Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.658
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(24): 4621-4633.e17, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36368323

RESUMEN

Methods for acquiring spatially resolved omics data from complex tissues use barcoded DNA arrays of low- to sub-micrometer features to achieve single-cell resolution. However, fabricating such arrays (randomly assembled beads, DNA nanoballs, or clusters) requires sequencing barcodes in each array, limiting cost-effectiveness and throughput. Here, we describe a vastly scalable stamping method to fabricate polony gels, arrays of ∼1-micrometer clonal DNA clusters bearing unique barcodes. By enabling repeatable enzymatic replication of barcode-patterned gels, this method, compared with the sequencing-dependent array fabrication, reduced cost by at least 35-fold and time to approximately 7 h. The gel stamping was implemented with a simple robotic arm and off-the-shelf reagents. We leveraged the resolution and RNA capture efficiency of polony gels to develop Pixel-seq, a single-cell spatial transcriptomic assay, and applied it to map the mouse parabrachial nucleus and analyze changes in neuropathic pain-regulated transcriptomes and cell-cell communication after nerve ligation.


Asunto(s)
Dolor Crónico , Transcriptoma , Ratones , Animales , ADN , ARN , Geles
2.
Physiol Rev ; 101(1): 213-258, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32525759

RESUMEN

Chronic, pathological pain remains a global health problem and a challenge to basic and clinical sciences. A major obstacle to preventing, treating, or reverting chronic pain has been that the nature of neural circuits underlying the diverse components of the complex, multidimensional experience of pain is not well understood. Moreover, chronic pain involves diverse maladaptive plasticity processes, which have not been decoded mechanistically in terms of involvement of specific circuits and cause-effect relationships. This review aims to discuss recent advances in our understanding of circuit connectivity in the mammalian brain at the level of regional contributions and specific cell types in acute and chronic pain. A major focus is placed on functional dissection of sub-neocortical brain circuits using optogenetics, chemogenetics, and imaging technological tools in rodent models with a view towards decoding sensory, affective, and motivational-cognitive dimensions of pain. The review summarizes recent breakthroughs and insights on structure-function properties in nociceptive circuits and higher order sub-neocortical modulatory circuits involved in aversion, learning, reward, and mood and their modulation by endogenous GABAergic inhibition, noradrenergic, cholinergic, dopaminergic, serotonergic, and peptidergic pathways. The knowledge of neural circuits and their dynamic regulation via functional and structural plasticity will be beneficial towards designing and improving targeted therapies.


Asunto(s)
Dolor Agudo/fisiopatología , Encéfalo/fisiopatología , Dolor Crónico/fisiopatología , Red Nerviosa/fisiopatología , Animales , Humanos , Vías Nerviosas , Neurotransmisores , Transducción de Señal/fisiología
3.
Annu Rev Neurosci ; 43: 355-374, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32109184

RESUMEN

Opioid addiction and overdose are at record levels in the United States. This is driven, in part, by their widespread prescription for the treatment of pain, which also increased opportunity for diversion by sensation-seeking users. Despite considerable research on the neurobiology of addiction, treatment options for opioid abuse remain limited. Mood disorders, particularly depression, are often comorbid with both pain disorders and opioid abuse. The endogenous opioid system, a complex neuromodulatory system, sits at the neurobiological convergence point of these three comorbid disease states. We review evidence for dysregulation of the endogenous opioid system as a mechanism for the development of opioid addiction and/or mood disorder. Specifically, individual differences in opioid system function may underlie differences in vulnerability to opioid addiction and mood disorders. We also review novel research, which promises to provide more detailed understanding of individual differences in endogenous opioid neurobiology and its contribution to opioid addiction susceptibility.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Depresión/tratamiento farmacológico , Trastornos Relacionados con Opioides/tratamiento farmacológico , Animales , Sobredosis de Droga/tratamiento farmacológico , Humanos , Medicina de Precisión/métodos
4.
Nat Rev Neurosci ; 24(4): 252-265, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36658346

RESUMEN

With sweeping advances in precision delivery systems and manipulation of the genomes and transcriptomes of various cell types, medical biotechnology offers unprecedented selectivity for and control of a wide variety of biological processes, forging new opportunities for therapeutic interventions. This perspective summarizes state-of-the-art gene therapies enabled by recent innovations, with an emphasis on the expanding universe of molecular targets that govern the activity and function of primary sensory neurons and which might be exploited to effectively treat chronic pain.


Asunto(s)
Dolor Crónico , Nociceptores , Humanos , Nociceptores/metabolismo , Dolor Crónico/genética , Dolor Crónico/terapia , Dolor Crónico/metabolismo , Transcriptoma
5.
Nature ; 606(7912): 137-145, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614217

RESUMEN

Nerve injury leads to chronic pain and exaggerated sensitivity to gentle touch (allodynia) as well as a loss of sensation in the areas in which injured and non-injured nerves come together1-3. The mechanisms that disambiguate these mixed and paradoxical symptoms are unknown. Here we longitudinally and non-invasively imaged genetically labelled populations of fibres that sense noxious stimuli (nociceptors) and gentle touch (low-threshold afferents) peripherally in the skin for longer than 10 months after nerve injury, while simultaneously tracking pain-related behaviour in the same mice. Fully denervated areas of skin initially lost sensation, gradually recovered normal sensitivity and developed marked allodynia and aversion to gentle touch several months after injury. This reinnervation-induced neuropathic pain involved nociceptors that sprouted into denervated territories precisely reproducing the initial pattern of innervation, were guided by blood vessels and showed irregular terminal connectivity in the skin and lowered activation thresholds mimicking low-threshold afferents. By contrast, low-threshold afferents-which normally mediate touch sensation as well as allodynia in intact nerve territories after injury4-7-did not reinnervate, leading to an aberrant innervation of tactile end organs such as Meissner corpuscles with nociceptors alone. Genetic ablation of nociceptors fully abrogated reinnervation allodynia. Our results thus reveal the emergence of a form of chronic neuropathic pain that is driven by structural plasticity, abnormal terminal connectivity and malfunction of nociceptors during reinnervation, and provide a mechanistic framework for the paradoxical sensory manifestations that are observed clinically and can impose a heavy burden on patients.


Asunto(s)
Hiperalgesia , Neuralgia , Nociceptores , Piel , Animales , Dolor Crónico/fisiopatología , Hiperalgesia/fisiopatología , Mecanorreceptores/patología , Ratones , Neuralgia/fisiopatología , Nociceptores/patología , Piel/inervación , Piel/fisiopatología
6.
PLoS Biol ; 22(2): e3002518, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38386616

RESUMEN

Neurons in the subthalamic nucleus (STN) become hyperactive following nerve injury and promote pain-related responses in mice. Considering that the anterior cingulate cortex (ACC) is involved in pain and emotion processing and projects to the STN, we hypothesize that ACC neurons may contribute to hyperactivity in STN neurons in chronic pain. In the present study, we showed that ACC neurons enhanced activity in response to noxious stimuli and to alterations in emotional states and became hyperactive in chronic pain state established by spared nerve injury of the sciatic nerve (SNI) in mice. In naïve mice, STN neurons were activated by noxious stimuli, but not by alterations in emotional states. Pain responses in STN neurons were attenuated in both naïve and SNI mice when ACC neurons were inhibited. Furthermore, optogenetic activation of the ACC-STN pathway induced bilateral hyperalgesia and depression-like behaviors in naive mice; conversely, inhibition of this pathway is sufficient to attenuate hyperalgesia and depression-like behaviors in SNI mice and naïve mice subjected to stimulation of STN neurons. Finally, mitigation of pain-like and depression-like behaviors in SNI mice by inhibition of the ACC-STN projection was eliminated by activation of STN neurons. Our results demonstrate that hyperactivity in the ACC-STN pathway may be an important pathophysiology in comorbid chronic pain and depression. Thus, the ACC-STN pathway may be an intervention target for the treatment of the comorbid chronic pain and depression.


Asunto(s)
Dolor Crónico , Ratones , Masculino , Animales , Giro del Cíngulo/fisiología , Hiperalgesia , Depresión , Neuronas/fisiología
7.
Proc Natl Acad Sci U S A ; 121(27): e2403777121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38916998

RESUMEN

Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.


Asunto(s)
Dolor Crónico , Parvalbúminas , Parvalbúminas/metabolismo , Animales , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Masculino , Potenciales de Acción/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
8.
Physiol Rev ; 99(2): 1079-1151, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30672368

RESUMEN

Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.


Asunto(s)
Dolor Crónico/metabolismo , Umbral del Dolor , Células Receptoras Sensoriales/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Analgésicos/uso terapéutico , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/genética , Dolor Crónico/fisiopatología , Diseño de Fármacos , Humanos , Umbral del Dolor/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Canales de Sodio Activados por Voltaje/genética
9.
Annu Rev Pharmacol Toxicol ; 63: 565-583, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662582

RESUMEN

The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.


Asunto(s)
Dolor Crónico , Neuralgia , Femenino , Humanos , Masculino , Dolor Crónico/tratamiento farmacológico , Caracteres Sexuales , Neuralgia/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Neuronas
10.
Annu Rev Genomics Hum Genet ; 24: 255-275, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624668

RESUMEN

Sickle cell disease (SCD) is a monogenic blood disease caused by a point mutation in the gene coding for ß-globin. The abnormal hemoglobin [sickle hemoglobin (HbS)] polymerizes under low-oxygen conditions and causes red blood cells to sickle. The clinical presentation varies from very severe (with acute pain, chronic pain, and early mortality) to normal (few complications and a normal life span). The variability of SCD might be due (in part) to various genetic modulators. First, we review the main genetic factors, polymorphisms, and modifier genes that influence the expression of globin or otherwise modulate the severity of SCD. Considering SCD as a complex, multifactorial disorder is important for the development of appropriate pharmacological and genetic treatments. Second, we review the characteristics, advantages, and disadvantages of the latest advances in gene therapy for SCD, from lentiviral-vector-based approaches to gene-editing strategies.


Asunto(s)
Dolor Agudo , Anemia de Células Falciformes , Dolor Crónico , Hemoglobinas Anormales , Humanos , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Eritrocitos
11.
PLoS Genet ; 19(10): e1010977, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37844115

RESUMEN

Chronic pain is at epidemic proportions in the United States, represents a significant burden on our public health system, and is coincident with a growing opioid crisis. While numerous genome-wide association studies have been reported for specific pain-related traits, many of these studies were underpowered, and the genetic relationship among these traits remains poorly understood. Here, we conducted a joint analysis of genome-wide association study summary statistics from seventeen pain susceptibility traits in the UK Biobank. This analysis revealed 99 genome-wide significant risk loci, 65 of which overlap loci identified in earlier studies. The remaining 34 loci are novel. We applied leave-one-trait-out meta-analyses to evaluate the influence of each trait on the joint analysis, which suggested that loci fall into four categories: loci associated with nearly all pain-related traits; loci primarily associated with a single trait; loci associated with multiple forms of skeletomuscular pain; and loci associated with headache-related pain. Overall, 664 genes were mapped to the 99 loci by genomic proximity, eQTLs, and chromatin interaction and ~15% of these genes showed differential expression in individuals with acute or chronic pain compared to healthy controls. Risk loci were enriched for genes involved in neurological and inflammatory pathways. Genetic correlation and two-sample Mendelian randomization indicated that psychiatric, metabolic, and immunological traits mediate some of these effects.


Asunto(s)
Dolor Crónico , Estudio de Asociación del Genoma Completo , Humanos , Dolor Crónico/genética , Predisposición Genética a la Enfermedad , Genoma , Genómica , Fenotipo , Polimorfismo de Nucleótido Simple/genética
12.
Proc Natl Acad Sci U S A ; 120(17): e2211631120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37071676

RESUMEN

Fibromyalgia is a debilitating widespread chronic pain syndrome that occurs in 2 to 4% of the population. The prevailing view that fibromyalgia results from central nervous system dysfunction has recently been challenged with data showing changes in peripheral nervous system activity. Using a mouse model of chronic widespread pain through hyperalgesic priming of muscle, we show that neutrophils invade sensory ganglia and confer mechanical hypersensitivity on recipient mice, while adoptive transfer of immunoglobulin, serum, lymphocytes, or monocytes has no effect on pain behavior. Neutrophil depletion abolishes the establishment of chronic widespread pain in mice. Neutrophils from patients with fibromyalgia also confer pain on mice. A link between neutrophil-derived mediators and peripheral nerve sensitization is already established. Our observations suggest approaches for targeting fibromyalgia pain via mechanisms that cause altered neutrophil activity and interactions with sensory neurons.


Asunto(s)
Dolor Crónico , Fibromialgia , Humanos , Neutrófilos , Hiperalgesia , Ganglios Sensoriales
13.
Proc Natl Acad Sci U S A ; 120(47): e2305215120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37972067

RESUMEN

Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Cav2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the A1R2 dipeptide in CBD3 as the anchoring Cav2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Cav2.2 from CRMP2, reduced membrane Cav2.2 expression and Ca2+ currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Cav2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.


Asunto(s)
Dolor Crónico , Peptidomiméticos , Ratas , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Ratas Sprague-Dawley , Peptidomiméticos/farmacología , Calcio/metabolismo , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Células Receptoras Sensoriales/metabolismo , Ganglios Espinales/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(32): e2217800120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498871

RESUMEN

Small molecules directly targeting the voltage-gated sodium channel (VGSC) NaV1.7 have not been clinically successful. We reported that preventing the addition of a small ubiquitin-like modifier onto the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 function and was antinociceptive in rodent models of neuropathic pain. Here, we discovered a CRMP2 regulatory sequence (CRS) unique to NaV1.7 that is essential for this regulatory coupling. CRMP2 preferentially bound to the NaV1.7 CRS over other NaV isoforms. Substitution of the NaV1.7 CRS with the homologous domains from the other eight VGSC isoforms decreased NaV1.7 currents. A cell-penetrant decoy peptide corresponding to the NaV1.7-CRS reduced NaV1.7 currents and trafficking, decreased presynaptic NaV1.7 expression, reduced spinal CGRP release, and reversed nerve injury-induced mechanical allodynia. Importantly, the NaV1.7-CRS peptide did not produce motor impairment, nor did it alter physiological pain sensation, which is essential for survival. As a proof-of-concept for a NaV1.7 -targeted gene therapy, we packaged a plasmid encoding the NaV1.7-CRS in an AAV virus. Treatment with this virus reduced NaV1.7 function in both rodent and rhesus macaque sensory neurons. This gene therapy reversed and prevented mechanical allodynia in a model of nerve injury and reversed mechanical and cold allodynia in a model of chemotherapy-induced peripheral neuropathy. These findings support the conclusion that the CRS domain is a targetable region for the treatment of chronic neuropathic pain.


Asunto(s)
Dolor Crónico , Neuralgia , Animales , Hiperalgesia/inducido químicamente , Dolor Crónico/genética , Dolor Crónico/terapia , Macaca mulatta/metabolismo , Neuralgia/genética , Neuralgia/terapia , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Ganglios Espinales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8
15.
Proc Natl Acad Sci U S A ; 120(26): e2212910120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339198

RESUMEN

Social interactions such as the patient-clinician encounter can influence pain, but the underlying dynamic interbrain processes are unclear. Here, we investigated the dynamic brain processes supporting social modulation of pain by assessing simultaneous brain activity (fMRI hyperscanning) from chronic pain patients and clinicians during video-based live interaction. Patients received painful and nonpainful pressure stimuli either with a supportive clinician present (Dyadic) or in isolation (Solo). In half of the dyads, clinicians performed a clinical consultation and intake with the patient prior to hyperscanning (Clinical Interaction), which increased self-reported therapeutic alliance. For the other half, patient-clinician hyperscanning was completed without prior clinical interaction (No Interaction). Patients reported lower pain intensity in the Dyadic, relative to the Solo, condition. In Clinical Interaction dyads relative to No Interaction, patients evaluated their clinicians as better able to understand their pain, and clinicians were more accurate when estimating patients' pain levels. In Clinical Interaction dyads, compared to No Interaction, patients showed stronger activation of the dorsolateral and ventrolateral prefrontal cortex (dlPFC and vlPFC) and primary (S1) and secondary (S2) somatosensory areas (Dyadic-Solo contrast), and clinicians showed increased dynamic dlPFC concordance with patients' S2 activity during pain. Furthermore, the strength of S2-dlPFC concordance was positively correlated with self-reported therapeutic alliance. These findings support that empathy and supportive care can reduce pain intensity and shed light on the brain processes underpinning social modulation of pain in patient-clinician interactions. Our findings further suggest that clinicians' dlPFC concordance with patients' somatosensory processing during pain can be boosted by increasing therapeutic alliance.


Asunto(s)
Dolor Crónico , Empatía , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Corteza Cerebral , Imagen por Resonancia Magnética
16.
Proc Natl Acad Sci U S A ; 120(9): e2215192120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802440

RESUMEN

Numerous studies have investigated the impacts of common types of chronic pain (CP) on patients' cognitive function and observed that CP was associated with later dementia. More recently, there is a growing recognition that CP conditions frequently coexist at multiple body sites and may bring more burdens on patients' overall health. However, whether and how multisite CP (MCP) contributes to an increased risk of dementia, compared to single-site CP (SCP) and pain-free (PF), is largely unclear. In the current study, utilizing the UK Biobank cohort, we first investigated dementia risk in individuals (n = 354,943) with different numbers of coexisting CP sites using Cox proportional hazards regression models. We then applied generalized additive models to investigate whether MCP leads to excessive deterioration of participants' (n = 19,116) cognition and brain structure. We found that individuals with MCP were associated with significantly higher dementia risk, broader and faster cognitive impairment, and greater hippocampal atrophy than both PF individuals and those with SCP. Moreover, the detrimental effects of MCP on dementia risk and hippocampal volume aggravated along with the number of coexisting CP sites. Mediation analyses further revealed that the decline of fluid intelligence in MCP individuals was partially mediated by hippocampal atrophy. Our results suggested that cognitive decline and hippocampal atrophy interact biologically and may underlie the increased risk of dementia associated with MCP.


Asunto(s)
Dolor Crónico , Disfunción Cognitiva , Demencia , Enfermedades Neurodegenerativas , Humanos , Dolor Crónico/patología , Imagen por Resonancia Magnética , Disfunción Cognitiva/patología , Enfermedades Neurodegenerativas/patología , Hipocampo/patología , Demencia/epidemiología , Demencia/etiología , Demencia/patología , Atrofia/patología
17.
Pharmacol Rev ; 76(1): 7-36, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37863655

RESUMEN

Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.


Asunto(s)
Dolor Crónico , Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Disbiosis , Percepción del Dolor , Microbioma Gastrointestinal/fisiología , Neuronas Dopaminérgicas
18.
J Neurosci ; 44(13)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38378273

RESUMEN

Patients with chronic pain often develop comorbid depressive symptoms, which makes the pain symptoms more complicated and refractory. However, the underlying mechanisms are poorly known. Here, in a repeated complete Freund's adjuvant (CFA) male mouse model, we reported a specific regulatory role of the paraventricular thalamic nucleus (PVT) glutamatergic neurons, particularly the anterior PVT (PVA) neurons, in mediating chronic pain and depression comorbidity (CDC). Our c-Fos protein staining observed increased PVA neuronal activity in CFA-CDC mice. In wild-type mice, chemogenetic activation of PVA glutamatergic neurons was sufficient to decrease the 50% paw withdrawal thresholds (50% PWTs), while depressive-like behaviors evaluated with immobile time in tail suspension test (TST) and forced swim test (FST) could only be achieved by repeated chemogenetic activation. Chemogenetic inhibition of PVA glutamatergic neurons reversed the decreased 50% PWTs in CFA mice without depressive-like symptoms and the increased TST and FST immobility in CFA-CDC mice. Surprisingly, in CFA-CDC mice, chemogenetically inhibiting PVA glutamatergic neurons failed to reverse the decrease of 50% PWTs, which could be restored by rapid-onset antidepressant S-ketamine. Further behavioral tests in chronic restraint stress mice and CFA pain mice indicated that PVA glutamatergic neuron inhibition and S-ketamine independently alleviate sensory and affective pain. Molecular profiling and pharmacological studies revealed the 5-hydroxytryptamine receptor 1D (Htr1d) in CFA pain-related PVT engram neurons as a potential target for treating CDC. These findings identified novel CDC neuronal and molecular mechanisms in the PVT and provided insight into the complicated pain neuropathology under a comorbid state with depression and related drug development.


Asunto(s)
Dolor Crónico , Ketamina , Humanos , Ratones , Masculino , Animales , Dolor Crónico/metabolismo , Depresión/tratamiento farmacológico , Tálamo , Neuronas/metabolismo , Comorbilidad
19.
J Neurosci ; 44(1)2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38171645

RESUMEN

Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.


Asunto(s)
Dolor Crónico , Miembro Fantasma , Animales , Humanos , Miembro Fantasma/tratamiento farmacológico , Miembro Fantasma/etiología , Calidad de Vida , Amputación Quirúrgica , Recuperación de la Función , Dolor Crónico/complicaciones
20.
J Neurosci ; 44(16)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38453466

RESUMEN

Chronic pain and alcohol use disorder (AUD) are highly comorbid, and patients with chronic pain are more likely to meet the criteria for AUD. Evidence suggests that both conditions alter similar brain pathways, yet this relationship remains poorly understood. Prior work shows that the anterior insular cortex (AIC) is involved in both chronic pain and AUD. However, circuit-specific changes elicited by the combination of pain and alcohol use remain understudied. The goal of this work was to elucidate the converging effects of binge alcohol consumption and chronic pain on AIC neurons that send projections to the dorsolateral striatum (DLS). Here, we used the Drinking-in-the-Dark (DID) paradigm to model binge-like alcohol drinking in mice that underwent spared nerve injury (SNI), after which whole-cell patch-clamp electrophysiological recordings were performed in acute brain slices to measure intrinsic and synaptic properties of AIC→DLS neurons. In male, but not female, mice, we found that SNI mice with no prior alcohol exposure consumed less alcohol compared with sham mice. Electrophysiological analyses showed that AIC→DLS neurons from SNI-alcohol male mice displayed increased neuronal excitability and increased frequency of miniature excitatory postsynaptic currents. However, mice exposed to alcohol prior to SNI consumed similar amounts of alcohol compared with sham mice following SNI. Together, our data suggest that the interaction of chronic pain and alcohol drinking have a direct effect on both intrinsic excitability and synaptic transmission onto AIC→DLS neurons in mice, which may be critical in understanding how chronic pain alters motivated behaviors associated with alcohol.


Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Dolor Crónico , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratones , Animales , Masculino , Dolor Crónico/metabolismo , Corteza Insular , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Etanol/farmacología , Neuronas/metabolismo , Alcoholismo/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA