Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.387
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(7): 1478-1492.e15, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36870331

RESUMEN

Lungs undergo mechanical strain during breathing, but how these biophysical forces affect cell fate and tissue homeostasis are unclear. We show that biophysical forces through normal respiratory motion actively maintain alveolar type 1 (AT1) cell identity and restrict these cells from reprogramming into AT2 cells in the adult lung. AT1 cell fate is maintained at homeostasis by Cdc42- and Ptk2-mediated actin remodeling and cytoskeletal strain, and inactivation of these pathways causes a rapid reprogramming into the AT2 cell fate. This plasticity induces chromatin reorganization and changes in nuclear lamina-chromatin interactions, which can discriminate AT1 and AT2 cell identity. Unloading the biophysical forces of breathing movements leads to AT1-AT2 cell reprogramming, revealing that normal respiration is essential to maintain alveolar epithelial cell fate. These data demonstrate the integral function of mechanotransduction in maintaining lung cell fate and identifies the AT1 cell as an important mechanosensor in the alveolar niche.


Asunto(s)
Células Epiteliales Alveolares , Mecanotransducción Celular , Células Epiteliales Alveolares/metabolismo , Células Cultivadas , Pulmón , Diferenciación Celular/fisiología , Respiración
2.
Cell ; 186(6): 1179-1194.e15, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931245

RESUMEN

The human brain undergoes rapid development at mid-gestation from a pool of neural stem and progenitor cells (NSPCs) that give rise to the neurons, oligodendrocytes, and astrocytes of the mature brain. Functional study of these cell types has been hampered by a lack of precise purification methods. We describe a method for prospectively isolating ten distinct NSPC types from the developing human brain using cell-surface markers. CD24-THY1-/lo cells were enriched for radial glia, which robustly engrafted and differentiated into all three neural lineages in the mouse brain. THY1hi cells marked unipotent oligodendrocyte precursors committed to an oligodendroglial fate, and CD24+THY1-/lo cells marked committed excitatory and inhibitory neuronal lineages. Notably, we identify and functionally characterize a transcriptomically distinct THY1hiEGFRhiPDGFRA- bipotent glial progenitor cell (GPC), which is lineage-restricted to astrocytes and oligodendrocytes, but not to neurons. Our study provides a framework for the functional study of distinct cell types in human neurodevelopment.


Asunto(s)
Células-Madre Neurales , Ratones , Animales , Humanos , Células-Madre Neurales/metabolismo , Neuronas , Diferenciación Celular/fisiología , Neuroglía/metabolismo , Encéfalo , Astrocitos
3.
Cell ; 186(12): 2610-2627.e18, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37209682

RESUMEN

The hourglass model describes the convergence of species within the same phylum to a similar body plan during development; however, the molecular mechanisms underlying this phenomenon in mammals remain poorly described. Here, we compare rabbit and mouse time-resolved differentiation trajectories to revisit this model at single-cell resolution. We modeled gastrulation dynamics using hundreds of embryos sampled between gestation days 6.0 and 8.5 and compared the species using a framework for time-resolved single-cell differentiation-flows analysis. We find convergence toward similar cell-state compositions at E7.5, supported by the quantitatively conserved expression of 76 transcription factors, despite divergence in surrounding trophoblast and hypoblast signaling. However, we observed noticeable changes in specification timing of some lineages and divergence of primordial germ cell programs, which in the rabbit do not activate mesoderm genes. Comparative analysis of temporal differentiation models provides a basis for studying the evolution of gastrulation dynamics across mammals.


Asunto(s)
Gastrulación , Mesodermo , Animales , Conejos , Ratones , Gastrulación/genética , Mesodermo/fisiología , Diferenciación Celular/fisiología , Mamíferos/genética , Trofoblastos , Regulación del Desarrollo de la Expresión Génica
4.
Cell ; 185(18): 3290-3306.e25, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35988542

RESUMEN

In vitro cultured stem cells with distinct developmental capacities can contribute to embryonic or extraembryonic tissues after microinjection into pre-implantation mammalian embryos. However, whether cultured stem cells can independently give rise to entire gastrulating embryo-like structures with embryonic and extraembryonic compartments remains unknown. Here, we adapt a recently established platform for prolonged ex utero growth of natural embryos to generate mouse post-gastrulation synthetic whole embryo models (sEmbryos), with both embryonic and extraembryonic compartments, starting solely from naive ESCs. This was achieved by co-aggregating non-transduced ESCs, with naive ESCs transiently expressing Cdx2 or Gata4 to promote their priming toward trophectoderm and primitive endoderm lineages, respectively. sEmbryos adequately accomplish gastrulation, advance through key developmental milestones, and develop organ progenitors within complex extraembryonic compartments similar to E8.5 stage mouse embryos. Our findings highlight the plastic potential of naive pluripotent cells to self-organize and functionally reconstitute and model the entire mammalian embryo beyond gastrulation.


Asunto(s)
Células Madre Embrionarias , Gastrulación , Animales , Diferenciación Celular/fisiología , Embrión de Mamíferos/fisiología , Desarrollo Embrionario , Endodermo , Mamíferos , Ratones
5.
Cell ; 185(5): 777-793.e20, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35196500

RESUMEN

In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive. Here, we investigate the mechanical basis of EPI and PrE sorting. We find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting. These differential surface fluctuations systematically correlate with differential cellular fluidity, which we propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, we identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages.


Asunto(s)
Blastocisto , Embrión de Mamíferos , Endodermo , Animales , Blastocisto/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Membrana Celular/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Endodermo/metabolismo , Mamíferos , Ratones , Transporte de Proteínas
6.
Nat Immunol ; 24(12): 2042-2052, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919525

RESUMEN

Tumor-derived factors are thought to regulate thrombocytosis and erythrocytopenia in individuals with cancer; however, such factors have not yet been identified. Here we show that tumor cell-released kynurenine (Kyn) biases megakaryocytic-erythroid progenitor cell (MEP) differentiation into megakaryocytes in individuals with cancer by activating the aryl hydrocarbon receptor-Runt-related transcription factor 1 (AhR-RUNX1) axis. During tumor growth, large amounts of Kyn from tumor cells are released into the periphery, where they are taken up by MEPs via the transporter SLC7A8. In the cytosol, Kyn binds to and activates AhR, leading to its translocation into the nucleus where AhR transactivates RUNX1, thus regulating MEP differentiation into megakaryocytes. In addition, activated AhR upregulates SLC7A8 in MEPs to induce positive feedback. Importantly, Kyn-AhR-RUNX1-regulated MEP differentiation was demonstrated in both humanized mice and individuals with cancer, providing potential strategies for the prevention of thrombocytosis and erythrocytopenia.


Asunto(s)
Neoplasias , Trombocitosis , Animales , Ratones , Quinurenina/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Megacariocitos/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Precursoras Eritroides/metabolismo , Diferenciación Celular/fisiología , Neoplasias/metabolismo , Trombocitosis/metabolismo , Sesgo
7.
Cell ; 180(2): 359-372.e16, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31955846

RESUMEN

Toxoplasma gondii chronically infects a quarter of the world's population, and its recrudescence can cause life-threatening disease in immunocompromised individuals and recurrent ocular lesions in the immunocompetent. Acute-stage tachyzoites differentiate into chronic-stage bradyzoites, which form intracellular cysts resistant to immune clearance and existing therapies. The molecular basis of this differentiation is unknown, despite being efficiently triggered by stresses in culture. Through Cas9-mediated screening and single-cell profiling, we identify a Myb-like transcription factor (BFD1) necessary for differentiation in cell culture and in mice. BFD1 accumulates during stress and its synthetic expression is sufficient to drive differentiation. Consistent with its function as a transcription factor, BFD1 binds the promoters of many stage-specific genes and represents a counterpoint to the ApiAP2 factors that dominate our current view of parasite gene regulation. BFD1 provides a genetic switch to study and control Toxoplasma differentiation and will inform prevention and treatment of chronic infections.


Asunto(s)
Diferenciación Celular/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasma/genética , Animales , Diferenciación Celular/fisiología , Femenino , Fibroblastos , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos , Filogenia , Regiones Promotoras Genéticas/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Factores de Transcripción/genética
8.
Cell ; 181(3): 604-620.e22, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259486

RESUMEN

During embryonic and postnatal development, organs and tissues grow steadily to achieve their final size at the end of puberty. However, little is known about the cellular dynamics that mediate postnatal growth. By combining in vivo clonal lineage tracing, proliferation kinetics, single-cell transcriptomics, and in vitro micro-pattern experiments, we resolved the cellular dynamics taking place during postnatal skin epidermis expansion. Our data revealed that harmonious growth is engineered by a single population of developmental progenitors presenting a fixed fate imbalance of self-renewing divisions with an ever-decreasing proliferation rate. Single-cell RNA sequencing revealed that epidermal developmental progenitors form a more uniform population compared with adult stem and progenitor cells. Finally, we found that the spatial pattern of cell division orientation is dictated locally by the underlying collagen fiber orientation. Our results uncover a simple design principle of organ growth where progenitors and differentiated cells expand in harmony with their surrounding tissues.


Asunto(s)
Células Epidérmicas/metabolismo , Epidermis/crecimiento & desarrollo , Piel/crecimiento & desarrollo , Animales , Animales no Consanguíneos , Diferenciación Celular/fisiología , División Celular/fisiología , Linaje de la Célula/genética , Proliferación Celular/fisiología , Células Cultivadas , Células Epidérmicas/patología , Epidermis/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Células Madre/citología
9.
Cell ; 181(3): 590-603.e16, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32272060

RESUMEN

Conversion of glial cells into functional neurons represents a potential therapeutic approach for replenishing neuronal loss associated with neurodegenerative diseases and brain injury. Previous attempts in this area using expression of transcription factors were hindered by the low conversion efficiency and failure of generating desired neuronal types in vivo. Here, we report that downregulation of a single RNA-binding protein, polypyrimidine tract-binding protein 1 (Ptbp1), using in vivo viral delivery of a recently developed RNA-targeting CRISPR system CasRx, resulted in the conversion of Müller glia into retinal ganglion cells (RGCs) with a high efficiency, leading to the alleviation of disease symptoms associated with RGC loss. Furthermore, this approach also induced neurons with dopaminergic features in the striatum and alleviated motor defects in a Parkinson's disease mouse model. Thus, glia-to-neuron conversion by CasRx-mediated Ptbp1 knockdown represents a promising in vivo genetic approach for treating a variety of disorders due to neuronal loss.


Asunto(s)
Neurogénesis/fisiología , Neuroglía/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Sistemas CRISPR-Cas/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Modelos Animales de Enfermedad , Dopamina/metabolismo , Regulación de la Expresión Génica/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Células Ganglionares de la Retina/fisiología
10.
Cell ; 180(6): 1198-1211.e19, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32200801

RESUMEN

It has generally proven challenging to produce functional ß cells in vitro. Here, we describe a previously unidentified protein C receptor positive (Procr+) cell population in adult mouse pancreas through single-cell RNA sequencing (scRNA-seq). The cells reside in islets, do not express differentiation markers, and feature epithelial-to-mesenchymal transition characteristics. By genetic lineage tracing, Procr+ islet cells undergo clonal expansion and generate all four endocrine cell types during adult homeostasis. Sorted Procr+ cells, representing ∼1% of islet cells, can robustly form islet-like organoids when cultured at clonal density. Exponential expansion can be maintained over long periods by serial passaging, while differentiation can be induced at any time point in culture. ß cells dominate in differentiated islet organoids, while α, δ, and PP cells occur at lower frequencies. The organoids are glucose-responsive and insulin-secreting. Upon transplantation in diabetic mice, these organoids reverse disease. These findings demonstrate that the adult mouse pancreatic islet contains a population of Procr+ endocrine progenitors.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Receptor de Proteína C Endotelial/metabolismo , Islotes Pancreáticos/citología , Animales , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Femenino , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Islotes Pancreáticos/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Desnudos , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Páncreas/citología , Páncreas/metabolismo , Proteína C/metabolismo , Células Madre/citología
11.
Nat Immunol ; 23(1): 109-121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937919

RESUMEN

Anemia is a major comorbidity in aging, chronic kidney and inflammatory diseases, and hematologic malignancies. However, the transcriptomic networks governing hematopoietic differentiation in blood cell development remain incompletely defined. Here we report that the atypical kinase RIOK2 (right open reading frame kinase 2) is a master transcription factor (TF) that not only drives erythroid differentiation, but also simultaneously suppresses megakaryopoiesis and myelopoiesis in primary human stem and progenitor cells. Our study reveals the previously uncharacterized winged helix-turn-helix DNA-binding domain and two transactivation domains of RIOK2 that are critical to regulate key hematopoietic TFs GATA1, GATA2, SPI1, RUNX3 and KLF1. This establishes RIOK2 as an integral component of the transcriptional regulatory network governing human hematopoietic differentiation. Importantly, RIOK2 mRNA expression significantly correlates with these TFs and other hematopoietic genes in myelodysplastic syndromes, acute myeloid leukemia and chronic kidney disease. Further investigation of RIOK2-mediated transcriptional pathways should yield therapeutic approaches to correct defective hematopoiesis in hematologic disorders.


Asunto(s)
Células Sanguíneas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Diferenciación Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , Eritropoyesis/fisiología , Regulación de la Expresión Génica/fisiología , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicos/metabolismo , Mielopoyesis/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
12.
Nat Immunol ; 23(2): 217-228, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35102344

RESUMEN

During inflammation, Ly6Chi monocytes are rapidly mobilized from the bone marrow (BM) and are recruited into inflamed tissues, where they undergo monocyte-to-phagocyte transition (MTPT). The in vivo developmental trajectories of the MTPT and the contribution of individual cytokines to this process remain unclear. Here, we used a murine model of neuroinflammation to investigate how granulocyte-macrophage colony-stimulating factor (GM-CSF) and interferon-γ (IFNγ), two type 1 cytokines, controlled MTPT. Using genetic fate mapping, gene targeting and high-dimensional single-cell multiomics analyses, we found that IFNγ was essential for the gradual acquisition of a mature inflammatory phagocyte phenotype in Ly6Chi monocytes, while GM-CSF was required to license interleukin-1ß (IL-1ß) production, phagocytosis and oxidative burst. These results suggest that the proinflammatory cytokine environment guided MTPT trajectories in the inflamed central nervous system (CNS) and indicated that GM-CSF was the most prominent target for the disarming of monocyte progenies during neuroinflammation.


Asunto(s)
Diferenciación Celular/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interferón gamma/metabolismo , Monocitos/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Fagocitos/metabolismo , Animales , Citocinas/metabolismo , Femenino , Macrófagos/metabolismo , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/fisiología , Enfermedades Neuroinflamatorias/fisiopatología , Fagocitos/fisiología
13.
Nat Rev Mol Cell Biol ; 23(6): 428-443, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35228719

RESUMEN

Metabolism has been studied mainly in cultured cells or at the level of whole tissues or whole organisms in vivo. Consequently, our understanding of metabolic heterogeneity among cells within tissues is limited, particularly when it comes to rare cells with biologically distinct properties, such as stem cells. Stem cell function, tissue regeneration and cancer suppression are all metabolically regulated, although it is not yet clear whether there are metabolic mechanisms unique to stem cells that regulate their activity and function. Recent work has, however, provided evidence that stem cells do have a metabolic signature that is distinct from that of restricted progenitors and that metabolic changes influence tissue homeostasis and regeneration. Stem cell maintenance throughout life in many tissues depends upon minimizing anabolic pathway activation and cell division. Consequently, stem cell activation by tissue injury is associated with changes in mitochondrial function, lysosome activity and lipid metabolism, potentially at the cost of eroding self-renewal potential. Stem cell metabolism is also regulated by the environment: stem cells metabolically interact with other cells in their niches and are able to sense and adapt to dietary changes. The accelerating understanding of stem cell metabolism is revealing new aspects of tissue homeostasis with the potential to promote tissue regeneration and cancer suppression.


Asunto(s)
Células Madre Adultas , Células Madre , Diferenciación Celular/fisiología , División Celular , Homeostasis/fisiología , Redes y Vías Metabólicas
14.
Nat Rev Mol Cell Biol ; 23(3): 204-226, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34663964

RESUMEN

Skeletal muscle contains a designated population of adult stem cells, called satellite cells, which are generally quiescent. In homeostasis, satellite cells proliferate only sporadically and usually by asymmetric cell division to replace myofibres damaged by daily activity and maintain the stem cell pool. However, satellite cells can also be robustly activated upon tissue injury, after which they undergo symmetric divisions to generate new stem cells and numerous proliferating myoblasts that later differentiate to muscle cells (myocytes) to rebuild the muscle fibre, thereby supporting skeletal muscle regeneration. Recent discoveries show that satellite cells have a great degree of population heterogeneity, and that their cell fate choices during the regeneration process are dictated by both intrinsic and extrinsic mechanisms. Extrinsic cues come largely from communication with the numerous distinct stromal cell types in their niche, creating a dynamically interactive microenvironment. This Review discusses the role and regulation of satellite cells in skeletal muscle homeostasis and regeneration. In particular, we highlight the cell-intrinsic control of quiescence versus activation, the importance of satellite cell-niche communication, and deregulation of these mechanisms associated with ageing. The increasing understanding of how satellite cells are regulated will help to advance muscle regeneration and rejuvenation therapies.


Asunto(s)
Células Satélite del Músculo Esquelético , Diferenciación Celular/fisiología , Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Células Madre
15.
Cell ; 178(1): 12-25, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31251912

RESUMEN

There is increasing evidence that both mechanical and biochemical signals play important roles in development and disease. The development of complex organisms, in particular, has been proposed to rely on the feedback between mechanical and biochemical patterning events. This feedback occurs at the molecular level via mechanosensation but can also arise as an emergent property of the system at the cellular and tissue level. In recent years, dynamic changes in tissue geometry, flow, rheology, and cell fate specification have emerged as key platforms of mechanochemical feedback loops in multiple processes. Here, we review recent experimental and theoretical advances in understanding how these feedbacks function in development and disease.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Retroalimentación Fisiológica , Animales , Tamaño de la Célula , Citoesqueleto/fisiología , Matriz Extracelular/fisiología , Humanos , Conformación Proteica , Reología
16.
Cell ; 176(6): 1407-1419.e14, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827680

RESUMEN

The function of somatic stem cells declines with age. Understanding the molecular underpinnings of this decline is key to counteract age-related disease. Here, we report a dramatic drop in the neural stem cells (NSCs) number in the aging murine brain. We find that this smaller stem cell reservoir is protected from full depletion by an increase in quiescence that makes old NSCs more resistant to regenerate the injured brain. Once activated, however, young and old NSCs show similar proliferation and differentiation capacity. Single-cell transcriptomics of NSCs indicate that aging changes NSCs minimally. In the aging brain, niche-derived inflammatory signals and the Wnt antagonist sFRP5 induce quiescence. Indeed, intervention to neutralize them increases activation of old NSCs during homeostasis and following injury. Our study identifies quiescence as a key feature of old NSCs imposed by the niche and uncovers ways to activate NSCs to repair the aging brain.


Asunto(s)
Encéfalo/fisiología , Factores de Edad , Animales , Encéfalo/citología , Diferenciación Celular/fisiología , División Celular/fisiología , Proliferación Celular/fisiología , Senescencia Celular/fisiología , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Regeneración Nerviosa , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neurogénesis , Nicho de Células Madre
17.
Cell ; 179(1): 74-89.e10, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31495570

RESUMEN

During neural tube closure and spinal cord development, many cells die in both the central and peripheral nervous systems (CNS and PNS, respectively). However, myeloid-derived professional phagocytes have not yet colonized the trunk region during early neurogenesis. How apoptotic cells are removed from this region during these stages remains largely unknown. Using live imaging in zebrafish, we demonstrate that neural crest cells (NCCs) respond rapidly to dying cells and phagocytose cellular debris around the neural tube. Additionally, NCCs have the ability to enter the CNS through motor exit point transition zones and clear debris in the spinal cord. Surprisingly, NCCs phagocytosis mechanistically resembles macrophage phagocytosis and their recruitment toward cellular debris is mediated by interleukin-1ß. Taken together, our results reveal a role for NCCs in phagocytosis of debris in the developing nervous system before the presence of professional phagocytes.


Asunto(s)
Movimiento Celular/fisiología , Cresta Neural/fisiología , Neurogénesis/fisiología , Sistema Nervioso Periférico/crecimiento & desarrollo , Fagocitosis/fisiología , Médula Espinal/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Apoptosis/fisiología , Diferenciación Celular/fisiología , Interleucina-1beta/metabolismo , Fagocitos/fisiología , Fagosomas/fisiología , Pez Cebra/embriología
18.
Cell ; 177(4): 957-969.e13, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051107

RESUMEN

Patterning in plants relies on oriented cell divisions and acquisition of specific cell identities. Plants regularly endure wounds caused by abiotic or biotic environmental stimuli and have developed extraordinary abilities to restore their tissues after injuries. Here, we provide insight into a mechanism of restorative patterning that repairs tissues after wounding. Laser-assisted elimination of different cells in Arabidopsis root combined with live-imaging tracking during vertical growth allowed analysis of the regeneration processes in vivo. Specifically, the cells adjacent to the inner side of the injury re-activated their stem cell transcriptional programs. They accelerated their progression through cell cycle, coordinately changed the cell division orientation, and ultimately acquired de novo the correct cell fates to replace missing cells. These observations highlight existence of unknown intercellular positional signaling and demonstrate the capability of specified cells to re-acquire stem cell programs as a crucial part of the plant-specific mechanism of wound healing.


Asunto(s)
Raíces de Plantas/metabolismo , Células Madre/metabolismo , Cicatrización de Heridas/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/fisiología , División Celular , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
19.
Cell ; 176(6): 1379-1392.e14, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30773315

RESUMEN

Cell fate specification by lateral inhibition typically involves contact signaling through the Delta-Notch signaling pathway. However, whether this is the only signaling mode mediating lateral inhibition remains unclear. Here we show that in zebrafish oogenesis, a group of cells within the granulosa cell layer at the oocyte animal pole acquire elevated levels of the transcriptional coactivator TAZ in their nuclei. One of these cells, the future micropyle precursor cell (MPC), accumulates increasingly high levels of nuclear TAZ and grows faster than its surrounding cells, mechanically compressing those cells, which ultimately lose TAZ from their nuclei. Strikingly, relieving neighbor-cell compression by MPC ablation or aspiration restores nuclear TAZ accumulation in neighboring cells, eventually leading to MPC re-specification from these cells. Conversely, MPC specification is defective in taz-/- follicles. These findings uncover a novel mode of lateral inhibition in cell fate specification based on mechanical signals controlling TAZ activity.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Oogénesis/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula , Núcleo Celular/metabolismo , Femenino , Células de la Granulosa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Oocitos/metabolismo , Oocitos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores
20.
Annu Rev Biochem ; 87: 51-73, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29589958

RESUMEN

Ribosome biogenesis is a complex and highly energy-demanding process that requires the concerted action of all three nuclear RNA polymerases (Pol I-III) in eukaryotes. The three largest ribosomal RNAs (rRNAs) originate from a precursor transcript (pre-rRNA) that is encoded by multicopy genes located in the nucleolus. Transcription of these rRNA genes (rDNA) by Pol I is the key regulation step in ribosome production and is tightly controlled by an intricate network of signaling pathways and epigenetic mechanisms. In this article, we give an overview of the composition of the basal Pol I machinery and rDNA chromatin. We discuss rRNA gene regulation in response to environmental signals and developmental cues and focus on perturbations occurring in diseases linked to either excessive or limited rRNA levels. Finally, we discuss the emerging view that rDNA integrity and activity may be involved in the aging process.


Asunto(s)
ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Cromatina/genética , Cromatina/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Epigénesis Genética , Humanos , Modelos Biológicos , Familia de Multigenes , Neoplasias/genética , Neoplasias/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA