Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(37)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39138000

RESUMEN

Familial dysautonomia (FD) is a rare sensory and autonomic neuropathy that results from a mutation in the ELP1 gene. Virtually all patients report gastrointestinal (GI) dysfunction and we have recently shown that FD patients have a dysbiotic gut microbiome and altered metabolome. These findings were recapitulated in an FD mouse model and moreover, the FD mice had reduced intestinal motility, as did patients. To understand the cellular basis for impaired GI function in FD, the enteric nervous system (ENS; both female and male mice) from FD mouse models was analyzed during embryonic development and adulthood. We show here that not only is Elp1 required for the normal formation of the ENS, but it is also required in adulthood for the regulation of both neuronal and non-neuronal cells and for target innervation in both the mucosa and in intestinal smooth muscle. In particular, CGRP innervation was significantly reduced as was the number of dopaminergic neurons. Examination of an FD patient's gastric biopsy also revealed reduced and disoriented axons in the mucosa. Finally, using an FD mouse model in which Elp1 was deleted exclusively from neurons, we found significant changes to the colon epithelium including reduced E-cadherin expression, perturbed mucus layer organization, and infiltration of bacteria into the mucosa. The fact that deletion of Elp1 exclusively in neurons is sufficient to alter the intestinal epithelium and perturb the intestinal epithelial barrier highlights a critical role for neurons in regulating GI epithelium homeostasis.


Asunto(s)
Disautonomía Familiar , Sistema Nervioso Entérico , Homeostasis , Mucosa Intestinal , Animales , Sistema Nervioso Entérico/metabolismo , Disautonomía Familiar/genética , Disautonomía Familiar/patología , Ratones , Homeostasis/genética , Masculino , Femenino , Humanos , Mucosa Intestinal/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Mutación , Factores de Elongación Transcripcional , Péptidos y Proteínas de Señalización Intracelular
2.
Neurobiol Dis ; 199: 106600, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996985

RESUMEN

Familial Dysautonomia (FD) is an autosomal recessive disorder caused by a splice site mutation in the gene ELP1, which disproportionally affects neurons. While classically characterized by deficits in sensory and autonomic neurons, neuronal defects in the central nervous system have also been described. Although ELP1 expression remains high in the normal developing and adult cerebellum, its role in cerebellar development is unknown. To explore the role of Elp1 in the cerebellum, we knocked out Elp1 in cerebellar granule cell progenitors (GCPs) and examined the outcome on animal behavior and cellular composition. We found that GCP-specific conditional knockout of Elp1 (Elp1cKO) resulted in ataxia by 8 weeks of age. Cellular characterization showed that the animals had smaller cerebella with fewer granule cells. This defect was already apparent as early as 7 days after birth, when Elp1cKO animals also had fewer mitotic GCPs and shorter Purkinje dendrites. Through molecular characterization, we found that loss of Elp1 was associated with an increase in apoptotic cell death and cell stress pathways in GCPs. Our study demonstrates the importance of ELP1 in the developing cerebellum, and suggests that loss of Elp1 in the GC lineage may also play a role in the progressive ataxia phenotypes of FD patients.


Asunto(s)
Cerebelo , Disautonomía Familiar , Ratones Noqueados , Fenotipo , Animales , Disautonomía Familiar/genética , Disautonomía Familiar/patología , Cerebelo/metabolismo , Cerebelo/patología , Ratones , Modelos Animales de Enfermedad , Ataxia/genética , Ataxia/patología , Ataxia/metabolismo , Células-Madre Neurales/metabolismo , Apoptosis/fisiología , Péptidos y Proteínas de Señalización Intracelular
3.
Hum Mol Genet ; 31(11): 1776-1787, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34908112

RESUMEN

Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease caused by a splicing mutation in the gene encoding Elongator complex protein 1 (ELP1, also known as IKBKAP). This mutation results in tissue-specific skipping of exon 20 with a corresponding reduction of ELP1 protein, predominantly in the central and peripheral nervous system. Although FD patients have a complex neurological phenotype caused by continuous depletion of sensory and autonomic neurons, progressive visual decline leading to blindness is one of the most problematic aspects of the disease, as it severely affects their quality of life. To better understand the disease mechanism as well as to test the in vivo efficacy of targeted therapies for FD, we have recently generated a novel phenotypic mouse model, TgFD9; IkbkapΔ20/flox. This mouse exhibits most of the clinical features of the disease and accurately recapitulates the tissue-specific splicing defect observed in FD patients. Driven by the dire need to develop therapies targeting retinal degeneration in FD, herein, we comprehensively characterized the progression of the retinal phenotype in this mouse, and we demonstrated that it is possible to correct ELP1 splicing defect in the retina using the splicing modulator compound (SMC) BPN-15477.


Asunto(s)
Disautonomía Familiar , Péptidos y Proteínas de Señalización Intracelular , Enfermedades Neurodegenerativas , Enfermedades del Nervio Óptico , Células Ganglionares de la Retina , Animales , Modelos Animales de Enfermedad , Disautonomía Familiar/patología , Humanos , Ratones , Enfermedades Neurodegenerativas/patología , Enfermedades del Nervio Óptico/patología , Células Ganglionares de la Retina/patología
4.
Nucleic Acids Res ; 46(10): 4833-4844, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29672717

RESUMEN

Familial dysautonomia (FD) is a rare inherited neurodegenerative disorder caused by a point mutation in the IKBKAP gene that results in defective splicing of its pre-mRNA. The mutation weakens the 5' splice site of exon 20, causing this exon to be skipped, thereby introducing a premature termination codon. Though detailed FD pathogenesis mechanisms are not yet clear, correcting the splicing defect in the relevant tissue(s), thus restoring normal expression levels of the full-length IKAP protein, could be therapeutic. Splice-switching antisense oligonucleotides (ASOs) can be effective targeted therapeutics for neurodegenerative diseases, such as nusinersen (Spinraza), an approved drug for spinal muscular atrophy. Using a two-step screen with ASOs targeting IKBKAP exon 20 or the adjoining intronic regions, we identified a lead ASO that fully restored exon 20 splicing in FD patient fibroblasts. We also characterized the corresponding cis-acting regulatory sequences that control exon 20 splicing. When administered into a transgenic FD mouse model, the lead ASO promoted expression of full-length human IKBKAP mRNA and IKAP protein levels in several tissues tested, including the central nervous system. These findings provide insights into the mechanisms of IKBKAP exon 20 recognition, and pre-clinical proof of concept for an ASO-based targeted therapy for FD.


Asunto(s)
Proteínas Portadoras/genética , Disautonomía Familiar/genética , Disautonomía Familiar/terapia , Oligonucleótidos Antisentido/farmacología , Animales , Proteínas Portadoras/metabolismo , Células Cultivadas , Disautonomía Familiar/patología , Elementos de Facilitación Genéticos , Exones , Fibroblastos , Humanos , Ratones Transgénicos , Oligonucleótidos Antisentido/química , Sitios de Empalme de ARN , Empalme del ARN , Factores de Elongación Transcripcional
5.
Proc Natl Acad Sci U S A ; 114(19): 5035-5040, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28439028

RESUMEN

Hereditary sensory and autonomic neuropathy type III, or familial dysautonomia [FD; Online Mendelian Inheritance in Man (OMIM) 223900], affects the development and long-term viability of neurons in the peripheral nervous system (PNS) and retina. FD is caused by a point mutation in the gene IKBKAP/ELP1 that results in a tissue-specific reduction of the IKAP/ELP1 protein, a subunit of the Elongator complex. Hallmarks of the disease include vasomotor and cardiovascular instability and diminished pain and temperature sensation caused by reductions in sensory and autonomic neurons. It has been suggested but not demonstrated that mitochondrial function may be abnormal in FD. We previously generated an Ikbkap/Elp1 conditional-knockout mouse model that recapitulates the selective death of sensory (dorsal root ganglia) and autonomic neurons observed in FD. We now show that in these mice neuronal mitochondria have abnormal membrane potentials, produce elevated levels of reactive oxygen species, are fragmented, and do not aggregate normally at axonal branch points. The small hydroxylamine compound BGP-15 improved mitochondrial function, protecting neurons from dying in vitro and in vivo, and promoted cardiac innervation in vivo. Given that impairment of mitochondrial function is a common pathological component of neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's, Parkinson's, and Huntington's diseases, our findings identify a therapeutic approach that may have efficacy in multiple degenerative conditions.


Asunto(s)
Axones/metabolismo , Disautonomía Familiar , Ganglios Espinales/metabolismo , Oximas/farmacología , Piperidinas/farmacología , Animales , Axones/patología , Proteínas Portadoras/genética , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Modelos Animales de Enfermedad , Disautonomía Familiar/tratamiento farmacológico , Disautonomía Familiar/genética , Disautonomía Familiar/metabolismo , Disautonomía Familiar/patología , Ganglios Espinales/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Mutantes
6.
PLoS Genet ; 12(12): e1006486, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27997532

RESUMEN

Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.


Asunto(s)
Transporte Axonal/efectos de los fármacos , Disautonomía Familiar/genética , Histona Desacetilasas/genética , Fosfatidilserinas/administración & dosificación , Tubulina (Proteína)/genética , Empalme Alternativo/genética , Animales , Transporte Axonal/genética , Axones/efectos de los fármacos , Modelos Animales de Enfermedad , Disautonomía Familiar/tratamiento farmacológico , Disautonomía Familiar/patología , Exones/genética , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/patología , Histona Desacetilasa 6 , Histona Desacetilasas/biosíntesis , Humanos , Ratones , Ratones Noqueados , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Factor de Crecimiento Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosfatidilserinas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
Hum Mol Genet ; 25(6): 1116-28, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26769677

RESUMEN

Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease that affects the development and survival of sensory and autonomic neurons. FD is caused by an mRNA splicing mutation in intron 20 of the IKBKAP gene that results in a tissue-specific skipping of exon 20 and a corresponding reduction of the inhibitor of kappaB kinase complex-associated protein (IKAP), also known as Elongator complex protein 1. To date, several promising therapeutic candidates for FD have been identified that target the underlying mRNA splicing defect, and increase functional IKAP protein. Despite these remarkable advances in drug discovery for FD, we lacked a phenotypic mouse model in which we could manipulate IKBKAP mRNA splicing to evaluate potential efficacy. We have, therefore, engineered a new mouse model that, for the first time, will permit to evaluate the phenotypic effects of splicing modulators and provide a crucial platform for preclinical testing of new therapies. This new mouse model, TgFD9; Ikbkap(Δ20/flox) was created by introducing the complete human IKBKAP transgene with the major FD splice mutation (TgFD9) into a mouse that expresses extremely low levels of endogenous Ikbkap (Ikbkap(Δ20/flox)). The TgFD9; Ikbkap(Δ20/flox) mouse recapitulates many phenotypic features of the human disease, including reduced growth rate, reduced number of fungiform papillae, spinal abnormalities, and sensory and sympathetic impairments, and recreates the same tissue-specific mis-splicing defect seen in FD patients. This is the first mouse model that can be used to evaluate in vivo the therapeutic effect of increasing IKAP levels by correcting the underlying FD splicing defect.


Asunto(s)
Modelos Animales de Enfermedad , Disautonomía Familiar/metabolismo , Disautonomía Familiar/patología , Empalme Alternativo , Animales , Vías Autónomas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Disautonomía Familiar/genética , Exones , Humanos , Péptidos y Proteínas de Señalización Intracelular , Intrones , Masculino , Ratones , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Empalme del ARN/genética , ARN Mensajero/metabolismo , Células Receptoras Sensoriales/metabolismo
8.
Neurobiol Dis ; 103: 113-122, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28404519

RESUMEN

FD is a rare neurodegenerative disorder caused by a mutation of the IKBKAP gene, which induces low expression levels of the Elongator subunit IKAP/hELP1 protein. A rational strategy for FD treatment could be to identify drugs increasing IKAP/hELP1 expression levels by blocking protein degradation pathways such as the 26S proteasome. Proteasome inhibitors are promising molecules emerging in cancer treatment and could thus constitute an enticing pharmaceutical strategy for FD treatment. Therefore, we tested three proteasome inhibitors on FD human olfactory ecto-mesenchymal stem cells (hOE-MSCs): two approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA), bortezomib and carfilzomib, as well as epoxomicin. Although all 3 inhibitors demonstrated activity in correcting IKBKAP mRNA aberrant splicing, carfilzomib was superior in enhancing IKAP/hELP1 quantity. Moreover, we observed a synergistic effect of suboptimal doses of carfilzomib on kinetin in improving IKBKAP isoforms ratio and IKAP/hELP1 expression levels allowing to counterbalance carfilzomib toxicity. Finally, we identified several dysregulated miRNAs after carfilzomib treatment that target proteasome-associated mRNAs and determined that IKAP/hELP1 deficiency in FD pathology is correlated to an overactivity of the 26S proteasome. Altogether, these results reinforce the rationale for using chemical compounds inhibiting the 26S proteasome as an innovative option for FD and a promising therapeutic pathway for many other neurodegenerative diseases.


Asunto(s)
Proteínas Portadoras/metabolismo , Disautonomía Familiar/metabolismo , Inhibidores de Proteasoma/farmacología , Empalme del ARN/fisiología , ARN Mensajero/metabolismo , Bortezomib/farmacología , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Disautonomía Familiar/genética , Disautonomía Familiar/patología , Humanos , Empalme del ARN/efectos de los fármacos , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , Factores de Elongación Transcripcional
9.
Clin Auton Res ; 27(4): 235-243, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28667575

RESUMEN

Since Riley and Day first described the clinical phenotype of patients with familial dysautonomia (FD) over 60 years ago, the field has made considerable progress clinically, scientifically, and translationally in treating and understanding the etiology of FD. FD is classified as a hereditary sensory and autonomic neuropathy (HSAN type III) and is both a developmental and a progressive neurodegenerative condition that results from an autosomal recessive mutation in the gene IKBKAP, also known as ELP1. FD primarily impacts the peripheral nervous system but also manifests in central nervous system disruption, especially in the retina and optic nerve. While the disease is rare, the rapid progress being made in elucidating the molecular and cellular mechanisms mediating the demise of neurons in FD should provide insight into degenerative pathways common to many neurological disorders. Interestingly, the protein encoded by IKBKAP/ELP1, IKAP or ELP1, is a key scaffolding subunit of the six-subunit Elongator complex, and variants in other Elongator genes are associated with amyotrophic lateral sclerosis (ALS), intellectual disability, and Rolandic epilepsy. Here we review the recent model systems that are revealing the molecular and cellular pathophysiological mechanisms mediating FD. These powerful model systems can now be used to test targeted therapeutics for mitigating neuronal loss in FD and potentially other disorders.


Asunto(s)
Modelos Animales de Enfermedad , Disautonomía Familiar/patología , Células Madre/fisiología , Animales , Disautonomía Familiar/genética , Disautonomía Familiar/terapia , Humanos , Ratones
10.
Nature ; 461(7262): 402-6, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19693009

RESUMEN

The isolation of human induced pluripotent stem cells (iPSCs) offers a new strategy for modelling human disease. Recent studies have reported the derivation and differentiation of disease-specific human iPSCs. However, a key challenge in the field is the demonstration of disease-related phenotypes and the ability to model pathogenesis and treatment of disease in iPSCs. Familial dysautonomia (FD) is a rare but fatal peripheral neuropathy, caused by a point mutation in the IKBKAP gene involved in transcriptional elongation. The disease is characterized by the depletion of autonomic and sensory neurons. The specificity to the peripheral nervous system and the mechanism of neuron loss in FD are poorly understood owing to the lack of an appropriate model system. Here we report the derivation of patient-specific FD-iPSCs and the directed differentiation into cells of all three germ layers including peripheral neurons. Gene expression analysis in purified FD-iPSC-derived lineages demonstrates tissue-specific mis-splicing of IKBKAP in vitro. Patient-specific neural crest precursors express particularly low levels of normal IKBKAP transcript, suggesting a mechanism for disease specificity. FD pathogenesis is further characterized by transcriptome analysis and cell-based assays revealing marked defects in neurogenic differentiation and migration behaviour. Furthermore, we use FD-iPSCs for validating the potency of candidate drugs in reversing aberrant splicing and ameliorating neuronal differentiation and migration. Our study illustrates the promise of iPSC technology for gaining new insights into human disease pathogenesis and treatment.


Asunto(s)
Disautonomía Familiar/patología , Disautonomía Familiar/terapia , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Adolescente , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Animales , Proteínas Portadoras/genética , Desdiferenciación Celular , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Células Cultivadas , Niño , Disautonomía Familiar/tratamiento farmacológico , Disautonomía Familiar/genética , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Cinetina/farmacología , Cinetina/uso terapéutico , Masculino , Ratones , Cresta Neural/citología , Cresta Neural/efectos de los fármacos , Especificidad de Órganos , Fenotipo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Factores de Elongación Transcripcional
11.
Hum Mol Genet ; 21(23): 5078-90, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22922231

RESUMEN

Hereditary sensory and autonomic neuropathies (HSANs) encompass a group of genetically inherited disorders characterized by sensory and autonomic dysfunctions. Familial dysautonomia (FD), also known as HSAN type III, is an autosomal recessive disorder that affects 1/3600 live births in the Ashkenazi Jewish population. The disease is caused by abnormal development and progressive degeneration of the sensory and autonomic nervous systems and is inevitably fatal, with only 50% of patients reaching the age of 40. FD is caused by a mutation in intron 20 of the Ikbkap gene that results in severe reduction in the expression of its encoded protein, inhibitor of kappaB kinase complex-associated protein (IKAP). Although the mutation that causes FD was identified in 2001, so far there is no appropriate animal model that recapitulates the disorder. Here, we report the generation and characterization of the first mouse models for FD that recapitulate the molecular and pathological features of the disease. Important for therapeutic interventions is also our finding that a slight increase in IKAP levels is enough to ameliorate the phenotype and increase the life span. Understanding the mechanisms underlying FD will provide insights for potential new therapeutic interventions not only for FD, but also for other peripheral neuropathies.


Asunto(s)
Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Disautonomía Familiar/genética , Disautonomía Familiar/metabolismo , Regulación de la Expresión Génica , Ratones , Alelos , Animales , Conducta Animal , Proteínas Portadoras/metabolismo , Disautonomía Familiar/patología , Femenino , Ganglios Sensoriales/metabolismo , Ganglios Sensoriales/patología , Ganglios Simpáticos/metabolismo , Ganglios Simpáticos/patología , Orden Génico , Marcación de Gen , Genotipo , Péptidos y Proteínas de Señalización Intracelular , Masculino , Fenotipo
12.
Biochem Biophys Res Commun ; 454(3): 441-5, 2014 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-25450681

RESUMEN

Familial dysautonomia (FD) is a recessive neurodegenerative genetic disease. FD is caused by a mutation in the IKBKAP gene resulting in a splicing defect and reduced levels of full length IKAP protein. IKAP homologues can be found in all eukaryotes and are part of a conserved six subunit protein complex, Elongator complex. Inactivation of any Elongator subunit gene in multicellular organisms cause a wide range of phenotypes, suggesting that Elongator has a pivotal role in several cellular processes. In yeast, there is convincing evidence that the main role of Elongator complex is in formation of modified wobble uridine nucleosides in tRNA and that their absence will influence translational efficiency. To date, no study has explored the possibility that FD patients display defects in formation of modified wobble uridine nucleosides as a consequence of reduced IKAP levels. In this study, we show that brain tissue and fibroblast cell lines from FD patients have reduced levels of the wobble uridine nucleoside 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U). Our findings indicate that FD could be caused by inefficient translation due to lower levels of wobble uridine nucleosides.


Asunto(s)
Encéfalo/patología , Disautonomía Familiar/patología , Fibroblastos/patología , ARN de Transferencia/química , Tiouridina/análogos & derivados , Encéfalo/metabolismo , Línea Celular , Disautonomía Familiar/metabolismo , Fibroblastos/metabolismo , Humanos , ARN de Transferencia/metabolismo , Tiouridina/análisis , Tiouridina/metabolismo
13.
RNA Biol ; 11(12): 1555-67, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25692999

RESUMEN

Chemical RNA modifications are present in all kingdoms of life and many of these post-transcriptional modifications are conserved throughout evolution. However, most of the research has been performed on single cell organisms, whereas little is known about how RNA modifications contribute to the development of metazoans. In recent years, the identification of RNA modification genes in genome wide association studies (GWAS) has sparked new interest in previously neglected genes. In this review, we summarize recent findings that connect RNA modification defects and phenotypes in higher eukaryotes. Furthermore, we discuss the implications of aberrant tRNA modification in various human diseases including metabolic defects, mitochondrial dysfunctions, neurological disorders, and cancer. As the molecular mechanisms of these diseases are being elucidated, we will gain first insights into the functions of RNA modifications in higher eukaryotes and finally understand their roles during development.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , ARN/genética , ARN/metabolismo , ARNt Metiltransferasas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Disautonomía Familiar/genética , Disautonomía Familiar/metabolismo , Disautonomía Familiar/patología , Epilepsia Rolándica/genética , Epilepsia Rolándica/metabolismo , Epilepsia Rolándica/patología , Estudio de Asociación del Genoma Completo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Conformación de Ácido Nucleico , Fenotipo , ARN Mitocondrial , ARN de Transferencia/genética , ARNt Metiltransferasas/genética
14.
Sci Rep ; 14(1): 570, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177237

RESUMEN

Familial dysautonomia (FD) is a rare recessive neurodevelopmental disease caused by a splice mutation in the Elongator acetyltransferase complex subunit 1 (ELP1) gene. This mutation results in a tissue-specific reduction of ELP1 protein, with the lowest levels in the central and peripheral nervous systems (CNS and PNS, respectively). FD patients exhibit complex neurological phenotypes due to the loss of sensory and autonomic neurons. Disease symptoms include decreased pain and temperature perception, impaired or absent myotatic reflexes, proprioceptive ataxia, and progressive retinal degeneration. While the involvement of the PNS in FD pathogenesis has been clearly recognized, the underlying mechanisms responsible for the preferential neuronal loss remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying FD by conducting a comprehensive transcriptome analysis of neuronal tissues from the phenotypic mouse model TgFD9; Elp1Δ20/flox. This mouse recapitulates the same tissue-specific ELP1 mis-splicing observed in patients while modeling many of the disease manifestations. Comparison of FD and control transcriptomes from dorsal root ganglion (DRG), trigeminal ganglion (TG), medulla (MED), cortex, and spinal cord (SC) showed significantly more differentially expressed genes (DEGs) in the PNS than the CNS. We then identified genes that were tightly co-expressed and functionally dependent on the level of full-length ELP1 transcript. These genes, defined as ELP1 dose-responsive genes, were combined with the DEGs to generate tissue-specific dysregulated FD signature genes and networks. Within the PNS networks, we observed direct connections between Elp1 and genes involved in tRNA synthesis and genes related to amine metabolism and synaptic signaling. Importantly, transcriptomic dysregulation in PNS tissues exhibited enrichment for neuronal subtype markers associated with peptidergic nociceptors and myelinated sensory neurons, which are known to be affected in FD. In summary, this study has identified critical tissue-specific gene networks underlying the etiology of FD and provides new insights into the molecular basis of the disease.


Asunto(s)
Disautonomía Familiar , Humanos , Ratones , Animales , Disautonomía Familiar/genética , Disautonomía Familiar/metabolismo , Disautonomía Familiar/patología , Proteínas Portadoras/metabolismo , Sistema Nervioso Periférico/metabolismo , Células Receptoras Sensoriales/metabolismo , Perfilación de la Expresión Génica , Expresión Génica
15.
Cell Stem Cell ; 31(5): 734-753.e8, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38608707

RESUMEN

Autonomic parasympathetic neurons (parasymNs) control unconscious body responses, including "rest-and-digest." ParasymN innervation is important for organ development, and parasymN dysfunction is a hallmark of autonomic neuropathy. However, parasymN function and dysfunction in humans are vastly understudied due to the lack of a model system. Human pluripotent stem cell (hPSC)-derived neurons can fill this void as a versatile platform. Here, we developed a differentiation paradigm detailing the derivation of functional human parasymNs from Schwann cell progenitors. We employ these neurons (1) to assess human autonomic nervous system (ANS) development, (2) to model neuropathy in the genetic disorder familial dysautonomia (FD), (3) to show parasymN dysfunction during SARS-CoV-2 infection, (4) to model the autoimmune disease Sjögren's syndrome (SS), and (5) to show that parasymNs innervate white adipocytes (WATs) during development and promote WAT maturation. Our model system could become instrumental for future disease modeling and drug discovery studies, as well as for human developmental studies.


Asunto(s)
Diferenciación Celular , Disautonomía Familiar , Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/citología , Disautonomía Familiar/patología , Neuronas , Síndrome de Sjögren/patología , COVID-19/virología , COVID-19/patología , Animales , Sistema Nervioso Parasimpático , Células de Schwann , Ratones , SARS-CoV-2/fisiología
16.
Hum Mol Genet ; 20(8): 1585-94, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21273291

RESUMEN

Deficiency in the IKAP/Elp1 protein leads to the recessive sensory autosomal congenital neuropathy which is called familial dysautonomia (FD). This protein was originally identified as a role player in transcriptional elongation being a subunit of the RNAPII transcriptional Elongator multi-protein complex. Subsequently, IKAP/Elp1 was shown to play various functions in the cytoplasm. Here, we describe experiments performed with IKAP/Elp1 downregulated cell lines and FD-derived cells and tissues. Immunostaining of the cytoskeleton component α-tubulin in IKAP/Elp1 downregulated cells revealed disorganization of the microtubules (MTs) that was reflected in aberrant cell shape and process formation. In contrast to a recent report on the decrease in α-tubulin acetylation in IKAP/Elp1 downregulated cells, we were unable to observe any effect of IKAP/Elp1 deficiency on α-tubulin acetylation in the FD cerebrum and in a variety of IKAP/Elp1 downregulated cell lines. To explore possible candidates involved in the observed aberrations in MTs, we focused on superior cervical ganglion-10 protein (SCG10), also called STMN2, which is known to be an MT destabilizing protein. We have found that SCG10 is upregulated in the IKAP/Elp1-deficient FD cerebrum, FD fibroblasts and in IKAP/Elp1 downregulated neuroblastoma cell line. To better understand the effect of IKAP/Elp1 deficiency on SCG10 expression, we investigated the possible involvement of RE-1-silencing transcription factor (REST), a known repressor of the SCG10 gene. Indeed, REST was downregulated in the IKAP/Elp1-deficient FD cerebrum and IKAP/Elp1 downregulated neuroblastoma cell line. These results could shed light on a possible link between IKAP/Elp1 deficiency and cytoskeleton destabilization.


Asunto(s)
Proteínas Portadoras/genética , Disautonomía Familiar/patología , Microtúbulos/metabolismo , Acetilación , Estudios de Casos y Controles , Adhesión Celular , Línea Celular Tumoral , Forma de la Célula , Cerebro/metabolismo , Niño , Disautonomía Familiar/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Histona Acetiltransferasas/metabolismo , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Interferencia de ARN , Proteínas Represoras/metabolismo , Estatmina , Factores de Elongación Transcripcional , Tubulina (Proteína)/metabolismo , Regulación hacia Arriba
17.
Mov Disord ; 28(6): 823-7, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23681701

RESUMEN

BACKGROUND: Hereditary sensory and autonomic neuropathy type III features marked ataxic gait that progressively worsens over time. We assessed whether proprioceptive disturbances can explain the ataxia. METHODS: Proprioception at the knee joint was assessed using passive joint angle matching in 18 patients and 14 age-matched controls; 5 patients with cerebellar ataxia were also studied. Ataxia was quantified using the Brief Ataxia Rating Score, which ranged from 7 to 26 of 30. RESULTS: Neuropathy patients performed poorly in judging joint position: mean absolute error was 8.7° ± 1.0°, and the range was very wide (2.8°-18.1°); conversely, absolute error was only 2.7° ± 0.3° (1.6°-5.5°) in the controls and 3.0° ± 0.2° (2.1°-3.4°) in the cerebellar patients. This error was positively correlated to the degree of ataxia in the neuropathy patients but not the cerebellar patients. CONCLUSIONS: These results suggest that poor proprioceptive acuity at the knee joint is a major contributor to the ataxic gait associated with hereditary sensory and autonomic neuropathy type III.


Asunto(s)
Disautonomía Familiar/complicaciones , Disautonomía Familiar/patología , Apraxia de la Marcha/etiología , Articulación de la Rodilla/inervación , Propiocepción/fisiología , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadística como Asunto , Adulto Joven
18.
Brain ; 134(Pt 11): 3198-208, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22075519

RESUMEN

The Riley-Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10-30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains their loss of deep tendon reflexes. Moreover, we suggest that their ataxic gait is sensory in origin, due to the loss of functional muscle spindles and hence a compromised sensorimotor control of locomotion.


Asunto(s)
Disautonomía Familiar/patología , Ataxia de la Marcha/patología , Neuronas Motoras/patología , Husos Musculares/inervación , Adolescente , Adulto , Disautonomía Familiar/fisiopatología , Estimulación Eléctrica , Femenino , Ataxia de la Marcha/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Neuronas Motoras/fisiología , Husos Musculares/patología , Husos Musculares/fisiopatología , Conducción Nerviosa/fisiología , Nervio Peroneo/fisiopatología
19.
J Clin Gastroenterol ; 45(7): 611-3, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20930641

RESUMEN

Familial dysautonomia (FD) is an autosomal recessive disorder characterized by autonomic and sensory neuropathy. Owing to pervasive dysfunction, the disease has protean clinical manifestations, affecting the ocular, gastrointestinal, pulmonary, orthopedic, vasomotor, and neurologic systems. The gastrointestinal perturbations, including dysphagia, gastroesophageal dysmotility, gastroesophageal reflux, and vomiting crises, are among the earliest signs. Here, we present the first 3 instances of gastric ulcers in patients with FD and discuss their common presenting features and the special management that was required.


Asunto(s)
Disautonomía Familiar/complicaciones , Úlcera Péptica/complicaciones , Úlcera Péptica/patología , Adulto , Disautonomía Familiar/patología , Endoscopía Gastrointestinal , Femenino , Hemorragia Gastrointestinal/etiología , Humanos , Masculino , Úlcera Péptica/diagnóstico , Úlcera Péptica/terapia , Adulto Joven
20.
J Neuropathol Exp Neurol ; 79(10): 1072-1083, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32954436

RESUMEN

Von Economo neurons (VENs) and fork cells are principally located in the anterior cingulate cortex (ACC) and the frontoinsular cortex (FI). Both of these regions integrate inputs from the autonomic nervous system (ANS) and are involved in decision-making and perception of the emotional states of self and others. Familial dysautonomia (FD) is an orphan disorder characterized by autonomic dysfunction and behavioral abnormalities including repetitive behavior and emotional rigidity, which are also seen in autism spectrum disorder. To understand a possible link between the ANS and the cortical regions implicated in emotion regulation we studied VENs and fork cells in an autonomic disorder. We determined the densities of VENs, fork cells, and pyramidal neurons and the ratio of VENs and fork cells to pyramidal neurons in ACC and FI in 4 FD patient and 6 matched control brains using a stereologic approach. We identified alterations in densities of VENs and pyramidal neurons and their distributions in the ACC and FI in FD brains. These data suggest that alterations in migration and numbers of VENs may be involved in FD pathophysiology thereby supporting the notion of a functional link between VENs, the ANS and the peripheral nervous system in general.


Asunto(s)
Disautonomía Familiar/patología , Neocórtex/patología , Neuronas/patología , Adulto , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA