Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.020
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(18): 3826-3844.e26, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37536338

RESUMEN

Previous studies have identified topologically associating domains (TADs) as basic units of genome organization. We present evidence of a previously unreported level of genome folding, where distant TAD pairs, megabases apart, interact to form meta-domains. Within meta-domains, gene promoters and structural intergenic elements present in distant TADs are specifically paired. The associated genes encode neuronal determinants, including those engaged in axonal guidance and adhesion. These long-range associations occur in a large fraction of neurons but support transcription in only a subset of neurons. Meta-domains are formed by diverse transcription factors that are able to pair over long and flexible distances. We present evidence that two such factors, GAF and CTCF, play direct roles in this process. The relative simplicity of higher-order meta-domain interactions in Drosophila, compared with those previously described in mammals, allowed the demonstration that genomes can fold into highly specialized cell-type-specific scaffolds that enable megabase-scale regulatory associations.


Asunto(s)
Cromosomas de Insectos , Drosophila , Animales , Cromatina/genética , Empaquetamiento del ADN , Drosophila/genética , Mamíferos/genética , Neurogénesis , Neuronas , Factores de Transcripción , Proteínas de Drosophila , Genoma de los Insectos , Regulación de la Expresión Génica
2.
Cell ; 181(6): 1246-1262.e22, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32442405

RESUMEN

There is considerable inter-individual variability in susceptibility to weight gain despite an equally obesogenic environment in large parts of the world. Whereas many studies have focused on identifying the genetic susceptibility to obesity, we performed a GWAS on metabolically healthy thin individuals (lowest 6th percentile of the population-wide BMI spectrum) in a uniquely phenotyped Estonian cohort. We discovered anaplastic lymphoma kinase (ALK) as a candidate thinness gene. In Drosophila, RNAi mediated knockdown of Alk led to decreased triglyceride levels. In mice, genetic deletion of Alk resulted in thin animals with marked resistance to diet- and leptin-mutation-induced obesity. Mechanistically, we found that ALK expression in hypothalamic neurons controls energy expenditure via sympathetic control of adipose tissue lipolysis. Our genetic and mechanistic experiments identify ALK as a thinness gene, which is involved in the resistance to weight gain.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Delgadez/genética , Tejido Adiposo/metabolismo , Adulto , Animales , Línea Celular , Estudios de Cohortes , Drosophila/genética , Estonia , Femenino , Humanos , Leptina/genética , Lipólisis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Interferencia de ARN/fisiología , Adulto Joven
3.
Cell ; 172(3): 632-632.e2, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29373833

RESUMEN

O-glycosylation is one of the most abundant and diverse types of post-translational modifications of proteins. O-glycans modulate the structure, stability, and function of proteins and serve generalized as well as highly specific roles in most biological processes. This ShapShot presents types of O-glycans found in different organisms and their principle biosynthetic pathways. To view this SnapShot, open or download the PDF.


Asunto(s)
Evolución Molecular , Procesamiento Proteico-Postraduccional , Animales , Bacterias/genética , Bacterias/metabolismo , Drosophila/genética , Drosophila/metabolismo , Hongos/genética , Hongos/metabolismo , Glicosilación , Nematodos/genética , Nematodos/metabolismo , Plantas/metabolismo , Vertebrados/genética , Vertebrados/metabolismo
4.
Annu Rev Cell Dev Biol ; 35: 637-653, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31283380

RESUMEN

The brain's synaptic networks endow an animal with powerfully adaptive biological behavior. Maps of such synaptic circuits densely reconstructed in those model brains that can be examined and manipulated by genetic means offer the best prospect for understanding the underlying biological bases of behavior. That prospect is now technologically feasible and a scientifically enabling possibility in neurobiology, much as genomics has been in molecular biology and genetics. In Drosophila, two major advances are in electron microscopic technology, using focused ion beam-scanning electron microscopy (FIB-SEM) milling to capture and align digital images, and in computer-aided reconstruction of neuron morphologies. The last decade has witnessed enormous progress in detailed knowledge of the actual synaptic circuits formed by real neurons. Advances in various brain regions that heralded identification of the motion-sensing circuits in the optic lobe are now extending to other brain regions, with the prospect of encompassing the fly's entire nervous system, both brain and ventral nerve cord.


Asunto(s)
Drosophila/fisiología , Neuronas/citología , Animales , Conducta Animal/fisiología , Encéfalo/citología , Encéfalo/fisiología , Biología Computacional , Drosophila/citología , Drosophila/genética , Expresión Génica , Genes Reporteros , Microscopía Electrónica de Rastreo/métodos , Microscopía Fluorescente , Neuroanatomía , Neuronas/metabolismo , Neuronas/ultraestructura , Sinapsis/fisiología , Sinapsis/ultraestructura
5.
Mol Cell ; 84(5): 822-838.e8, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38157845

RESUMEN

Chromatin loops between gene pairs have been observed in diverse contexts in both flies and vertebrates. Combining high-resolution Capture-C, DNA fluorescence in situ hybridization, and genetic perturbations, we dissect the functional role of three loops between genes with related function during Drosophila embryogenesis. By mutating the loop anchor (but not the gene) or the gene (but not loop anchor), we disentangle loop formation and gene expression and show that the 3D proximity of paralogous gene loci supports their co-regulation. Breaking the loop leads to either an attenuation or enhancement of expression and perturbs their relative levels of expression and cross-regulation. Although many loops appear constitutive across embryogenesis, their function can change in different developmental contexts. Taken together, our results indicate that chromatin gene-gene loops act as architectural scaffolds that can be used in different ways in different contexts to fine-tune the coordinated expression of genes with related functions and sustain their cross-regulation.


Asunto(s)
Cromatina , Cromosomas , Animales , Hibridación Fluorescente in Situ , Cromatina/genética , Drosophila/genética
6.
Genes Dev ; 38(9-10): 415-435, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38866555

RESUMEN

The association of genomic loci to the nuclear periphery is proposed to facilitate cell type-specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ∼1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein Stonewall (Stwl) as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.


Asunto(s)
Diferenciación Celular , Núcleo Celular , Cromatina , Proteínas de Drosophila , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cromatina/metabolismo , Cromatina/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Femenino , Diferenciación Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Madre/metabolismo , Células Madre/citología , Regulación del Desarrollo de la Expresión Génica/genética , Drosophila/genética , Células Germinativas/metabolismo
7.
Genes Dev ; 38(9-10): 436-454, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38866556

RESUMEN

Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ cell genes during differentiation, and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we found that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ cell genes into a silenced state and activating a group of oocyte genes and nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, cross-talk between genome architecture and NPCs is essential for successful cell fate transitions.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila , Genoma de los Insectos , Poro Nuclear , Oogénesis , Animales , Oogénesis/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Diferenciación Celular/genética , Poro Nuclear/metabolismo , Poro Nuclear/genética , Genoma de los Insectos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Femenino , Drosophila melanogaster/genética , Oocitos/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Drosophila/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética
8.
Mol Cell ; 83(10): 1542-1544, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207620

RESUMEN

Three papers, Kawasaki et al.1 in this issue and Chen et al.2 and Li et al.3 in the previous issue of Molecular Cell, reveal regulatory roles for multiway chromatin interactions mediated by structural elements in Drosophila and human genomes.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Animales , Humanos , Regiones Promotoras Genéticas , Cromatina/genética , Drosophila/genética
9.
Mol Cell ; 83(10): 1605-1622.e9, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207625

RESUMEN

The prevailing view of metazoan gene regulation is that transcription is facilitated through the formation of static activator complexes at distal regulatory regions. Here, we employed quantitative single-cell live-imaging and computational analysis to provide evidence that the dynamic assembly and disassembly process of transcription factor (TF) clusters at enhancers is a major source of transcriptional bursting in developing Drosophila embryos. We further show that the regulatory connectivity between TF clustering and burst induction is highly regulated through intrinsically disordered regions (IDRs). Addition of a poly-glutamine tract to the maternal morphogen Bicoid demonstrated that extended IDR length leads to ectopic TF clustering and burst induction from its endogenous target genes, resulting in defects in body segmentation during embryogenesis. Moreover, we successfully visualized the presence of "shared" TF clusters during the co-activation of two distant genes, which provides a concrete molecular explanation for the newly proposed "topological operon" hypothesis in metazoan gene regulation.


Asunto(s)
Proteínas de Drosophila , Factores de Transcripción , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Drosophila/genética
10.
Mol Cell ; 83(23): 4318-4333.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37989319

RESUMEN

RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.


Asunto(s)
Proteínas de Drosophila , ARN Helicasas , Animales , Humanos , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Homeostasis , ARN/metabolismo , ARN Helicasas/metabolismo , ARN Bicatenario/genética , Factores de Transcripción/metabolismo
11.
Mol Cell ; 83(21): 3835-3851.e7, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37875112

RESUMEN

PIWI-interacting RNAs (piRNAs) guide transposable element repression in animal germ lines. In Drosophila, piRNAs are produced from heterochromatic loci, called piRNA clusters, which act as information repositories about genome invaders. piRNA generation by dual-strand clusters depends on the chromatin-bound Rhino-Deadlock-Cutoff (RDC) complex, which is deposited on clusters guided by piRNAs, forming a positive feedback loop in which piRNAs promote their own biogenesis. However, how piRNA clusters are formed before cognate piRNAs are present remains unknown. Here, we report spontaneous de novo piRNA cluster formation from repetitive transgenic sequences. Cluster formation occurs over several generations and requires continuous trans-generational maternal transmission of small RNAs. We discovered that maternally supplied small interfering RNAs (siRNAs) trigger de novo cluster activation in progeny. In contrast, siRNAs are dispensable for cluster function after its establishment. These results reveal an unexpected interplay between the siRNA and piRNA pathways and suggest a mechanism for de novo piRNA cluster formation triggered by siRNAs.


Asunto(s)
Proteínas de Drosophila , ARN de Interacción con Piwi , Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Herencia Materna , Drosophila/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
12.
Mol Cell ; 83(9): 1519-1526.e4, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37003261

RESUMEN

The impact of genome organization on the control of gene expression persists as a major challenge in regulatory biology. Most efforts have focused on the role of CTCF-enriched boundary elements and TADs, which enable long-range DNA-DNA associations via loop extrusion processes. However, there is increasing evidence for long-range chromatin loops between promoters and distal enhancers formed through specific DNA sequences, including tethering elements, which bind the GAGA-associated factor (GAF). Previous studies showed that GAF possesses amyloid properties in vitro, bridging separate DNA molecules. In this study, we investigated whether GAF functions as a looping factor in Drosophila development. We employed Micro-C assays to examine the impact of defined GAF mutants on genome topology. These studies suggest that the N-terminal POZ/BTB oligomerization domain is important for long-range associations of distant GAGA-rich tethering elements, particularly those responsible for promoter-promoter interactions that coordinate the activities of distant paralogous genes.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Cromatina/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos de Facilitación Genéticos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Genes Dev ; 37(21-24): 1041-1051, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38110249

RESUMEN

We show here that mir-279/996 are absolutely essential for development and function of Johnston's organ (JO), the primary proprioceptive and auditory organ in Drosophila Their deletion results in highly aberrant cell fate determination, including loss of scolopale cells and ectopic neurons, and mutants are electrophysiologically deaf. In vivo activity sensors and mosaic analyses indicate that these seed-related miRNAs function autonomously to suppress neural fate in nonneuronal cells. Finally, genetic interactions pinpoint two neural targets (elav and insensible) that underlie miRNA mutant JO phenotypes. This work uncovers how critical post-transcriptional regulation of specific miRNA targets governs cell specification and function of the auditory system.


Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , MicroARNs/genética , Audición/genética , Drosophila/genética , Proteínas de Drosophila/genética , Órganos de los Sentidos/fisiología
14.
Genes Dev ; 37(9-10): 377-382, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163335

RESUMEN

The RNA polymerase II core promoter is the site of convergence of the signals that lead to the initiation of transcription. Here, we performed a comparative analysis of the downstream core promoter region (DPR) in Drosophila and humans by using machine learning. These studies revealed a distinct human-specific version of the DPR and led to the use of machine learning models for the identification of synthetic extreme DPR motifs with specificity for human transcription factors relative to Drosophila factors and vice versa. More generally, machine learning models could similarly be used to design synthetic DNA elements with customized functional properties.


Asunto(s)
Drosophila , Factores de Transcripción , Animales , Humanos , Drosophila/genética , Drosophila/metabolismo , TATA Box , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
15.
Genes Dev ; 37(9-10): 351-353, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37253615

RESUMEN

The core promoter determines not only where gene transcription initiates but also the transcriptional activity in both basal and enhancer-induced conditions. Multiple short sequence elements within the core promoter have been identified in different species, but how they function together and to what extent they are truly species-specific has remained unclear. In this issue of Genes & Development, Vo ngoc and colleagues (pp. 377-382) report undertaking massively parallel measurements of synthetic core promoters to generate a large data set of their activities that informs a statistical learning model to identify the sequence differences of human and Drosophila core promoters. This machine learning model was then applied to design gene core promoters that are particularly specific for the human transcriptional machinery.


Asunto(s)
Inteligencia Artificial , Proteínas de Drosophila , Animales , Humanos , Regiones Promotoras Genéticas/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Transcripción Genética
16.
Annu Rev Cell Dev Biol ; 32: 1-46, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27501451

RESUMEN

In large-scale mutagenesis screens performed in 1979-1980 at the EMBL in Heidelberg, we isolated mutations affecting the pattern or structure of the larval cuticle in Drosophila. The 600 mutants we characterized could be assigned to 120 genes and represent the majority of such genes in the genome. These mutants subsequently provided a rich resource for understanding many fundamental developmental processes, such as the transcriptional hierarchies controlling segmentation, the establishment of cell states by signaling pathways, and the differentiation of epithelial cells. Most of the Heidelberg genes are now molecularly known, and many of them are conserved in other animals, including humans. Although the screens were initially driven entirely by curiosity, the mutants now serve as models for many human diseases. In this review, we describe the rationale of the screening procedures and provide a classification of the genes on the basis of their initial phenotypes and the subsequent molecular analyses.


Asunto(s)
Drosophila/genética , Pruebas Genéticas , Mutación/genética , Animales , Genes de Insecto , Mutagénesis/genética , Transducción de Señal/genética
17.
Mol Cell ; 82(21): 4049-4063.e6, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36182693

RESUMEN

In animals and plants, Dicer enzymes collaborate with double-stranded RNA-binding domain (dsRBD) proteins to convert precursor-microRNAs (pre-miRNAs) into miRNA duplexes. We report six cryo-EM structures of Drosophila Dicer-1 that show how Dicer-1 and its partner Loqs­PB cooperate (1) before binding pre-miRNA, (2) after binding and in a catalytically competent state, (3) after nicking one arm of the pre-miRNA, and (4) following complete dicing and initial product release. Our reconstructions suggest that pre-miRNA binds a rare, open conformation of the Dicer­1⋅Loqs­PB heterodimer. The Dicer-1 dsRBD and three Loqs­PB dsRBDs form a tight belt around the pre-miRNA, distorting the RNA helix to place the scissile phosphodiester bonds in the RNase III active sites. Pre-miRNA cleavage shifts the dsRBDs and partially closes Dicer-1, which may promote product release. Our data suggest a model for how the Dicer­1⋅Loqs­PB complex affects a complete cycle of pre-miRNA recognition, stepwise endonuclease cleavage, and product release.


Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Unión al ARN/metabolismo , Drosophila/genética , MicroARNs/genética , MicroARNs/metabolismo
18.
Mol Cell ; 82(20): 3872-3884.e9, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36150386

RESUMEN

MicroRNAs (miRNAs) typically direct degradation of their mRNA targets. However, some targets have unusual miRNA-binding sites that direct degradation of cognate miRNAs. Although this target-directed miRNA degradation (TDMD) is thought to shape the levels of numerous miRNAs, relatively few sites that endogenously direct degradation have been identified. Here, we identify six sites, five in mRNAs and one in a noncoding RNA named Marge, which serve this purpose in Drosophila cells or embryos. These six sites direct miRNA degradation without collateral target degradation, helping explain the effectiveness of this miRNA-degradation pathway. Mutations that disrupt this pathway are lethal, with many flies dying as embryos. Concomitant derepression of miR-3 and its paralog miR-309 appears responsible for some of this lethality, whereas the loss of Marge-directed degradation of miR-310 miRNAs causes defects in embryonic cuticle development. Thus, TDMD is implicated in the viability of an animal and is required for its proper development.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Drosophila/genética , Drosophila/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Desarrollo Embrionario/genética
19.
Mol Cell ; 82(19): 3598-3612.e7, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36113480

RESUMEN

Gene transcription is a highly regulated process in all animals. In Drosophila, two major transcriptional programs, housekeeping and developmental, have promoters with distinct regulatory compatibilities and nucleosome organization. However, it remains unclear how the differences in chromatin structure relate to the distinct regulatory properties and which chromatin remodelers are required for these programs. Using rapid degradation of core remodeler subunits in Drosophila melanogaster S2 cells, we demonstrate that developmental gene transcription requires SWI/SNF-type complexes, primarily to maintain distal enhancer accessibility. In contrast, wild-type-level housekeeping gene transcription requires the Iswi and Ino80 remodelers to maintain nucleosome positioning and phasing at promoters. These differential remodeler dependencies relate to different DNA-sequence-intrinsic nucleosome affinities, which favor a default ON state for housekeeping but a default OFF state for developmental gene transcription. Overall, our results demonstrate how different transcription-regulatory strategies are implemented by DNA sequence, chromatin structure, and remodeler activity.


Asunto(s)
Cromatina , Nucleosomas , Animales , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Tareas del Hogar , Nucleosomas/genética , Nucleosomas/metabolismo
20.
Mol Cell ; 82(19): 3580-3597.e9, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206738

RESUMEN

Maintenance of appropriate cell states involves epigenetic mechanisms, including Polycomb-group (PcG)-mediated transcriptional repression. While PcG proteins are known to induce chromatin compaction, how PcG proteins gain access to DNA in compact chromatin to achieve long-term silencing is poorly understood. Here, we show that the p300/CREB-binding protein (CBP) co-activator is associated with two-thirds of PcG regions and required for PcG occupancy at many of these in Drosophila and mouse cells. CBP stabilizes RNA polymerase II (Pol II) at PcG-bound repressive sites and promotes Pol II pausing independently of its histone acetyltransferase activity. CBP and Pol II pausing are necessary for RNA-DNA hybrid (R-loop) formation and nucleosome depletion at Polycomb Response Elements (PREs), whereas transcription beyond the pause region is not. These results suggest that non-enzymatic activities of the CBP co-activator have been repurposed to support PcG-mediated silencing, revealing how chromatin regulator interplay maintains transcriptional states.


Asunto(s)
Proteínas de Drosophila , Nucleosomas , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Cromatina/genética , Cromatina/metabolismo , ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ratones , Nucleosomas/genética , Nucleosomas/metabolismo , Complejo Represivo Polycomb 1/genética , Proteínas del Grupo Polycomb/metabolismo , Unión Proteica , ARN/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA