Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(10): 2715-2732.e23, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852912

RESUMEN

Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/prevención & control , Lesiones Traumáticas del Encéfalo/complicaciones , Neuroprotección , Proteínas tau/metabolismo , Acetilación , Enfermedad de Alzheimer/metabolismo , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Biomarcadores/sangre , Biomarcadores/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Línea Celular , Diflunisal/uso terapéutico , Femenino , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Salicilatos/uso terapéutico , Sirtuina 1/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Factores de Transcripción p300-CBP/metabolismo , Proteínas tau/sangre
2.
Mol Pharm ; 21(5): 2501-2511, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38574292

RESUMEN

The molecular structures of nonsteroidal anti-inflammatory drugs (NSAIDs) vary, but most contain a carboxylic acid functional group (RCOOH). This functional group is known to be related to the mechanism of cyclooxygenase inhibition and also causes side effects, such as gastrointestinal bleeding. This study proposes a new role for RCOOH in NSAIDs: facilitating the interaction at the binding site II of serum albumins. We used bovine serum albumin (BSA) as a model to investigate the interactions with ligands at site II. Using dansyl-proline (DP) as a fluorescent site II marker, we demonstrated that only negatively charged NSAIDs such as ibuprofen (IBP), naproxen (NPX), diflunisal (DFS), and ketoprofen (KTP) can efficiently displace DP from the albumin binding site. We confirmed the importance of RCOO by neutralizing IBP and NPX through esterification, which reduced the displacement of DP. The competition was also monitored by stopped-flow experiments. While IBP and NPX displaced DP in less than 1 s, the ester derivatives were ineffective. We also observed a higher affinity of negatively charged NSAIDs using DFS as a probe and ultrafiltration experiments. Molecular docking simulations showed an essential salt bridge between the positively charged residues Arg409 and Lys413 with RCOO-, consistent with the experimental findings. We performed a ligand dissociation pathway and corresponding energy analysis by applying molecular dynamics. The dissociation of NPX showed a higher free energy barrier than its ester. Apart from BSA, we conducted some experimental studies with human serum albumin, and similar results were obtained, suggesting a general effect for other mammalian serum albumins. Our findings support that the RCOOH moiety affects not only the mechanism of action and side effects but also the pharmacokinetics of NSAIDs.


Asunto(s)
Antiinflamatorios no Esteroideos , Ácidos Carboxílicos , Simulación del Acoplamiento Molecular , Albúmina Sérica Bovina , Animales , Bovinos , Humanos , Antiinflamatorios no Esteroideos/química , Sitios de Unión , Ácidos Carboxílicos/química , Diflunisal/química , Ibuprofeno/química , Cetoprofeno/química , Ligandos , Naproxeno/química , Unión Proteica , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo
3.
Molecules ; 29(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38257401

RESUMEN

The small-molecule iododiflunisal (IDIF) is a transthyretin (TTR) tetramer stabilizer and acts as a chaperone of the TTR-Amyloid beta interaction. Oral administration of IDIF improves Alzheimer's Disease (AD)-like pathology in mice, although the mechanism of action and pharmacokinetics remain unknown. Radiolabeling IDIF with positron or gamma emitters may aid in the in vivo evaluation of IDIF using non-invasive nuclear imaging techniques. In this work, we report an isotopic exchange reaction to obtain IDIF radiolabeled with 18F. [19F/18F]exchange reaction over IDIF in dimethyl sulfoxide at 160 °C resulted in the formation of [18F]IDIF in 7 ± 3% radiochemical yield in a 20 min reaction time, with a final radiochemical purity of >99%. Biodistribution studies after intravenous administration of [18F]IDIF in wild-type mice using positron emission tomography (PET) imaging showed capacity to cross the blood-brain barrier (ca. 1% of injected dose per gram of tissue in the brain at t > 10 min post administration), rapid accumulation in the liver, long circulation time, and progressive elimination via urine. Our results open opportunities for future studies in larger animal species or human subjects.


Asunto(s)
Enfermedad de Alzheimer , Diflunisal/análogos & derivados , Humanos , Animales , Ratones , Preparaciones Farmacéuticas , Distribución Tisular , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Prealbúmina , Péptidos beta-Amiloides , Excipientes
4.
Am J Ther ; 30(5): e447-e453, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37713689

RESUMEN

BACKGROUND: Deposition of wild-type or mutant transthyretin (TTR) amyloid fibrils in the myocardium causes TTR amyloid cardiomyopathy (ATTR-CM). Targeted therapeutics for ATTR-CM include TTR stabilizers (tafamidis and diflunisal) and oligonucleotide drugs (revusiran, patisiran, and inotersen). TTR stabilizers prevent dissociation of transthyretin tetramers. Transthyretin monomers can misfold and form amyloid fibrils. TTR stabilizers thereby limit amyloid fibrils development and deposition. Oligonucleotide drugs inhibit hepatic synthesis of transthyretin, which decreases transthyretin protein levels and thus the amyloid fibril substrate. AREAS OF UNCERTAINTY: To study the safety and efficacy of targeted therapeutics in patients with ATTR-CM, we performed a pooled analysis. A random-effects model with the Mantel-Haenszel method was used to pool the data. DATA SOURCES: A literature search was performed using PubMed, Cochrane CENTRAL, and Embase databases using the search terms "cardiac amyloidosis" AND "tafamidis" OR "patisiran" OR "inotersen" OR "revusiran" OR "diflunisal." THERAPEUTIC ADVANCES: We identified 6 studies that compared targeted therapeutics with placebo. One study was stopped prematurely because of increased mortality in the targeted therapeutics arm. Pooled analysis included 1238 patients, of which 738 patients received targeted therapeutics and 500 patients received placebo. When compared with placebo, targeted therapeutics significantly reduced all-cause mortality [OR 0.39, 95% confidence interval (CI): 0.16-0.97, P = 0.04]. Only 2 studies reported the effect on cardiovascular-related hospitalizations. There was a trend toward an improvement in global longitudinal strain (mean difference -0.69, 95% CI: -1.44 to 0.05, P = 0.07). When compared with placebo, there was no increase in serious adverse events with targeted therapeutics (OR 1.06, 95% CI: 0.78-1.44, P = 0.72). CONCLUSION: Evidence from the pooled analysis revealed targeted therapeutics improve survival and are well-tolerated. These findings suggest a potential role for targeted therapeutics in the treatment of patients with ATTR-CM.


Asunto(s)
Neuropatías Amiloides Familiares , Cardiomiopatías , Diflunisal , Humanos , Neuropatías Amiloides Familiares/tratamiento farmacológico , Prealbúmina/metabolismo , Prealbúmina/uso terapéutico , Diflunisal/farmacología , Diflunisal/uso terapéutico , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Cardiomiopatías/tratamiento farmacológico
5.
Annu Rev Med ; 71: 203-219, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31986086

RESUMEN

Cardiac amyloidosis (CA) is an infiltrative and restrictive cardiomyopathy that leads to heart failure, reduced quality of life, and death. The disease has two main subtypes, transthyretin cardiac amyloidosis (ATTR-CA) and immunoglobulin light chain cardiac amyloidosis (AL-CA), characterized by the nature of the infiltrating protein. ATTR-CA is further subdivided into wild-type (ATTRwt-CA) and variant (ATTRv-CA) based on the presence or absence of a mutation in the transthyretin gene. CA is significantly underdiagnosed and increasingly recognized as a cause of heart failure with preserved ejection fraction. Advances in diagnosis that employ nuclear scintigraphy to diagnose ATTR-CA without a biopsy and the emergence of effective treatments, including transthyretin stabilizers and silencers, have changed the landscape of this field and render early and accurate diagnosis critical. This review summarizes the epidemiology, pathophysiology, diagnosis, prognosis, and management of CA with an emphasis on the significance of recent developments and suggested future directions.


Asunto(s)
Neuropatías Amiloides Familiares/diagnóstico , Cardiomiopatías/diagnóstico , Insuficiencia Cardíaca/diagnóstico , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/diagnóstico , Neuropatías Amiloides Familiares/epidemiología , Neuropatías Amiloides Familiares/metabolismo , Neuropatías Amiloides Familiares/terapia , Amiloidosis/diagnóstico , Amiloidosis/metabolismo , Amiloidosis/terapia , Arritmias Cardíacas/terapia , Benzoatos/uso terapéutico , Benzoxazoles/uso terapéutico , Biopsia , Estimulación Cardíaca Artificial , Cardiomiopatías/epidemiología , Cardiomiopatías/metabolismo , Cardiomiopatías/terapia , Diflunisal/uso terapéutico , Progresión de la Enfermedad , Diagnóstico Precoz , Intervención Médica Temprana , Ecocardiografía , Electrocardiografía , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/terapia , Humanos , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/epidemiología , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/metabolismo , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/terapia , Factores Inmunológicos/uso terapéutico , Imagen por Resonancia Magnética , Oligonucleótidos/uso terapéutico , Prealbúmina/genética , Pronóstico , Inhibidores de Proteasoma/uso terapéutico , Pirazoles/uso terapéutico , ARN Interferente Pequeño/uso terapéutico , Cintigrafía
6.
Heart Fail Rev ; 27(2): 517-524, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34272629

RESUMEN

Transthyretin cardiac amyloidosis (ATTR-CM) is caused by the accumulation of misfolded transthyretin (TTR) protein in the myocardium. Diflunisal, an agent that stabilizes TTR, has been used as an off-label therapeutic for ATTR-CM. Given limited data surrounding the use of diflunisal, a systematic review of the literature is warranted. We searched the PubMed, MEDLINE, and Embase databases for studies that reported on the use of diflunisal therapy for patients with ATTR-CM. We included English language studies which assessed the effect of diflunisal in adult patients with ATTR-CM who received diflunisal as primary treatment and reported clinical outcomes with emphasis on studies that noted the safety and efficacy of diflunisal in cardiac manifestations of ATTR amyloidosis. We excluded studies which did not use diflunisal therapy or used diflunisal therapy for non-cardiac manifestations of TTR amyloidosis. We also excluded case reports, abstracts, oral presentations, and studies with fewer than 10 subjects. Our search yielded 316 records, and we included 6 studies reporting on 400 patients. Non-comparative single-arm small non-randomized trials for diflunisal comprised 4 of the included studies. The 2 studies that compared diflunisal versus no treatment found improvements in TTR concentration, left atrial volume index, cardiac troponin I, and global longitudinal strain. Overall, diflunisal use was associated with decreased mortality and number of orthotopic heart transplant in ATTR-CM patients. Although a smaller number of patients had to stop treatment due to gastrointestinal side effects and transient renal dysfunction, there were no severe reactions reported in the studies included in our review. This systematic review supports the use of diflunisal for ATTR-CM. Additional long-term analyses and randomized clinical trials are needed to confirm these results.


Asunto(s)
Neuropatías Amiloides Familiares , Diflunisal , Adulto , Neuropatías Amiloides Familiares/complicaciones , Neuropatías Amiloides Familiares/tratamiento farmacológico , Diflunisal/uso terapéutico , Humanos , Miocardio/metabolismo , Prealbúmina/metabolismo
7.
Chemistry ; 28(58): e202202040, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35903985

RESUMEN

Cross-coupling reactions are essential tools in target molecule synthesis. However, the use of highly reactive organometallic reagents limits their applicability. Here, we present a mechanochemical Pd-catalyzed cross-coupling reaction between aryl halides and organozinc pivalates that can be carried out under ambient temperature and atmosphere. This operationally simple procedure affords a wide range of biaryl and aryl-heteroaryl derivatives in high yields and short times. The reaction tolerates various functional groups and can be realized on a synthetically useful scale. Its practical value was demonstrated in the short synthesis of the pharmaceutical diflunisal.


Asunto(s)
Diflunisal , Paladio , Paladio/química , Catálisis , Indicadores y Reactivos , Preparaciones Farmacéuticas
8.
Transpl Int ; 35: 10454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35497887

RESUMEN

Objectives: To analyze the efficacy and tolerability of diflunisal for the treatment of acquired amyloid neuropathy in domino liver transplant recipients. Methods: We performed a retrospective longitudinal study of prospectively collected data for all domino liver transplant recipients with acquired amyloid neuropathy who received diflunisal at our hospital. Neurological deterioration was defined as an score increase of ≥2 points from baseline on the Neurological Impairment Scale/Neurological Impairment Scale-Lower Limbs. Results: Twelve patients who had received compassionate use treatment with diflunisal were identified, of whom seven had follow-up data for ≥12 months. Five patients (71.4%) presented with neurological deterioration on the Neurological Impairment Scale after 12 months (p = 0.0382). The main adverse effects were cardiovascular and renal, leading to diflunisal being stopped in five patients and the dose being reduced in two patients. Conclusion: Our study suggests that most domino liver transplant recipients with acquired amyloid neuropathy will develop neurological deterioration by 12 months of treatment with diflunisal. This therapy was also associated with a high incidence of adverse effects and low treatment retention. The low efficacy and low tolerability of diflunisal treatment encourage the search for new therapeutic options.


Asunto(s)
Neuropatías Amiloides , Diflunisal , Diflunisal/uso terapéutico , Humanos , Estudios Longitudinales , Estudios Retrospectivos , Receptores de Trasplantes
9.
Mikrochim Acta ; 189(12): 446, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36370194

RESUMEN

A composite magnetic adsorbent was developed by embedding graphene quantum dots (GQDs), silica-modified magnetite (Fe3O4-SiO2), and mesoporous carbon (MPC) into a molecularly imprinted polymer (GQDs/Fe3O4-SiO2/MPC/MIP). The adsorbent was applied to extract nonsteroidal anti-inflammatory drugs (NSAIDs) in milk. The MIP was formed via a sol-gel copolymerization using flurbiprofen, diflunisal, and mefenamic acid as template molecules, 3-aminopropyltriethoxysilane as a monomer, and tetraethyl orthosilicate as a cross-linker. GQDs and MPC enhanced affinity binding between NSAIDs and the adsorbent through π-π stacking, hydrogen bonding, and hydrophobic interaction. The Fe3O4-SiO2 nanoparticles embedded in the composite adsorbent enabled its rapid isolation from the sample solution. The extracted NSAIDs were quantified by high-performance liquid chromatography and exhibited good linearity from 1.0 to 100.0 µg L-1 for flurbiprofen and 0.5 to 100.0 µg L-1 for diflunisal and mefenamic acid, respectively. The limits of detection ranged from 0.5 to 1.0 µg L-1. Recoveries of NSAIDs from spiked milk samples ranged from 81.4 to 93.7%, with RSDs below 7%. The reproducibility of the fabricated adsorbent was good and in the optimal conditions, the developed adsorbent could be used for up to six extraction-desorption cycles.


Asunto(s)
Diflunisal , Flurbiprofeno , Grafito , Impresión Molecular , Puntos Cuánticos , Animales , Grafito/química , Leche/química , Polímeros Impresos Molecularmente , Extracción en Fase Sólida/métodos , Impresión Molecular/métodos , Puntos Cuánticos/análisis , Ácido Mefenámico/análisis , Dióxido de Silicio/química , Carbono , Diflunisal/análisis , Reproducibilidad de los Resultados , Antiinflamatorios no Esteroideos/análisis
10.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499692

RESUMEN

The unexpected dissolution behaviour of amorphous diflunisal-chitosan solid dispersions (kneading method) with respect to the crystalline co-evaporated systems is the starting point of this research. This work is an in-depth study of the diflunisal release behaviour from either chitosan or carboxymethylchitosan dispersions. The microstructure is not usually considered when designing this type of products; however, it is essential to understand the process of solvent penetration and subsequent drug release through a polymeric system, as has been evidenced in this study. In accordance with the kinetic data analysed, it is possible to conclude that the porous structure, conditioned by the sample preparation method, can be considered the main factor involved in diflunisal release. The low mean pore size (1-2 µm), low porosity, and high tortuosity of the amorphous kneaded products are responsible for the slow drug release in comparison with the crystalline coevaporated systems, which exhibit larger pore size (8-10 µm) and lower tortuosity. Nevertheless, all diflunisal-carboxymethylchitosan products show similar porous microstructure and overlapping dissolution profiles. The drug release mechanisms obtained can also be related to the porous structure. Fickian diffusion was the main mechanism involved in drug release from chitosan, whereas an important contribution of erosion was detected for carboxymethylchitosan systems, probably due to its high solubility.


Asunto(s)
Quitosano , Diflunisal , Liberación de Fármacos , Quitosano/química , Solubilidad , Diflunisal/química , Polímeros/química
11.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36555787

RESUMEN

The care of systemic amyloidosis has improved dramatically due to improved awareness, accurate diagnostic tools, the development of powerful prognostic and companion biomarkers, and a continuous flow of innovative drugs, which translated into the blooming of phase 2/3 interventional studies for light chain (AL) and transthyretin (ATTR) amyloidosis. The unprecedented availability of effective drugs ignited great interest across various medical specialties, particularly among cardiologists who are now recognizing cardiac amyloidosis at an extraordinary pace. In all amyloidosis referral centers, we are observing a substantial increase in the prevalence of wild-type transthyretin (ATTRwt) cardiomyopathy, which is now becoming the most common form of cardiac amyloidosis. This review focuses on the oral drugs that have been recently introduced for the treatment of ATTR cardiac amyloidosis, for their ease of use in the clinic. They include both old repurposed drugs or fit-for-purpose designed compounds which bind and stabilize the TTR tetramer, thus reducing the formation of new amyloid fibrils, such as tafamidis, diflunisal, and acoramidis, as well as fibril disruptors which have the potential to promote the clearance of amyloid deposits, such as doxycycline. The development of novel therapies is based on the advances in the understanding of the molecular events underlying amyloid cardiomyopathy.


Asunto(s)
Neuropatías Amiloides Familiares , Cardiomiopatías , Diflunisal , Humanos , Neuropatías Amiloides Familiares/tratamiento farmacológico , Prealbúmina/genética , Cardiomiopatías/tratamiento farmacológico , Amiloide
12.
Chemistry ; 27(55): 13846-13854, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34269487

RESUMEN

We report the anti-osteosarcoma stem cell (OSC) properties of a series of gallium(III)-polypyridyl complexes (5-7) containing diflunisal, a non-steroidal anti-inflammatory drug. The most effective complex within the series, 6 (containing 3,4,7,8-tetramethyl-1,10-phenanthroline), displayed similar potency towards bulk osteosarcoma cells and OSCs, in the nanomolar range. Remarkably, 6 exhibited significantly higher monolayer and sarcosphere OSC potency (up to three orders of magnitude) than clinically approved drugs used in frontline (cisplatin and doxorubicin) and secondary (etoposide, ifosfamide, and carboplatin) osteosarcoma treatments. Mechanistic studies show that 6 downregulates cyclooxygenase-2 (COX-2) and kills osteosarcoma cells in a COX-2 dependent manner. Furthermore, 6 induces genomic DNA damage and caspase-dependent apoptosis. To the best of our knowledge, 6 is the first metal complex to kill osteosarcoma cells by simultaneously inhibiting COX-2 and damaging nuclear DNA.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Diflunisal , Galio , Osteosarcoma , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Línea Celular Tumoral , Diflunisal/uso terapéutico , Humanos , Células Madre Neoplásicas , Osteosarcoma/tratamiento farmacológico
13.
EMBO Rep ; 20(10): e47788, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31418171

RESUMEN

Extracellular HMGB1 triggers inflammation following infection or injury and supports tumorigenesis in inflammation-related malignancies. HMGB1 has several redox states: reduced HMGB1 recruits inflammatory cells to injured tissues forming a heterocomplex with CXCL12 and signaling via its receptor CXCR4; disulfide-containing HMGB1 binds to TLR4 and promotes inflammatory responses. Here we show that diflunisal, an aspirin-like nonsteroidal anti-inflammatory drug (NSAID) that has been in clinical use for decades, specifically inhibits in vitro and in vivo the chemotactic activity of HMGB1 at nanomolar concentrations, at least in part by binding directly to both HMGB1 and CXCL12 and disrupting their heterocomplex. Importantly, diflunisal does not inhibit TLR4-dependent responses. Our findings clarify the mode of action of diflunisal and open the way to the rational design of functionally specific anti-inflammatory drugs.


Asunto(s)
Quimiocina CXCL12/metabolismo , Diflunisal/farmacología , Proteína HMGB1/metabolismo , Leucocitos/metabolismo , Células 3T3 , Animales , Quimiotaxis/efectos de los fármacos , Diflunisal/química , Disulfuros/metabolismo , Ácido Glicirrínico/farmacología , Humanos , Inflamación/patología , Leucocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Espectroscopía de Resonancia Magnética , Ratones
14.
J Cardiovasc Pharmacol ; 77(5): 544-548, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33657048

RESUMEN

ABSTRACT: Transthyretin (ATTR) amyloidosis is a multisystem disease caused by organ deposition of amyloid fibrils derived from the misfolded transthyretin (TTR) protein. The purpose of this article is to provide an overview of current treatment regimens and summarize important considerations for each agent. A literature search was performed with the PubMed database for articles published through October 2020. Search criteria included therapies available on the market and investigational therapies used for ATTR amyloidosis treatment. Both prospective clinical trials and retrospective studies have been included in this review. Available therapies discussed in this review article are tafamidis, diflunisal, patisiran, and inotersen. Tafamidis is FDA approved for treatment of wild-type ATTR (ATTRwt) and hereditary ATTR (ATTRv) cardiomyopathy, and patisiran and inotersen are FDA approved for ATTRv polyneuropathy. Diflunisal does not have an FDA-labeled indication for amyloidosis but has been studied in ATTRv polyneuropathy and ATTRwt cardiomyopathy. Investigational therapies include a TTR stabilizer, AG10; 2 antifibril agents, PRX004 and doxycycline/tauroursodeoxycholic acid; and 2 gene silencers, vutrisiran and AKCEA-TTR-LRx; and clinical trials are ongoing. ATTR amyloidosis treatment selection is based on subtype and presence of cardiac or neurological manifestations. Additional considerations such as side effects, monitoring, and administration are outlined in this review.


Asunto(s)
Neuropatías Amiloides Familiares/tratamiento farmacológico , Cardiomiopatías/tratamiento farmacológico , Fármacos Cardiovasculares/uso terapéutico , Mutación , Prealbúmina/genética , Neuropatías Amiloides Familiares/diagnóstico , Neuropatías Amiloides Familiares/epidemiología , Neuropatías Amiloides Familiares/genética , Animales , Benzoxazoles/uso terapéutico , Cardiomiopatías/diagnóstico , Cardiomiopatías/epidemiología , Cardiomiopatías/genética , Fármacos Cardiovasculares/efectos adversos , Diflunisal/uso terapéutico , Predisposición Genética a la Enfermedad , Humanos , Oligonucleótidos/uso terapéutico , Fenotipo , ARN Interferente Pequeño/uso terapéutico , Resultado del Tratamiento
15.
J Sep Sci ; 44(11): 2177-2188, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33773042

RESUMEN

A novel and eco-friendly reversed-phase HPLC method with fluorescence detection was developed for simultaneous estimation of two co-administered antigout drugs (lesinurad and febuxostat) with diflunisal as a nonsteroidal anti-inflammatory drug. Unlike routine methodology, the developed method was optimized using analytical quality by design approach. A full factorial design was applied to optimize the effect of variable factors on chromatographic responses. The chromatographic separation was performed using isocratic elution on the Hypersil BDS C18 column at 40°C. The mobile phase consisted of acetonitrile:potassium phosphate buffer (30.0 mM; pH 5.5, 32.2:67.8% v/v) pumped at a flow rate of 1.0 mL/min and injection volume of 20.0 µL was employed. The proposed method was able to separate the ternary mixture in <10 min. The calibration curves of diflunisal, lesinurad, and febuxostat were linear over concentration ranges of 50.0-500.0, 50.0-700.0, and 20.0-700.0 ng/mL, respectively. Recovery percentages ranging from 98.1 to 101.3% with % relative standard deviation of <2% were obtained upon spiking to human plasma samples, indicating high bioanalytical applicability. Furthermore, the method was found to be excellent green when it was assessed according to Green Analytical Procedure Index and analytical Eco-Scale guidelines.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Diflunisal/sangre , Febuxostat/sangre , Fluorescencia , Tioglicolatos/sangre , Triazoles/sangre , Cromatografía Líquida de Alta Presión/instrumentación , Diseño de Equipo , Humanos , Programas Informáticos , Comprimidos
16.
Proc Natl Acad Sci U S A ; 115(28): E6428-E6436, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941560

RESUMEN

Transthyretin (TTR) is a globular tetrameric transport protein in plasma. Nearly 140 single amino acid substitutions in TTR cause life-threatening amyloid disease. We report a one-of-a-kind pathological variant featuring a Glu51, Ser52 duplication mutation (Glu51_Ser52dup). The proband, heterozygous for the mutation, exhibited an unusually aggressive amyloidosis that was refractory to treatment with the small-molecule drug diflunisal. To understand the poor treatment response and expand therapeutic options, we explored the structure and stability of recombinant Glu51_Ser52dup. The duplication did not alter the protein secondary or tertiary structure but decreased the stability of the TTR monomer and tetramer. Diflunisal, which bound with near-micromolar affinity, partially restored tetramer stability. The duplication had no significant effect on the free energy and enthalpy of diflunisal binding, and hence on the drug-protein interactions. However, the duplication induced tryptic digestion of TTR at near-physiological conditions, releasing a C-terminal fragment 49-129 that formed amyloid fibrils under conditions in which the full-length protein did not. Such C-terminal fragments, along with the full-length TTR, comprise amyloid deposits in vivo. Bioinformatics and structural analyses suggested that increased disorder in the surface loop, which contains the Glu51_Ser52dup duplication, not only helped generate amyloid-forming fragments but also decreased structural protection in the amyloidogenic residue segment 25-34, promoting misfolding of the full-length protein. Our studies of a unique duplication mutation explain its diflunisal-resistant nature, identify misfolding pathways for amyloidogenic TTR variants, and provide therapeutic targets to inhibit amyloid fibril formation by variant TTR.


Asunto(s)
Neuropatías Amiloides Familiares , Amiloide , Diflunisal/uso terapéutico , Resistencia a Medicamentos , Modelos Moleculares , Prealbúmina , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Neuropatías Amiloides Familiares/tratamiento farmacológico , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/metabolismo , Femenino , Humanos , Masculino , Mutación , Prealbúmina/química , Prealbúmina/genética , Prealbúmina/metabolismo , Estructura Secundaria de Proteína
17.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361762

RESUMEN

Amyloidosis is a group of diseases that includes Alzheimer's disease, prion diseases, transthyretin (ATTR) amyloidosis, and immunoglobulin light chain (AL) amyloidosis. The mechanism of organ dysfunction resulting from amyloidosis has been a topic of debate. This review focuses on the ultrastructure of tissue damage resulting from amyloid deposition and therapeutic insights based on the pathophysiology of amyloidosis. Studies of nerve biopsy or cardiac autopsy specimens from patients with ATTR and AL amyloidoses show atrophy of cells near amyloid fibril aggregates. In addition to the stress or toxicity attributable to amyloid fibrils themselves, the toxicity of non-fibrillar states of amyloidogenic proteins, particularly oligomers, may also participate in the mechanisms of tissue damage. The obscuration of the basement and cytoplasmic membranes of cells near amyloid fibrils attributable to an affinity of components constituting these membranes to those of amyloid fibrils may also play an important role in tissue damage. Possible major therapeutic strategies based on pathophysiology of amyloidosis consist of the following: (1) reducing or preventing the production of causative proteins; (2) preventing the causative proteins from participating in the process of amyloid fibril formation; and/or (3) eliminating already-deposited amyloid fibrils. As the development of novel disease-modifying therapies such as short interfering RNA, antisense oligonucleotide, and monoclonal antibodies is remarkable, early diagnosis and appropriate selection of treatment is becoming more and more important for patients with amyloidosis.


Asunto(s)
Enfermedad de Alzheimer/patología , Neuropatías Amiloides Familiares/patología , Amiloide/inmunología , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/patología , Miocardio/patología , Nervios Periféricos/patología , Enfermedades por Prión/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Amiloide/antagonistas & inhibidores , Amiloide/genética , Neuropatías Amiloides Familiares/tratamiento farmacológico , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/inmunología , Benzoxazoles/uso terapéutico , Diflunisal/uso terapéutico , Humanos , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/metabolismo , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/tratamiento farmacológico , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/genética , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/inmunología , Factores Inmunológicos/uso terapéutico , Miocardio/inmunología , Fármacos Neuroprotectores/uso terapéutico , Oligonucleótidos/uso terapéutico , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/inmunología , Prealbúmina/antagonistas & inhibidores , Prealbúmina/genética , Prealbúmina/inmunología , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/genética , Enfermedades por Prión/inmunología , ARN Interferente Pequeño/uso terapéutico
18.
Artículo en Inglés | MEDLINE | ID: mdl-32340992

RESUMEN

Staphylococcus aureus osteomyelitis is a debilitating infection of bone. Treatment of osteomyelitis is impaired by the propensity of invading bacteria to induce pathological bone remodeling that may limit antibiotic penetration to the infectious focus. The nonsteroidal anti-inflammatory drug diflunisal was previously identified as an osteoprotective adjunctive therapy for osteomyelitis, based on the ability of this compound to inhibit S. aureus quorum sensing and subsequent quorum-dependent toxin production. When delivered locally during experimental osteomyelitis, diflunisal significantly limits bone destruction without affecting bacterial burdens. However, because diflunisal's "quorum-quenching" activity could theoretically increase antibiotic recalcitrance, it is critically important to evaluate this adjunctive therapy in the context of standard-of-care antibiotics. The objective of this study is to evaluate the efficacy of vancomycin to treat osteomyelitis during local diflunisal treatment. We first determined that systemic vancomycin effectively reduces bacterial burdens in a murine model of osteomyelitis and identified a dosing regimen that decreases bacterial burdens without eradicating infection. Using this dosing scheme, we found that vancomycin activity is unaffected by the presence of diflunisal in vitro and in vivo Similarly, locally delivered diflunisal still potently inhibits osteoblast cytotoxicity in vitro and bone destruction in vivo in the presence of subtherapeutic vancomycin. However, we also found that the resorbable polyester urethane (PUR) foams used to deliver diflunisal serve as a nidus for infection. Taken together, these data demonstrate that diflunisal does not significantly impact standard-of-care antibiotic therapy for S. aureus osteomyelitis, but they also highlight potential pitfalls encountered with local drug delivery.


Asunto(s)
Diflunisal , Osteomielitis , Infecciones Estafilocócicas , Animales , Antibacterianos , Ratones , Osteomielitis/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Vancomicina/farmacología
19.
J Card Fail ; 26(9): 753-759, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31805416

RESUMEN

BACKGROUND: Transthyretin amyloidosis cardiomyopathy (ATTR-CM) is an underappreciated cause of heart failure that results from misfolded TTR (prealbumin) protein. Diflunisal is an approved non-steroidal anti-inflammatory drug that stabilizes TTR, with limited data available regarding effects on cardiac structure and function. METHODS AND RESULTS: ATTR-CM patients (n=81, 41% treated with 250 mg twice-daily diflunisal by clinical practice) were retrospectively identified with baseline and follow-up (median interval 1 year) serum biomarker and echocardiographic data compared, including global longitudinal strain (GLS). Chi-squared and Wilcoxon tests assessed differences between subjects, divided by treatment group, and univariable and multivariable linear regression was performed. At baseline, patients treated with diflunisal were younger (68 vs 77 years, P = .0001), with lower B-type natriuretic peptide (BNP; 249 vs 545 pg/mL, P = .009) and serum creatinine (1.1 vs 1.2 mg/dL, P = .04), but similar TTR concentration (P = .31), cardiac troponin I (P = .06), and GLS (P = .67). At follow-up, diflunisal untreated versus treated patients showed differences in TTR concentration (19 vs 33 mg/dL, P = .01) and favorable differences in left atrial volume index (+4.6 vs -1.4 mL/m2, P = .002) and cardiac troponin I (+0.03 vs -0.01 ng/mL, P = .01) for the entire cohort. Among the subset with wild-type ATTR (n=53), diflunisal treatment was associated with differences in GLS (+1.2% untreated vs +0.1% treated, P = .03). Changes in wall thickness (P = .2), left ventricular ejection fraction (P = .71), and BNP (P = .42) were similar between groups. CONCLUSIONS: In ATTR-CM, diflunisal treatment resulted in measurable differences in some parameters of cardiac structure and function after only 1 year of administration. Further longer-term analysis is warranted.


Asunto(s)
Neuropatías Amiloides Familiares , Cardiomiopatías , Diflunisal , Insuficiencia Cardíaca , Anciano , Anciano de 80 o más Años , Diflunisal/administración & dosificación , Femenino , Humanos , Masculino , Prealbúmina , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Izquierda
20.
Bioorg Med Chem ; 28(23): 115794, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33091848

RESUMEN

In the past few years, attempts have been made to use decision criteria beyond Lipinski's guidelines (Rule of five) to guide drug discovery projects more effectively. Several variables and formulations have been proposed and investigated within the framework of multiparameter optimization methods to guide drug discovery. In this context, the combination of Ligand Efficiency Indices (LEI) has been predominantly used to map and monitor the drug discovery process in a retrospective fashion. Here we provide an example of the use of a novel application of the LEI methodology for prospective lead optimization by using the transthyretin (TTR) fibrillogenesis inhibitor iododiflunisal (IDIF) as example. Using this approach, a number of compounds with theoretical efficiencies higher than the reference compound IDIF were identified. From this group, ten compounds were selected, synthesized and biologically tested. Half of the compounds (5, 6, 7, 8 and 10) showed potencies in terms of IC50 inhibition of TTR aggregation equal or higher than the lead compound. These optimized compounds mapped within the region of more efficient candidates in the corresponding experimental nBEI-NSEI plot, matching their position in the theoretical optimization plane that was used for the prediction. Due to their upstream (North-Eastern) position in the progression lines of NPOL = 3 or 4 of the nBEI-NSEI plot, three of them (5, 6 and 8) are more interesting candidates than iododiflunisal because they have been optimized in the three crucial LEI variables of potency, size and polarity at the same time. This is the first example of the effectiveness of using the combined LEIs within the decision process to validate the application of the LEI formulation for the prospective optimization of lead compounds.


Asunto(s)
Ligandos , Prealbúmina/metabolismo , Diflunisal/análogos & derivados , Diflunisal/farmacología , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Prealbúmina/antagonistas & inhibidores , Prealbúmina/genética , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA