Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.244
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 83(3): 324-329, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736306

RESUMEN

Pathogenic repeat sequences underlie several human disorders, including amyotrophic lateral sclerosis, Huntington's disease, and myotonic dystrophy. Here, we speak to several researchers about how repeat sequences have been implicated in affecting all aspects of the Central Dogma of molecular biology through their effects on DNA, RNA, and protein.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de Huntington , Distrofia Miotónica , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteínas/genética , Enfermedad de Huntington/genética , ARN/genética , Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido/genética
2.
Cell ; 150(4): 710-24, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901804

RESUMEN

The muscleblind-like (Mbnl) family of RNA-binding proteins plays important roles in muscle and eye development and in myotonic dystrophy (DM), in which expanded CUG or CCUG repeats functionally deplete Mbnl proteins. We identified transcriptome-wide functional and biophysical targets of Mbnl proteins in brain, heart, muscle, and myoblasts by using RNA-seq and CLIP-seq approaches. This analysis identified several hundred splicing events whose regulation depended on Mbnl function in a pattern indicating functional interchangeability between Mbnl1 and Mbnl2. A nucleotide resolution RNA map associated repression or activation of exon splicing with Mbnl binding near either 3' splice site or near the downstream 5' splice site, respectively. Transcriptomic analysis of subcellular compartments uncovered a global role for Mbnls in regulating localization of mRNAs in both mouse and Drosophila cells, and Mbnl-dependent translation and protein secretion were observed for a subset of mRNAs with Mbnl-dependent localization. These findings hold several new implications for DM pathogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Distrofia Miotónica/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcriptoma , Regiones no Traducidas 3' , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Exones , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Mioblastos/metabolismo , Distrofia Miotónica/genética , Proteínas Nucleares , Especificidad de Órganos , Sitios de Empalme de ARN , Proteínas de Unión al ARN/genética
3.
Genes Dev ; 33(23-24): 1635-1640, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31624084

RESUMEN

Short tandem repeats (STRs) are prone to expansion mutations that cause multiple hereditary neurological and neuromuscular diseases. To study pathomechanisms using mouse models that recapitulate the tissue specificity and developmental timing of an STR expansion gene, we used rolling circle amplification and CRISPR/Cas9-mediated genome editing to generate Dmpk CTG expansion (CTGexp) knockin models of myotonic dystrophy type 1 (DM1). We demonstrate that skeletal muscle myoblasts and brain choroid plexus epithelial cells are particularly susceptible to Dmpk CTGexp mutations and RNA missplicing. Our results implicate dysregulation of muscle regeneration and cerebrospinal fluid homeostasis as early pathogenic events in DM1.


Asunto(s)
Empalme Alternativo/genética , Repeticiones de Microsatélite/genética , Músculo Esquelético/fisiopatología , Distrofia Miotónica/genética , Distrofia Miotónica/fisiopatología , Empalme del ARN/genética , Regiones no Traducidas 3'/genética , Animales , Plexo Coroideo/fisiopatología , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/citología , Mutación , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , Proteínas de Unión al ARN/genética
4.
Mol Cell Proteomics ; 23(1): 100683, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37993104

RESUMEN

Dysregulated mRNA splicing is involved in the pathogenesis of many diseases including cancer, neurodegenerative diseases, and muscular dystrophies such as myotonic dystrophy type 1 (DM1). Comprehensive assessment of dysregulated splicing on the transcriptome and proteome level has been methodologically challenging, and thus investigations have often been targeting only few genes. Here, we performed a large-scale coordinated transcriptomic and proteomic analysis to characterize a DM1 mouse model (HSALR) in comparison to wild type. Our integrative proteogenomics approach comprised gene- and splicing-level assessments for mRNAs and proteins. It recapitulated many known instances of aberrant mRNA splicing in DM1 and identified new ones. It enabled the design and targeting of splicing-specific peptides and confirmed the translation of known instances of aberrantly spliced disease-related genes (e.g., Atp2a1, Bin1, Ryr1), complemented by novel findings (Flnc and Ywhae). Comparative analysis of large-scale mRNA and protein expression data showed quantitative agreement of differentially expressed genes and splicing patterns between disease and wild type. We hence propose this work as a suitable blueprint for a robust and scalable integrative proteogenomic strategy geared toward advancing our understanding of splicing-based disorders. With such a strategy, splicing-based biomarker candidates emerge as an attractive and accessible option, as they can be efficiently asserted on the mRNA and protein level in coordinated fashion.


Asunto(s)
Distrofia Miotónica , Proteogenómica , Ratones , Animales , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , Empalme Alternativo/genética , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
PLoS Genet ; 19(12): e1011109, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38134228

RESUMEN

The Muscleblind-like (MBNL) family is a highly conserved set of RNA-binding proteins (RBPs) that regulate RNA metabolism during the differentiation of various animal tissues. Functional insufficiency of MBNL affects muscle and central nervous system development, and contributes to the myotonic dystrophies (DM), a set of incurable multisystemic disorders. Studies on the regulation of MBNL genes are essential to provide insight into the gene regulatory networks controlled by MBNL proteins and to understand how dysregulation within these networks causes disease. In this study, we demonstrate the evolutionary conservation of an autoregulatory mechanism that governs the function of MBNL proteins by generating two distinct protein isoform types through alternative splicing. Our aim was to further our understanding of the regulatory principles that underlie this conserved feedback loop in a whole-organismal context, and to address the biological significance of the respective isoforms. Using an alternative splicing reporter, our studies show that, during development of the Caenorhabditis elegans central nervous system, the orthologous mbl-1 gene shifts production from long protein isoforms that localize to the nucleus to short isoforms that also localize to the cytoplasm. Using isoform-specific CRISPR/Cas9-generated strains, we showed that expression of short MBL-1 protein isoforms is required for healthy neuromuscular function and neurodevelopment, while expression of long MBL-1 protein isoforms is dispensable, emphasizing a key role for cytoplasmic functionalities of the MBL-1 protein. Furthermore, RNA-seq and lifespan analyses indicated that short MBL-1 isoforms are crucial regulators of miRNA expression and, in consequence, required for normal lifespan. In conclusion, this study provides support for the disruption of cytoplasmic RNA metabolism as a contributor in myotonic dystrophy and paves the way for further exploration of miRNA regulation through MBNL proteins during development and in disease models.


Asunto(s)
MicroARNs , Distrofia Miotónica , Animales , Empalme Alternativo/genética , Caenorhabditis elegans/genética , MicroARNs/genética , Distrofia Miotónica/genética , Isoformas de Proteínas/genética
6.
Hum Mol Genet ; 32(4): 621-631, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36099027

RESUMEN

Myotonic dystrophy type 1 is a complex disease caused by a genetically unstable CTG repeat expansion in the 3'-untranslated region of the DMPK gene. Age-dependent, tissue-specific somatic instability has confounded genotype-phenotype associations, but growing evidence suggests that it also contributes directly toward disease progression. Using a well-characterized clinical cohort of DM1 patients from Costa Rica, we quantified somatic instability in blood, buccal cells, skin and skeletal muscle. Whilst skeletal muscle showed the largest expansions, modal allele lengths in skin were also very large and frequently exceeded 2000 CTG repeats. Similarly, the degree of somatic expansion in blood, muscle and skin were associated with each other. Notably, we found that the degree of somatic expansion in skin was highly predictive of that in skeletal muscle. More importantly, we established that individuals whose repeat expanded more rapidly than expected in one tissue (after correction for progenitor allele length and age) also expanded more rapidly than expected in other tissues. We also provide evidence suggesting that individuals in whom the repeat expanded more rapidly than expected in skeletal muscle have an earlier age at onset than expected (after correction for the progenitor allele length). Pyrosequencing analyses of the genomic DNA flanking the CTG repeat revealed that the degree of methylation in muscle was well predicted by the muscle modal allele length and age, but that neither methylation of the flanking DNA nor levels of DMPK sense and anti-sense transcripts could obviously explain individual- or tissue-specific patterns of somatic instability.


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido/genética , Mucosa Bucal , Alelos , ADN/genética , Proteína Quinasa de Distrofia Miotónica/genética
7.
Hum Mol Genet ; 32(4): 551-566, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36048859

RESUMEN

Targeting AMP-activated protein kinase (AMPK) is emerging as a promising strategy for treating myotonic dystrophy type 1 (DM1), the most prevalent form of adult-onset muscular dystrophy. We previously demonstrated that 5-aminomidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) and exercise, two potent AMPK activators, improve disease features in DM1 mouse skeletal muscles. Here, we employed a combinatorial approach with these AMPK activators and examined their joint impact on disease severity in male and female DM1 mice. Our data reveal that swimming exercise additively enhances the effect of AICAR in mitigating the nuclear accumulation of toxic CUGexp RNA foci. In addition, our findings show a trend towards an enhanced reversal of MBNL1 sequestration and correction in pathogenic alternative splicing events. Our results further demonstrate that the combinatorial impact of exercise and AICAR promotes muscle fiber hypertrophy in DM1 skeletal muscle. Importantly, these improvements occur in a sex-specific manner with greater benefits observed in female DM1 mice. Our findings demonstrate that combining AMPK-activating interventions may prove optimal for rescuing the DM1 muscle phenotype and uncover important sex differences in the response to AMPK-based therapeutic strategies in DM1 mice.


Asunto(s)
Distrofia Miotónica , Condicionamiento Físico Animal , Animales , Femenino , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Ribonucleótidos/farmacología
8.
EMBO Rep ; 24(4): e56616, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36852954

RESUMEN

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. It is caused by the excessive expansion of noncoding CTG repeats, which when transcribed affects the functions of RNA-binding factors with adverse effects on alternative splicing, processing, and stability of a large set of muscular and cardiac transcripts. Among these effects, inefficient processing and down-regulation of muscle- and heart-specific miRNA, miR-1, have been reported in DM1 patients, but the impact of reduced miR-1 on DM1 pathogenesis has been unknown. Here, we use Drosophila DM1 models to explore the role of miR-1 in cardiac dysfunction in DM1. We show that miR-1 down-regulation in the heart leads to dilated cardiomyopathy (DCM), a DM1-associated phenotype. We combined in silico screening for miR-1 targets with transcriptional profiling of DM1 cardiac cells to identify miR-1 target genes with potential roles in DCM. We identify Multiplexin (Mp) as a new cardiac miR-1 target involved in DM1. Mp encodes a collagen protein involved in cardiac tube formation in Drosophila. Mp and its human ortholog Col15A1 are both highly enriched in cardiac cells of DCM-developing DM1 flies and in heart samples from DM1 patients with DCM, respectively. When overexpressed in the heart, Mp induces DCM, whereas its attenuation rescues the DCM phenotype of aged DM1 flies. Reduced levels of miR-1 and consecutive up-regulation of its target Mp/Col15A1 might be critical in DM1-associated DCM.


Asunto(s)
Cardiomiopatía Dilatada , MicroARNs , Distrofia Miotónica , Adulto , Animales , Humanos , Anciano , Distrofia Miotónica/genética , Distrofia Miotónica/patología , Cardiomiopatía Dilatada/genética , Corazón , MicroARNs/genética , MicroARNs/metabolismo , Drosophila/genética , Drosophila/metabolismo
9.
Mol Cell ; 68(3): 479-490.e5, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29056323

RESUMEN

Transcription of expanded microsatellite repeats is associated with multiple human diseases, including myotonic dystrophy, Fuchs endothelial corneal dystrophy, and C9orf72-ALS/FTD. Reducing production of RNA and proteins arising from these expanded loci holds therapeutic benefit. Here, we tested the hypothesis that deactivated Cas9 enzyme impedes transcription across expanded microsatellites. We observed a repeat length-, PAM-, and strand-dependent reduction of repeat-containing RNAs upon targeting dCas9 directly to repeat sequences; targeting the non-template strand was more effective. Aberrant splicing patterns were rescued in DM1 cells, and production of RAN peptides characteristic of DM1, DM2, and C9orf72-ALS/FTD cells was drastically decreased. Systemic delivery of dCas9/gRNA by adeno-associated virus led to reductions in pathological RNA foci, rescue of chloride channel 1 protein expression, and decreased myotonia. These observations suggest that transcription of microsatellite repeat-containing RNAs is more sensitive to perturbation than transcription of other RNAs, indicating potentially viable strategies for therapeutic intervention.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Terapia Genética/métodos , Repeticiones de Microsatélite , Distrofia Miotónica/terapia , Transcripción Genética , Empalme Alternativo , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Activación Enzimática , Femenino , Vectores Genéticos , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones Transgénicos , Mioblastos/metabolismo , Mioblastos/patología , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , ARN Guía de Kinetoplastida/biosíntesis , ARN Guía de Kinetoplastida/genética , Transducción Genética , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo
10.
Nucleic Acids Res ; 51(3): 1245-1259, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36617982

RESUMEN

Loss of gene function can be compensated by paralogs with redundant functions. An example of such compensation are the paralogs of the Muscleblind-Like (MBNL) family of RNA-binding proteins that are sequestered and lose their function in Myotonic Dystrophy Type 1 (DM1). Loss of MBNL1 increases the levels of its paralog MBNL2 in tissues where Mbnl2 expression is low, allowing MBNL2 to functionally compensate for MBNL1 loss. Here, we show that loss of MBNL1 increases the inclusion of Mbnl2 exon 6 and exon 9. We find that inclusion of Mbnl2 exon 6 increases the translocation of MBNL2 to the nucleus, while the inclusion of Mbnl2 exon 9 shifts the reading frame to an alternative C-terminus. We show that the C-terminus lacking exon 9 contains a PEST domain which causes proteasomal degradation. Loss of MBNL1 increases the inclusion of exon 9, resulting in an alternative C-terminus lacking the PEST domain and the increase of MBNL2. We further find that the compensatory mechanism is active in a mouse DM1 model. Together, this study uncovers the compensatory mechanism by which loss of MBNL1 upregulates its paralog MBNL2 and highlights a potential role of the compensatory mechanism in DM1.


Asunto(s)
Empalme Alternativo , Distrofia Miotónica , Proteínas de Unión al ARN , Animales , Ratones , Proteínas de Unión al ADN/genética , Exones , Distrofia Miotónica/genética , Proteínas de Unión al ARN/metabolismo , Activación Transcripcional , Regulación hacia Arriba
11.
Genes Dev ; 31(11): 1122-1133, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28698297

RESUMEN

Myotonic dystrophy type 1 (DM1) is a CTG microsatellite expansion (CTGexp) disorder caused by expression of CUGexp RNAs. These mutant RNAs alter the activities of RNA processing factors, including MBNL proteins, leading to re-expression of fetal isoforms in adult tissues and DM1 pathology. While this pathogenesis model accounts for adult-onset disease, the molecular basis of congenital DM (CDM) is unknown. Here, we test the hypothesis that disruption of developmentally regulated RNA alternative processing pathways contributes to CDM disease. We identify prominent alternative splicing and polyadenylation abnormalities in infant CDM muscle, and, although most are also misregulated in adult-onset DM1, dysregulation is significantly more severe in CDM. Furthermore, analysis of alternative splicing during human myogenesis reveals that CDM-relevant exons undergo prenatal RNA isoform transitions and are predicted to be disrupted by CUGexp-associated mechanisms in utero. To test this possibility and the contribution of MBNLs to CDM pathogenesis, we generated mouse Mbnl double (Mbnl1; Mbnl2) and triple (Mbnl1; Mbnl2; Mbnl3) muscle-specific knockout models that recapitulate the congenital myopathy, gene expression, and spliceopathy defects characteristic of CDM. This study demonstrates that RNA misprocessing is a major pathogenic factor in CDM and provides novel mouse models to further examine roles for cotranscriptional/post-transcriptional gene regulation during development.


Asunto(s)
Desarrollo de Músculos/genética , Distrofia Miotónica/genética , Distrofia Miotónica/fisiopatología , Procesamiento Postranscripcional del ARN/genética , Empalme del ARN , Proteínas de Unión al ARN/genética , Animales , Proteínas Portadoras/genética , Células Cultivadas , Preescolar , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Humanos , Lactante , Ratones , Proteínas de Unión al ARN/metabolismo
12.
J Biol Chem ; 299(7): 104864, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37245780

RESUMEN

Secondary structures formed by expanded CUG RNA are involved in the pathobiology of myotonic dystrophy type 1. Understanding the molecular basis of toxic RNA structures can provide insights into the mechanism of disease pathogenesis and accelerate the drug discovery process. Here, we report the crystal structure of CUG repeat RNA containing three U-U mismatches between C-G and G-C base pairs. The CUG RNA crystallizes as an A-form duplex, with the first and third U-U mismatches adopting a water-mediated asymmetric mirror isoform geometry. We found for the first time that a symmetric, water-bridged U-H2O-U mismatch is well tolerated within the CUG RNA duplex, which was previously suspected but not observed. The new water-bridged U-U mismatch resulted in high base-pair opening and single-sided cross-strand stacking interactions, which in turn dominate the CUG RNA structure. Furthermore, we performed molecular dynamics simulations that complemented the structural findings and proposed that the first and third U-U mismatches are interchangeable conformations, while the central water-bridged U-U mismatch represents an intermediate state that modulates the RNA duplex conformation. Collectively, the new structural features provided in this work are important for understanding the recognition of U-U mismatches in CUG repeats by external ligands such as proteins or small molecules.


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/genética , Agua/química , ARN/metabolismo , Emparejamiento Base , Conformación de Ácido Nucleico
13.
Neurogenetics ; 25(3): 233-247, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38758368

RESUMEN

Neuromuscular disorders (NMDs) include a wide range of diseases affecting the peripheral nervous system. The genetic diagnoses are increasingly obtained with using the next generation sequencing (NGS). We applied the custom-design targeted NGS panel including 89 genes, together with genotyping and multiplex ligation-dependent probe amplification (MLPA) to identify a genetic spectrum of NMDs in 52 Polish patients. As a result, the genetic diagnosis was determined by NGS panel in 29 patients so its diagnostic utility is estimated at 55.8%. The most pathogenic variants were found in CLCN1, followed by CAPN3, SCN4A, and SGCA genes. Genotyping of myotonic dystrophy type 1 and 2 (DM1 and DM2) as a secondary approach has been performed. The co-occurrence of CAPN3 and CNBP mutations in one patient as well as DYSF and CNBP mutations in another suggests possibly more complex inheritance as well as expression of a phenotype. In 7 individuals with single nucleotide variant found in NGS testing, the MLPA of the CAPN3 gene was performed detecting the deletion encompassing exons 2-8 in the CAPN3 gene in one patient, confirming recessive limb-girdle muscular dystrophy type 1 (LGMDR1). Thirty patients obtained a genetic diagnosis (57.7%) after using NGS testing, genotyping and MLPA analysis. The study allowed for the identification of 27 known and 4 novel pathogenic/likely pathogenic variants and variants of uncertain significance (VUS) associated with NMDs.In conclusion, the diagnostic approach with diverse molecular techniques enables to broaden the mutational spectrum and maximizes the diagnostic yield. Furthermore, the co-occurrence of DM2 and LGMD has been detected in 2 individuals.


Asunto(s)
Calpaína , Canales de Cloruro , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Musculares , Enfermedades Neuromusculares , Fenotipo , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/diagnóstico , Femenino , Pruebas Genéticas/métodos , Adulto , Persona de Mediana Edad , Calpaína/genética , Canales de Cloruro/genética , Proteínas Musculares/genética , Adolescente , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adulto Joven , Niño , Genotipo , Anciano , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Miotónica/genética , Distrofia Miotónica/diagnóstico , Preescolar
14.
EMBO J ; 39(1): e101112, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31721251

RESUMEN

Several neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia (SCA) are caused by non-coding nucleotide repeat expansions. Different pathogenic mechanisms may underlie these non-coding repeat expansion disorders. While gain-of-function mechanisms, such as toxicity associated with expression of repeat RNA or toxicity associated with repeat-associated non-ATG (RAN) products, are most frequently connected with these disorders, loss-of-function mechanisms have also been implicated. We review the different pathways that have been linked to non-coding repeat expansion disorders such as C9ORF72-linked ALS/frontotemporal dementia (FTD), myotonic dystrophy, fragile X tremor/ataxia syndrome (FXTAS), SCA, and Huntington's disease-like 2. We discuss modes of RNA toxicity focusing on the identity and the interacting partners of the toxic RNA species. Using the C9ORF72 ALS/FTD paradigm, we further explore the efforts and different methods used to disentangle RNA vs. RAN toxicity. Overall, we conclude that there is ample evidence for a role of RNA toxicity in non-coding repeat expansion diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Ataxia/patología , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Síndrome del Cromosoma X Frágil/patología , Demencia Frontotemporal/patología , Distrofia Miotónica/patología , Enfermedades Neurodegenerativas/patología , ARN/toxicidad , Temblor/patología , Esclerosis Amiotrófica Lateral/genética , Ataxia/genética , Síndrome del Cromosoma X Frágil/genética , Demencia Frontotemporal/genética , Humanos , Mutación , Distrofia Miotónica/genética , Enfermedades Neurodegenerativas/genética , ARN/genética , Temblor/genética
15.
Acta Neuropathol ; 147(1): 19, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240888

RESUMEN

Myotonic dystrophy type 2 (DM2) is an autosomal-dominant multisystemic disease with a core manifestation of proximal muscle weakness, muscle atrophy, myotonia, and myalgia. The disease-causing CCTG tetranucleotide expansion within the CNBP gene on chromosome 3 leads to an RNA-dominated spliceopathy, which is currently untreatable. Research exploring the pathophysiological mechanisms in myotonic dystrophy type 1 has resulted in new insights into disease mechanisms and identified mitochondrial dysfunction as a promising therapeutic target. It remains unclear whether similar mechanisms underlie DM2 and, if so, whether these might also serve as potential therapeutic targets. In this cross-sectional study, we studied DM2 skeletal muscle biopsy specimens on proteomic, molecular, and morphological, including ultrastructural levels in two separate patient cohorts consisting of 8 (explorative cohort) and 40 (confirmatory cohort) patients. Seven muscle biopsy specimens from four female and three male DM2 patients underwent proteomic analysis and respiratory chain enzymology. We performed bulk RNA sequencing, immunoblotting of respiratory chain complexes, mitochondrial DNA copy number determination, and long-range PCR (LR-PCR) to study mitochondrial DNA deletions on six biopsies. Proteomic and transcriptomic analyses revealed a downregulation of essential mitochondrial proteins and their respective RNA transcripts, namely of subunits of respiratory chain complexes I, III, and IV (e.g., mt-CO1, mt-ND1, mt-CYB, NDUFB6) and associated translation factors (TACO1). Light microscopy showed mitochondrial abnormalities (e.g., an age-inappropriate amount of COX-deficient fibers, subsarcolemmal accumulation) in most biopsy specimens. Electron microscopy revealed widespread ultrastructural mitochondrial abnormalities, including dysmorphic mitochondria with paracrystalline inclusions. Immunofluorescence studies with co-localization of autophagy (p62, LC-3) and mitochondrial marker proteins (TOM20, COX-IV), as well as immunohistochemistry for mitophagy marker BNIP3 indicated impaired mitophagic flux. Immunoblotting and LR-PCR did not reveal significant differences between patients and controls. In contrast, mtDNA copy number measurement showed a reduction of mtDNA copy numbers in the patient group compared to controls. This first multi-level study of DM2 unravels thus far undescribed functional and structural mitochondrial abnormalities. However, the molecular link between the tetranucleotide expansion and mitochondrial dysfunction needs to be further elucidated.


Asunto(s)
Enfermedades Mitocondriales , Distrofia Miotónica , Humanos , Masculino , Femenino , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , Estudios Transversales , Proteómica , ARN , ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética
16.
Brain ; 146(10): 4217-4232, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37143315

RESUMEN

Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.


Asunto(s)
Distrofia Miotónica , Humanos , Femenino , Ratones , Animales , Distrofia Miotónica/genética , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , ARN/genética , Ratones Noqueados , Expansión de Repetición de Trinucleótido
17.
Neurol Sci ; 45(2): 735-740, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37584878

RESUMEN

OBJECTIVE: Electrodiagnostic testing is an important screening test for myotonic dystrophy type 1 (DM1). Although myotonic discharges are observed on electromyography in cases of DM1, it is difficult to distinguish DM1 from other myotonic disorders clinically. In the present study, afterdischarges, another type of pathological potential revealed by electrodiagnostic testing, were analyzed, and their role in distinguishing DM1 from other myotonic disorders was explored. METHODS: Data from 33 patients with myotonic discharges on electromyography were analyzed retrospectively. According to gene testing, the patients were divided into DM1 (n = 20) and non-DM1 myotonia (n = 13) groups. Afterdischarges were investigated by retrospectively evaluating the electrodiagnostic findings of motor nerve conduction studies, F-waves, and repetitive nerve stimulations. RESULTS: Afterdischarges were observed in 17 of the 20 patients with DM1, with an occurrence rate of approximately 85%. However, afterdischarges were absent in all patients with non-DM1 myotonia. There were significant differences in the occurrence rate between the two groups (P < 0.01). CONCLUSION: Afterdischarges may serve as a suggestive role in clinical diagnosis of DM1. The discovery that DM1 can present with afterdischarges may pave a new way to study the pathogenesis of DM1.


Asunto(s)
Miotonía , Distrofia Miotónica , Humanos , Distrofia Miotónica/diagnóstico , Distrofia Miotónica/genética , Miotonía/diagnóstico , Miotonía/genética , Estudios Retrospectivos , Electromiografía , Pruebas Genéticas
18.
Skin Res Technol ; 30(7): e13832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38937899

RESUMEN

OBJECTIVE: Patients with myotonic muscular dystrophy (MMD) were observed to have numerous basal cell carcinoma (BCC) and abnormal dysplastic nevi (DN) on non-sun exposed skin. Simultaneously a large study published in the Journal of American Medical Association (JAMA) illustrated that patients with MMD have "overall" an increased risk for cancer development. Based on these findings, this author in 2010 postulated that dysregulation of RNA binding proteins (RBP), responsible for clinical manifestations of MMD, is also responsible for the development of BCC and melanoma. METHODS: To report new research elucidating the etiology of melanoma, BCC, MMD-induced cancers, and potentially other environmentally induced malignancies. RESULTS: Dysregulation of RBP induces aberrant mRNA splicing; recent data indicates that abnormal mRNA splicing not just plays a key role in the pathogenesis of melanoma but is a hallmark of essentially all human malignancies. CONCLUSION: The author's hypothesis is that ultraviolet (UV) radiation induces DNA damage in intronic regions of a variety of genes. Furthermore, these UV-induced abnormal DNA dimers, repeats and mutations interfere with normal mRNA splicing thus producing abnormal proteins. These abnormal proteins in turn activate oncogenic pathways such as hedgehog, MAP kinase, and WNT.


Asunto(s)
Carcinoma Basocelular , Melanoma , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/genética , Melanoma/genética , Carcinoma Basocelular/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas , Distrofia Miotónica/genética , Distrofia Miotónica/fisiopatología , Rayos Ultravioleta/efectos adversos
19.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473933

RESUMEN

Loss of function of members of the muscleblind-like (MBNL) family of RNA binding proteins has been shown to play a key role in the spliceopathy of RNA toxicity in myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children. MBNL1 and MBNL2 are the most abundantly expressed members in skeletal muscle. A key aspect of DM1 is poor muscle regeneration and repair, leading to dystrophy. We used a BaCl2-induced damage model of muscle injury to study regeneration and effects on skeletal muscle satellite cells (MuSCs) in Mbnl1∆E3/∆E3 and Mbnl2∆E2/∆E2 knockout mice. Similar experiments have previously shown deleterious effects on these parameters in mouse models of RNA toxicity. Muscle regeneration in Mbnl1 and Mbnl2 knockout mice progressed normally with no obvious deleterious effects on MuSC numbers or increased expression of markers of fibrosis. Skeletal muscles in Mbnl1∆E3/∆E3/ Mbnl2∆E2/+ mice showed increased histopathology but no deleterious reductions in MuSC numbers and only a slight increase in collagen deposition. These results suggest that factors beyond the loss of MBNL1/MBNL2 and the associated spliceopathy are likely to play a key role in the defects in skeletal muscle regeneration and deleterious effects on MuSCs that are seen in mouse models of RNA toxicity due to expanded CUG repeats.


Asunto(s)
Empalme Alternativo , Distrofia Miotónica , Humanos , Niño , Ratones , Animales , Distrofia Miotónica/genética , Músculo Esquelético/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
20.
Crit Rev Biochem Mol Biol ; 56(1): 31-53, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33172304

RESUMEN

Dozens of incurable neurological disorders result from expansion of short repeat sequences in both coding and non-coding regions of the transcriptome. Short repeat expansions underlie microsatellite repeat expansion (MRE) disorders including myotonic dystrophy (DM1, CUG50-3,500 in DMPK; DM2, CCTG75-11,000 in ZNF9), fragile X tremor ataxia syndrome (FXTAS, CGG50-200 in FMR1), spinal bulbar muscular atrophy (SBMA, CAG40-55 in AR), Huntington's disease (HD, CAG36-121 in HTT), C9ORF72- amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD and C9-ALS/FTD, GGGGCC in C9ORF72), and many others, like ataxias. Recent research has highlighted several mechanisms that may contribute to pathology in this heterogeneous class of neurological MRE disorders - bidirectional transcription, intranuclear RNA foci, and repeat associated non-AUG (RAN) translation - which are the subject of this review. Additionally, many MRE disorders share similar underlying molecular pathologies that have been recently targeted in experimental and preclinical contexts. We discuss the therapeutic potential of versatile therapeutic strategies that may selectively target disrupted RNA-based processes and may be readily adaptable for the treatment of multiple MRE disorders. Collectively, the strategies under consideration for treatment of multiple MRE disorders include reducing levels of toxic RNA, preventing RNA foci formation, and eliminating the downstream cellular toxicity associated with peptide repeats produced by RAN translation. While treatments are still lacking for the majority of MRE disorders, several promising therapeutic strategies have emerged and will be evaluated within this review.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ataxia/genética , Síndrome del Cromosoma X Frágil/genética , Demencia Frontotemporal/genética , Enfermedad de Huntington/genética , Atrofia Muscular Espinal/genética , Distrofia Miotónica/genética , Procesamiento Postranscripcional del ARN/genética , Temblor/genética , Expansión de Repetición de Trinucleótido/genética , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Animales , Ataxia/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Demencia Frontotemporal/tratamiento farmacológico , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Atrofia Muscular Espinal/tratamiento farmacológico , Distrofia Miotónica/tratamiento farmacológico , Neuronas/metabolismo , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/genética , Temblor/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA