Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97.591
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 92: 385-410, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37127263

RESUMEN

Carbon fixation is the process by which CO2 is converted from a gas into biomass. The Calvin-Benson-Bassham cycle (CBB) is the dominant carbon-consuming pathway on Earth, driving >99.5% of the ∼120 billion tons of carbon that are converted to sugar by plants, algae, and cyanobacteria. The carboxylase enzyme in the CBB, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fixes one CO2 molecule per turn of the cycle into bioavailable sugars. Despite being critical to the assimilation of carbon, rubisco's kinetic rate is not very fast, limiting flux through the pathway. This bottleneck presents a paradox: Why has rubisco not evolved to be a better catalyst? Many hypothesize that the catalytic mechanism of rubisco is subject to one or more trade-offs and that rubisco variants have been optimized for their native physiological environment. Here, we review the evolution and biochemistry of rubisco through the lens of structure and mechanism in order to understand what trade-offs limit its improvement. We also review the many attempts to improve rubisco itself and thereby promote plant growth.


Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis
2.
Cell ; 179(6): 1244-1245, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31778649

RESUMEN

It is challenging to convert a heterotrophic organism that loves sugars and other multicarbon compounds as energy and carbon sources into an autotroph that builds all biomass from carbon dioxide. In this issue, Gleizer et al. demonstrate how this can be achieved.


Asunto(s)
Procesos Autotróficos/fisiología , Escherichia coli/fisiología , Biomasa , Dióxido de Carbono/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
3.
Cell ; 179(6): 1255-1263.e12, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31778652

RESUMEN

The living world is largely divided into autotrophs that convert CO2 into biomass and heterotrophs that consume organic compounds. In spite of widespread interest in renewable energy storage and more sustainable food production, the engineering of industrially relevant heterotrophic model organisms to use CO2 as their sole carbon source has so far remained an outstanding challenge. Here, we report the achievement of this transformation on laboratory timescales. We constructed and evolved Escherichia coli to produce all its biomass carbon from CO2. Reducing power and energy, but not carbon, are supplied via the one-carbon molecule formate, which can be produced electrochemically. Rubisco and phosphoribulokinase were co-expressed with formate dehydrogenase to enable CO2 fixation and reduction via the Calvin-Benson-Bassham cycle. Autotrophic growth was achieved following several months of continuous laboratory evolution in a chemostat under intensifying organic carbon limitation and confirmed via isotopic labeling.


Asunto(s)
Biomasa , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Escherichia coli/metabolismo , Adaptación Fisiológica/genética , Aminoácidos/metabolismo , Procesos Autotróficos/fisiología , Isótopos de Carbono , Evolución Molecular Dirigida , Escherichia coli/genética , Marcaje Isotópico , Ingeniería Metabólica , Análisis de Flujos Metabólicos , Mutación/genética
4.
Cell ; 171(1): 148-162.e19, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28938114

RESUMEN

Approximately 30%-40% of global CO2 fixation occurs inside a non-membrane-bound organelle called the pyrenoid, which is found within the chloroplasts of most eukaryotic algae. The pyrenoid matrix is densely packed with the CO2-fixing enzyme Rubisco and is thought to be a crystalline or amorphous solid. Here, we show that the pyrenoid matrix of the unicellular alga Chlamydomonas reinhardtii is not crystalline but behaves as a liquid that dissolves and condenses during cell division. Furthermore, we show that new pyrenoids are formed both by fission and de novo assembly. Our modeling predicts the existence of a "magic number" effect associated with special, highly stable heterocomplexes that influences phase separation in liquid-like organelles. This view of the pyrenoid matrix as a phase-separated compartment provides a paradigm for understanding its structure, biogenesis, and regulation. More broadly, our findings expand our understanding of the principles that govern the architecture and inheritance of liquid-like organelles.


Asunto(s)
Chlamydomonas reinhardtii/citología , Cloroplastos/ultraestructura , Proteínas Algáceas/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Microscopía por Crioelectrón , Biogénesis de Organelos , Ribulosa-Bifosfato Carboxilasa/metabolismo
5.
Cell ; 171(1): 133-147.e14, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28938113

RESUMEN

Approximately one-third of global CO2 fixation is performed by eukaryotic algae. Nearly all algae enhance their carbon assimilation by operating a CO2-concentrating mechanism (CCM) built around an organelle called the pyrenoid, whose protein composition is largely unknown. Here, we developed tools in the model alga Chlamydomonas reinhardtii to determine the localizations of 135 candidate CCM proteins and physical interactors of 38 of these proteins. Our data reveal the identity of 89 pyrenoid proteins, including Rubisco-interacting proteins, photosystem I assembly factor candidates, and inorganic carbon flux components. We identify three previously undescribed protein layers of the pyrenoid: a plate-like layer, a mesh layer, and a punctate layer. We find that the carbonic anhydrase CAH6 is in the flagella, not in the stroma that surrounds the pyrenoid as in current models. These results provide an overview of proteins operating in the eukaryotic algal CCM, a key process that drives global carbon fixation.


Asunto(s)
Proteínas Algáceas/metabolismo , Ciclo del Carbono , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Proteínas Algáceas/química , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Chlamydomonas reinhardtii/química , Cloroplastos/química , Proteínas Luminiscentes/análisis , Microscopía Confocal , Fotosíntesis , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo
6.
Annu Rev Biochem ; 85: 455-83, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26844394

RESUMEN

Nitrogenase is a versatile metalloenzyme that is capable of catalyzing two important reactions under ambient conditions: the reduction of nitrogen (N2) to ammonia (NH3), a key step in the global nitrogen cycle; and the reduction of carbon monoxide (CO) and carbon dioxide (CO2) to hydrocarbons, two reactions useful for recycling carbon waste into carbon fuel. The molybdenum (Mo)- and vanadium (V)-nitrogenases are two homologous members of this enzyme family. Each of them contains a P-cluster and a cofactor, two high-nuclearity metalloclusters that have crucial roles in catalysis. This review summarizes the progress that has been made in elucidating the biosynthetic mechanisms of the P-cluster and cofactor species of nitrogenase, focusing on what is known about the assembly mechanisms of the two metalloclusters in Mo-nitrogenase and giving a brief account of the possible assembly schemes of their counterparts in V-nitrogenase, which are derived from the homology between the two nitrogenases.


Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Molibdeno/metabolismo , Nitrogenasa/metabolismo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Amoníaco/química , Amoníaco/metabolismo , Azotobacter vinelandii/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Coenzimas/química , Hierro/química , Hierro/metabolismo , Molibdeno/química , Nitrógeno/química , Nitrógeno/metabolismo , Nitrogenasa/química , Nitrogenasa/genética , Oxidación-Reducción , Subunidades de Proteína/química , Subunidades de Proteína/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vanadio/química , Vanadio/metabolismo
7.
Cell ; 166(1): 115-25, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27345370

RESUMEN

Can a heterotrophic organism be evolved to synthesize biomass from CO2 directly? So far, non-native carbon fixation in which biomass precursors are synthesized solely from CO2 has remained an elusive grand challenge. Here, we demonstrate how a combination of rational metabolic rewiring, recombinant expression, and laboratory evolution has led to the biosynthesis of sugars and other major biomass constituents by a fully functional Calvin-Benson-Bassham (CBB) cycle in E. coli. In the evolved bacteria, carbon fixation is performed via a non-native CBB cycle, while reducing power and energy are obtained by oxidizing a supplied organic compound (e.g., pyruvate). Genome sequencing reveals that mutations in flux branchpoints, connecting the non-native CBB cycle to biosynthetic pathways, are essential for this phenotype. The successful evolution of a non-native carbon fixation pathway, though not yet resulting in net carbon gain, strikingly demonstrates the capacity for rapid trophic-mode evolution of metabolism applicable to biotechnology. PAPERCLIP.


Asunto(s)
Dióxido de Carbono/metabolismo , Evolución Molecular Dirigida , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconeogénesis , Redes y Vías Metabólicas , Procesos Autotróficos , Carbohidratos/biosíntesis , Escherichia coli/crecimiento & desarrollo , Espectrometría de Masas
8.
Nature ; 630(8017): 654-659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839965

RESUMEN

Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.


Asunto(s)
Dióxido de Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Adsorción , Electrodos , Hidróxidos/química , Atmósfera/química , Carbonatos/química , Aire , Temperatura , Carbón Orgánico/química , Porosidad , Carbono/química
9.
Nature ; 630(8017): 660-665, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839955

RESUMEN

The capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO2 concentrations depends on soil nutrient availability1,2. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO2 (refs. 3-6), but uncertainty about ecosystem P cycling and its CO2 response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change7. Here, by compiling the first comprehensive P budget for a P-limited mature forest exposed to elevated CO2, we show a high likelihood that P captured by soil microorganisms constrains ecosystem P recycling and availability for plant uptake. Trees used P efficiently, but microbial pre-emption of mineralized soil P seemed to limit the capacity of trees for increased P uptake and assimilation under elevated CO2 and, therefore, their capacity to sequester extra C. Plant strategies to stimulate microbial P cycling and plant P uptake, such as increasing rhizosphere C release to soil, will probably be necessary for P-limited forests to increase C capture into new biomass. Our results identify the key mechanisms by which P availability limits CO2 fertilization of tree growth and will guide the development of Earth system models to predict future long-term C storage.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Bosques , Fósforo , Microbiología del Suelo , Árboles , Biomasa , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Fósforo/metabolismo , Rizosfera , Suelo/química , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Cambio Climático
10.
Nature ; 631(8021): 563-569, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39020035

RESUMEN

The uptake of carbon dioxide (CO2) by terrestrial ecosystems is critical for moderating climate change1. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO2 uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr-1 in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr-1 in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (-36 ± 6%) and tropical intact (-31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased2, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr-1 in 1990-2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr-1 in 1990-2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes1. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices1,3.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Bosques , Internacionalidad , Árboles , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias , Combustibles Fósiles/efectos adversos , Combustibles Fósiles/provisión & distribución , Taiga , Árboles/metabolismo , Árboles/crecimiento & desarrollo , Clima Tropical
11.
Nature ; 629(8011): 295-306, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720037

RESUMEN

Fossil fuels-coal, oil and gas-supply most of the world's energy and also form the basis of many products essential for everyday life. Their use is the largest contributor to the carbon dioxide emissions that drive global climate change, prompting joint efforts to find renewable alternatives that might enable a carbon-neutral society by as early as 2050. There are clear paths for renewable electricity to replace fossil-fuel-based energy, but the transport fuels and chemicals produced in oil refineries will still be needed. We can attempt to close the carbon cycle associated with their use by electrifying refinery processes and by changing the raw materials that go into a refinery from fossils fuels to carbon dioxide for making hydrocarbon fuels and to agricultural and municipal waste for making chemicals and polymers. We argue that, with sufficient long-term commitment and support, the science and technology for such a completely fossil-free refinery, delivering the products required after 2050 (less fuels, more chemicals), could be developed. This future refinery will require substantially larger areas and greater mineral resources than is the case at present and critically depends on the capacity to generate large amounts of renewable energy for hydrogen production and carbon dioxide capture.


Asunto(s)
Dióxido de Carbono , Combustibles Fósiles , Industria del Petróleo y Gas , Energía Renovable , Ciclo del Carbono , Dióxido de Carbono/efectos adversos , Dióxido de Carbono/aislamiento & purificación , Carbón Mineral/efectos adversos , Carbón Mineral/provisión & distribución , Combustibles Fósiles/efectos adversos , Combustibles Fósiles/provisión & distribución , Hidrógeno/química , Gas Natural/efectos adversos , Gas Natural/provisión & distribución , Petróleo/efectos adversos , Petróleo/provisión & distribución , Energía Renovable/estadística & datos numéricos , Industria del Petróleo y Gas/métodos , Industria del Petróleo y Gas/tendencias
12.
Nature ; 626(7997): 45-57, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297170

RESUMEN

The linear production and consumption of plastics today is unsustainable. It creates large amounts of unnecessary and mismanaged waste, pollution and carbon dioxide emissions, undermining global climate targets and the Sustainable Development Goals. This Perspective provides an integrated technological, economic and legal view on how to deliver a circular carbon and plastics economy that minimizes carbon dioxide emissions. Different pathways that maximize recirculation of carbon (dioxide) between plastics waste and feedstocks are outlined, including mechanical, chemical and biological recycling, and those involving the use of biomass and carbon dioxide. Four future scenarios are described, only one of which achieves sufficient greenhouse gas savings in line with global climate targets. Such a bold system change requires 50% reduction in future plastic demand, complete phase-out of fossil-derived plastics, 95% recycling rates of retrievable plastics and use of renewable energy. It is hard to overstate the challenge of achieving this goal. We therefore present a roadmap outlining the scale and timing of the economic and legal interventions that could possibly support this. Assessing the service lifespan and recoverability of plastic products, along with considerations of sufficiency and smart design, can moreover provide design principles to guide future manufacturing, use and disposal of plastics.


Asunto(s)
Contaminación Ambiental , Objetivos , Plásticos , Reciclaje , Desarrollo Sostenible , Biomasa , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Contaminación Ambiental/economía , Contaminación Ambiental/legislación & jurisprudencia , Contaminación Ambiental/prevención & control , Contaminación Ambiental/estadística & datos numéricos , Combustibles Fósiles , Calentamiento Global/prevención & control , Gases de Efecto Invernadero/análisis , Plásticos/síntesis química , Plásticos/economía , Plásticos/metabolismo , Plásticos/provisión & distribución , Reciclaje/economía , Reciclaje/legislación & jurisprudencia , Reciclaje/métodos , Reciclaje/tendencias , Energía Renovable , Desarrollo Sostenible/economía , Desarrollo Sostenible/legislación & jurisprudencia , Desarrollo Sostenible/tendencias , Tecnología/economía , Tecnología/legislación & jurisprudencia , Tecnología/métodos , Tecnología/tendencias
13.
Nat Rev Mol Cell Biol ; 23(8): 519, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798850
14.
Cell ; 156(5): 1060-71, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24581501

RESUMEN

Multiple sensory cues emanating from humans are thought to guide blood-feeding female mosquitoes to a host. To determine the relative contribution of carbon dioxide (CO2) detection to mosquito host-seeking behavior, we mutated the AaegGr3 gene, a subunit of the heteromeric CO2 receptor in Aedes aegypti mosquitoes. Gr3 mutants lack electrophysiological and behavioral responses to CO2. These mutants also fail to show CO2-evoked responses to heat and lactic acid, a human-derived attractant, suggesting that CO2 can gate responses to other sensory stimuli. Whereas attraction of Gr3 mutants to live humans in a large semi-field environment was only slightly impaired, responses to an animal host were greatly reduced in a spatial-scale-dependent manner. Synergistic integration of heat and odor cues likely drive host-seeking behavior in the absence of CO2 detection. We reveal a networked series of interactions by which multimodal integration of CO2, human odor, and heat orchestrates mosquito attraction to humans.


Asunto(s)
Aedes/fisiología , Dióxido de Carbono , Animales , Sangre , Humanos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos Vectores/fisiología , Ácido Láctico/metabolismo , Odorantes , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
15.
Cell ; 156(5): 878-81, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24581489

RESUMEN

Mosquitoes are a great threat to human health. Fortunately, they have a weakness: they utilize their sense of smell to target a human host. Recent studies examine the effectiveness of protecting humans from attack by ablating or odorant targeting mosquito olfactory receptors. The results are both promising and alarming.


Asunto(s)
Culicidae/efectos de los fármacos , Culicidae/fisiología , Mordeduras y Picaduras de Insectos , Control de Mosquitos , Animales , Dióxido de Carbono/metabolismo , Humanos , Proteínas de Insectos/metabolismo , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Olfato
16.
Nature ; 613(7944): 449-459, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653564

RESUMEN

River networks represent the largest biogeochemical nexus between the continents, ocean and atmosphere. Our current understanding of the role of rivers in the global carbon cycle remains limited, which makes it difficult to predict how global change may alter the timing and spatial distribution of riverine carbon sequestration and greenhouse gas emissions. Here we review the state of river ecosystem metabolism research and synthesize the current best available estimates of river ecosystem metabolism. We quantify the organic and inorganic carbon flux from land to global rivers and show that their net ecosystem production and carbon dioxide emissions shift the organic to inorganic carbon balance en route from land to the coastal ocean. Furthermore, we discuss how global change may affect river ecosystem metabolism and related carbon fluxes and identify research directions that can help to develop better predictions of the effects of global change on riverine ecosystem processes. We argue that a global river observing system will play a key role in understanding river networks and their future evolution in the context of the global carbon budget.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono , Ecosistema , Ríos , Dióxido de Carbono/análisis , Secuestro de Carbono , Gases de Efecto Invernadero/análisis
17.
Nature ; 620(7975): 746-749, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37337068

RESUMEN

Seven rocky planets orbit the nearby dwarf star TRAPPIST-1, providing a unique opportunity to search for atmospheres on small planets outside the Solar System1. Thanks to the recent launch of the James Webb Space Telescope (JWST), possible atmospheric constituents such as carbon dioxide (CO2) are now detectable2,3. Recent JWST observations of the innermost planet TRAPPIST-1 b showed that it is most probably a bare rock without any CO2 in its atmosphere4. Here we report the detection of thermal emission from the dayside of TRAPPIST-1 c with the Mid-Infrared Instrument (MIRI) on JWST at 15 µm. We measure a planet-to-star flux ratio of fp/f⁎ = 421 ± 94 parts per million (ppm), which corresponds to an inferred dayside brightness temperature of 380 ± 31 K. This high dayside temperature disfavours a thick, CO2-rich atmosphere on the planet. The data rule out cloud-free O2/CO2 mixtures with surface pressures ranging from 10 bar (with 10 ppm CO2) to 0.1 bar (pure CO2). A Venus-analogue atmosphere with sulfuric acid clouds is also disfavoured at 2.6σ confidence. Thinner atmospheres or bare-rock surfaces are consistent with our measured planet-to-star flux ratio. The absence of a thick, CO2-rich atmosphere on TRAPPIST-1 c suggests a relatively volatile-poor formation history, with less than [Formula: see text] Earth oceans of water. If all planets in the system formed in the same way, this would indicate a limited reservoir of volatiles for the potentially habitable planets in the system.


Asunto(s)
Atmósfera , Dióxido de Carbono , Medio Ambiente Extraterrestre , Planetas , Atmósfera/química , Dióxido de Carbono/análisis , Exobiología , Medio Ambiente Extraterrestre/química
18.
Nature ; 618(7966): 755-760, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258674

RESUMEN

Terrestrial ecosystems have taken up about 32% of the total anthropogenic CO2 emissions in the past six decades1. Large uncertainties in terrestrial carbon-climate feedbacks, however, make it difficult to predict how the land carbon sink will respond to future climate change2. Interannual variations in the atmospheric CO2 growth rate (CGR) are dominated by land-atmosphere carbon fluxes in the tropics, providing an opportunity to explore land carbon-climate interactions3-6. It is thought that variations in CGR are largely controlled by temperature7-10 but there is also evidence for a tight coupling between water availability and CGR11. Here, we use a record of global atmospheric CO2, terrestrial water storage and precipitation data to investigate changes in the interannual relationship between tropical land climate conditions and CGR under a changing climate. We find that the interannual relationship between tropical water availability and CGR became increasingly negative during 1989-2018 compared to 1960-1989. This could be related to spatiotemporal changes in tropical water availability anomalies driven by shifts in El Niño/Southern Oscillation teleconnections, including declining spatial compensatory water effects9. We also demonstrate that most state-of-the-art coupled Earth System and Land Surface models do not reproduce the intensifying water-carbon coupling. Our results indicate that tropical water availability is increasingly controlling the interannual variability of the terrestrial carbon cycle and modulating tropical terrestrial carbon-climate feedbacks.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono , Cambio Climático , Ecosistema , Análisis Espacio-Temporal , Clima Tropical , Agua , Atmósfera/química , Carbono/análisis , Carbono/metabolismo , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Agua/análisis , Agua/química , Secuestro de Carbono , Lluvia , El Niño Oscilación del Sur , Retroalimentación
19.
Nature ; 615(7950): 67-72, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36603811

RESUMEN

Pyridines and related N-heteroarenes are commonly found in pharmaceuticals, agrochemicals and other biologically active compounds1,2. Site-selective C-H functionalization would provide a direct way of making these medicinally active products3-5. For example, nicotinic acid derivatives could be made by C-H carboxylation, but this remains an elusive transformation6-8. Here we describe the development of an electrochemical strategy for the direct carboxylation of pyridines using CO2. The choice of the electrolysis setup gives rise to divergent site selectivity: a divided electrochemical cell leads to C5 carboxylation, whereas an undivided cell promotes C4 carboxylation. The undivided-cell reaction is proposed to operate through a paired-electrolysis mechanism9,10, in which both cathodic and anodic events play critical roles in altering the site selectivity. Specifically, anodically generated iodine preferentially reacts with a key radical anion intermediate in the C4-carboxylation pathway through hydrogen-atom transfer, thus diverting the reaction selectivity by means of the Curtin-Hammett principle11. The scope of the transformation was expanded to a wide range of N-heteroarenes, including bipyridines and terpyridines, pyrimidines, pyrazines and quinolines.


Asunto(s)
Dióxido de Carbono , Electroquímica , Pirazinas , Piridinas , Pirimidinas , Quinolinas , Hidrógeno/química , Pirazinas/química , Piridinas/química , Pirimidinas/química , Electroquímica/métodos , Dióxido de Carbono/química , Quinolinas/química , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química
20.
Nature ; 624(7992): 579-585, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38057667

RESUMEN

The transfer of photosynthetically produced organic carbon from surface to mesopelagic waters draws carbon dioxide from the atmosphere1. However, current observation-based estimates disagree on the strength of this biological carbon pump (BCP)2. Earth system models (ESMs) also exhibit a large spread of BCP estimates, indicating limited representations of the known carbon export pathways3. Here we use several decades of hydrographic observations to produce a top-down estimate of the strength of the BCP with an inverse biogeochemical model that implicitly accounts for all known export pathways. Our estimate of total organic carbon (TOC) export at 73.4 m (model euphotic zone depth) is 15.00 ± 1.12 Pg C year-1, with only two-thirds reaching 100 m depth owing to rapid remineralization of organic matter in the upper water column. Partitioned by sequestration time below the euphotic zone, τ, the globally integrated organic carbon production rate with τ > 3 months is 11.09 ± 1.02 Pg C year-1, dropping to 8.25 ± 0.30 Pg C year-1 for τ > 1 year, with 81% contributed by the non-advective-diffusive vertical flux owing to sinking particles and vertically migrating zooplankton. Nevertheless, export of organic carbon by mixing and other fluid transport of dissolved matter and suspended particles remains regionally important for meeting the respiratory carbon demand. Furthermore, the temperature dependence of the sequestration efficiency inferred from our inversion suggests that future global warming may intensify the recycling of organic matter in the upper ocean, potentially weakening the BCP.


Asunto(s)
Dióxido de Carbono , Agua de Mar , Agua , Animales , Dióxido de Carbono/metabolismo , Fotosíntesis , Agua de Mar/química , Agua/química , Agua/metabolismo , Zooplancton/metabolismo , Calentamiento Global , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA