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283487

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a multisystemic neurodegenerative disorder, with accumulating evidence indicating metabolic disruptions in the skeletal muscle preceding disease symptoms, rather than them manifesting as a secondary consequence of motor neuron (MN) degeneration. Hence, energy homeostasis is deeply implicated in the complex physiopathology of ALS and skeletal muscle has emerged as a key therapeutic target. Here, we describe intrinsic abnormalities in ALS skeletal muscle, both in patient-derived muscle cells and in muscle cell lines with genetic knockdown of genes related to familial ALS, such as TARDBP (TDP-43) and FUS. We found a functional impairment of myogenesis that parallels defects of glucose oxidation in ALS muscle cells. We identified FOXO1 transcription factor as a key mediator of these metabolic and functional features in ALS muscle, via gene expression profiling and biochemical surveys in TDP-43 and FUS-silenced muscle progenitors. Strikingly, inhibition of FOXO1 mitigated the impaired myogenesis in both the genetically modified and the primary ALS myoblasts. In addition, specific in vivo conditional knockdown of TDP-43 or FUS orthologs (TBPH or caz) in Drosophila muscle precursor cells resulted in decreased innervation and profound dysfunction of motor nerve terminals and neuromuscular synapses, accompanied by motor abnormalities and reduced lifespan. Remarkably, these phenotypes were partially corrected by foxo inhibition, bolstering the potential pharmacological management of muscle intrinsic abnormalities associated with ALS. The findings demonstrate an intrinsic muscle dysfunction in ALS, which can be modulated by targeting FOXO factors, paving the way for novel therapeutic approaches that focus on the skeletal muscle as complementary target tissue.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína Forkhead Box O1 , Músculo Esquelético , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Humanos , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Masculino , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Femenino , Drosophila , Desarrollo de Músculos/fisiología , Persona de Mediana Edad , Anciano , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mioblastos/metabolismo
12.
Arch Biochem Biophys ; 752: 109886, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38215960

RESUMEN

Recent studies have shown that some natural compounds from plants prevent obesity and related disorders, including the loss of skeletal muscle mass and strength. In this study, we investigated the effect of echinacoside (ECH), a caffeic acid glycoside from the phenylpropanoid class, on myogenesis and ATP-dependent thermogenesis in the skeletal muscle and its interaction with the dopaminergic receptors 1 and 5 (DRD1 and DRD5). We applied RT-PCR, immunoblot analysis, a staining method, and an assay kit to determine the effects of ECH on diverse target genes and proteins involved in skeletal muscle myogenesis and ATP-consuming futile processes. Our study demonstrated that ECH enhanced myogenic differentiation, glucose, and fatty acid uptake, as well as lipid catabolism, and induced ATP-dependent thermogenesis in vitro and in vivo. Moreover, ECH upregulated mitochondrial biogenesis proteins, mitochondrial oxidative phosphorylation (OXPHOS) complexes, and intracellular Ca2+ signaling as well as thermogenic proteins. These findings were further elucidated by mechanistic studies which showed that ECH mediates myogenesis via the DRD1/5 in C2C12 muscle cells. In addition, ECH stimulates α1-AR-mediated ATP-dependent thermogenesis via the DRD1/5/cAMP/SLN/SERCA1a pathway in C2C12 muscle cells. To the best of our knowledge, this is the first report that demonstrates the myogenic and thermogenic potential of ECH activity through the dopaminergic receptors. Understanding the novel functions of ECH in terms of its ability to prevent skeletal muscle loss and energy expenditure via ATP-consuming futile processes could help to develop potential alternative strategies to address muscle-related diseases, including combating obesity.


Asunto(s)
Músculo Esquelético , Obesidad , Humanos , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Glicósidos/farmacología , Adenosina Trifosfato/metabolismo , Desarrollo de Músculos/fisiología , Termogénesis/fisiología
13.
Cell Biol Int ; 48(11): 1625-1636, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39252384

RESUMEN

Lysosomes are involved in a myriad of cellular functions, such as degradation of macromolecules, endocytosis and exocytosis, modulation of several signaling pathways, and regulation of cell metabolism. To fulfill these diverse functions, lysosomes can undergo several dynamic changes in their content, size, pH, and location within cells. Here, we studied some of these parameters during embryonic chick skeletal muscle cells. We used an anti-lysosome-associated membrane protein 2 (LAMP2) antibody to specifically determine the intracellular localization of lysosomes in these cells. Our data shows that lysosomes are highly enriched in the perinuclear region of chick embryonic muscle cells. We also showed that the wingless signaling pathway (Wnt)/ß-catenin signaling pathway can modulate the location of LAMP2 in chick myogenic cells. Our results highlight the role of lysosomes during muscle differentiation and particularly the presence of a subcellular population of lysosomes that are concentrated in the perinuclear region of muscle cells.


Asunto(s)
Lisosomas , Desarrollo de Músculos , Animales , Lisosomas/metabolismo , Desarrollo de Músculos/fisiología , Embrión de Pollo , Diferenciación Celular/fisiología , Vía de Señalización Wnt/fisiología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Núcleo Celular/metabolismo , Pollos , beta Catenina/metabolismo , Células Musculares/metabolismo , Células Musculares/citología , Células Cultivadas
14.
PLoS Genet ; 17(10): e1009862, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34710100

RESUMEN

ZBED6 (zinc finger BED domain containing protein 6) is a transcription factor unique to placental mammals and its interaction with the IGF2 (insulin-like growth factor 2) locus plays a prominent role in the regulation of postnatal skeletal muscle growth. Here, we generated lean Bama miniature pigs by generating ZBED6-knockout (ZBED6-/-) and investigated the mechanism underlying ZBED6 in growth of muscle and internal organs of placental mammals. ZBED6-/- pigs show markedly higher lean mass, lean mass rate, larger muscle fiber area and heavier internal organs (heart and liver) than wild-type (WT) pigs. The striking phenotypic changes of ZBED6-/- pigs coincided with remarkable upregulation of IGF2 mRNA and protein expression across three tissues (gastrocnemius muscle, longissimus dorsi, heart). Despite a significant increase in liver weight, ZBED6-/- pigs show comparable levels of IGF2 expression to those of WT controls. A mechanistic study revealed that elevated methylation in the liver abrogates ZBED6 binding at the IGF2 locus, explaining the unaltered hepatic IGF2 expression in ZBED6-/- pigs. These results indicate that a ZBED6-IGF2-independent regulatory pathway exists in the liver. Transcriptome analysis and ChIP-PCR revealed new ZBED6 target genes other than IGF2, including cyclin dependent kinase inhibitor 1A (CDKN1A) and tsukushi, small leucine rich proteoglycan (TSKU), that regulates growth of muscle and liver, respectively.


Asunto(s)
Músculo Esquelético/metabolismo , Proteínas Represoras/metabolismo , Animales , Femenino , Regulación de la Expresión Génica/fisiología , Factor II del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Masculino , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/metabolismo , Placenta/metabolismo , Embarazo , Porcinos , Factores de Transcripción/metabolismo , Transcriptoma/fisiología , Regulación hacia Arriba/fisiología
15.
PLoS Genet ; 17(8): e1009729, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34370738

RESUMEN

Muscle precursor cells known as myoblasts are essential for muscle development and regeneration. Notch signaling is an ancient intercellular communication mechanism that plays prominent roles in controlling the myogenic program of myoblasts. Currently whether and how the myogenic cues feedback to refine Notch activities in these cells are largely unknown. Here, by mouse and human gene gain/loss-of-function studies, we report that MyoD directly turns on the expression of Notch-ligand gene Dll1 which activates Notch pathway to prevent precautious differentiation in neighboring myoblasts, while autonomously inhibits Notch to facilitate a myogenic program in Dll1 expressing cells. Mechanistically, we studied cis-regulatory DNA motifs underlying the MyoD-Dll1-Notch axis in vivo by characterizing myogenesis of a novel E-box deficient mouse model, as well as in human cells through CRISPR-mediated interference. These results uncovered the crucial transcriptional mechanism that mediates the reciprocal controls of Notch and myogenesis.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retroalimentación Fisiológica/fisiología , Proteínas de la Membrana/metabolismo , Proteína MioD/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Proteína MioD/fisiología , Mioblastos/metabolismo , Factor de Transcripción PAX7/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética
16.
J Strength Cond Res ; 38(7): 1330-1340, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38595233

RESUMEN

ABSTRACT: Ramos-Campo, DJ, Benito-Peinado, PJ, Caravaca, LA, Rojo-Tirado, MA, and Rubio-Arias, JÁ. Efficacy of split versus full-body resistance training on strength and muscle growth: a systematic review with meta-analysis. J Strength Cond Res 38(7): 1330-1340, 2024-No previous study has systematically compared the effect of 2 resistance training routines commonly used to increase muscle mass and strength (i.e., split [Sp] and full-body [FB] routines). Our objective was to conduct a systematic review and meta-analysis following PRISMA guidelines to compare the effects on strength gains and muscle growth in healthy adults. 14 studies (392 subjects) that compared Sp and FB routines in terms of strength adaptations and muscle growth were included. Regarding the effects of the Sp or FB routine on both bench press and lower limbs strength, the magnitude of the change produced by both routines was similar (bench press: mean difference [MD] = 1.19; [-1.28, 3.65]; p = 0.34; k = 14; lower limb: MD = 2.47; [-2.11, 7.05]; p = 0.29; k = 14). Concerning the effect of the Sp vs. FB routine on muscle growth, similar effects were observed after both routines in the cross-sectional area of the elbow extensors (MD = 0.30; [-2.65, 3.24]; p = 0.84; k = 4), elbow flexors (MD = 0.17; [-2.54, 2.88]; p = 0.91; k = 5), vastus lateralis (MD = -0.08; [-1.82, 1.66]; p = 0.93; k = 5), or lean body mass (MD = -0.07; [-1.59, 1.44]; p = 0.92; k = 6). In conclusion, the present systematic review and meta-analysis provides solid evidence that the use of Sp or FB routines within a resistance training program does not significantly impact either strength gains or muscle hypertrophy when volume is equated. Consequently, individuals are free to confidently select a resistance training routine based on their personal preferences.


Asunto(s)
Fuerza Muscular , Músculo Esquelético , Entrenamiento de Fuerza , Humanos , Entrenamiento de Fuerza/métodos , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/crecimiento & desarrollo , Extremidad Inferior/fisiología , Desarrollo de Músculos/fisiología
17.
Dev Dyn ; 252(9): 1162-1179, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37222488

RESUMEN

BACKGROUND: Betaglycan, also known as the TGFß type III receptor (Tgfbr3), is a co-receptor that modulates TGFß family signaling. Tgfbr3 is upregulated during C2C12 myoblast differentiation and expressed in mouse embryos myocytes. RESULTS: To investigate tgfbr3 transcriptional regulation during zebrafish embryonic myogenesis, we cloned a 3.2 kb promoter fragment that drives reporter transcription during C2C12 myoblasts differentiation and in the Tg(tgfbr3:mCherry) transgenic zebrafish. We detect tgfbr3 protein and mCherry expression in the adaxial cells concomitantly with the onset of their radial migration to become slow-twitch muscle fibers in the Tg(tgfbr3:mCherry). Remarkably, this expression displays a measurable antero-posterior somitic gradient expression. CONCLUSIONS: tgfbr3 is transcriptionally regulated during somitic muscle development in zebrafish with an antero-posterior gradient expression that preferentially marks the adaxial cells and their descendants.


Asunto(s)
Somitos , Pez Cebra , Animales , Ratones , Somitos/metabolismo , Proteoglicanos/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Desarrollo de Músculos/fisiología
18.
Semin Cell Dev Biol ; 119: 3-10, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33972174

RESUMEN

Skeletal muscle cells are noteworthy for their syncytial nature, with each myofiber accumulating hundreds or thousands of nuclei derived from resident muscle stem cells (MuSCs). These nuclei are accrued through cell fusion, which is controlled by the two essential fusogens Myomaker and Myomerger that are transiently expressed within the myogenic lineage. While the absolute requirement of fusion for muscle development has been known for decades, the underlying need for the magnitude of multinucleation in muscle remains mysterious. Possible advantages of multinucleation include the potential it affords for transcriptional diversity within these massive cells, and as a means of increasing DNA content to support optimal cell size and function. In this article, we review recent advances that elucidate the relationship between myonuclear numbers and establishment of myofiber size, and discuss how this new information refines our understanding of the concept of myonuclear domains (MND), the cytoplasmic volumes that each resident myonucleus can support. Finally, we explore the potential consequences and costs of multinucleation and its impacts on myonuclear transcriptional reserve capacity, growth potential, myofiber size regulation, and muscle adaptability. We anticipate this report will not only serve to highlight the latest advances in the basic biology of syncytial muscle cells but also provide information to help design the next generation of therapeutic strategies to maintain muscle mass and function.


Asunto(s)
Núcleo Celular/metabolismo , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/metabolismo , Humanos
19.
Semin Cell Dev Biol ; 119: 39-48, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941447

RESUMEN

Human pluripotent stem cells (PSCs), which have the capacity to self-renew and differentiate into multiple cell types, offer tremendous therapeutic potential and invaluable flexibility as research tools. Recently, remarkable progress has been made in directing myogenic differentiation of human PSCs. The differentiation strategies, which were inspired by our knowledge of myogenesis in vivo, have provided an important platform for the study of human muscle development and modeling of muscular diseases, as well as a promising source of cells for cell therapy to treat muscular dystrophies. In this review, we summarize the current state of skeletal muscle generation from human PSCs, including transgene-based and transgene-free differentiation protocols, and 3D muscle tissue production through bioengineering approaches. We also highlight their basic and clinical applications, which facilitate the study of human muscle biology and deliver new hope for muscular disease treatment.


Asunto(s)
Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Células Madre Pluripotentes/metabolismo , Ingeniería de Tejidos/métodos , Humanos
20.
J Biol Chem ; 298(1): 101516, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34942145

RESUMEN

The thymus is the central immune organ, but it is known to progressively degenerate with age. As thymus degeneration is paralleled by the wasting of aging skeletal muscle, we speculated that the thymus may play a role in muscle wasting. Here, using thymectomized mice, we show that the thymus is necessary for skeletal muscle regeneration, a process tightly associated with muscle aging. Compared to control mice, the thymectomized mice displayed comparable growth of muscle mass, but decreased muscle regeneration in response to injury, as evidenced by small and sparse regenerative myofibers along with inhibited expression of regeneration-associated genes myh3, myod, and myogenin. Using paired box 7 (Pax7)-immunofluorescence staining and 5-Bromo-2'-deoxyuridine-incorporation assay, we determined that the decreased regeneration capacity was caused by a limited satellite cell pool. Interestingly, the conditioned culture medium of isolated thymocytes had a potent capacity to directly stimulate satellite cell expansion in vitro. These expanded cells were enriched in subpopulations of quiescent satellite cells (Pax7highMyoDlowEdUpos) and activated satellite cells (Pax7highMyoDhighEdUpos), which were efficiently incorporated into the regenerative myofibers. We thus propose that the thymus plays an essential role in muscle regeneration by directly promoting satellite cell expansion and may function profoundly in the muscle aging process.


Asunto(s)
Músculo Esquelético , Regeneración , Células Satélite del Músculo Esquelético , Timo , Animales , Diferenciación Celular , Proliferación Celular , Ratones , Desarrollo de Músculos/fisiología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Regeneración/fisiología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Timo/metabolismo , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA