Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 647
Filtrar
Más filtros

Intervalo de año de publicación
1.
Environ Res ; 242: 117773, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029829

RESUMEN

In this paper, a facile hydrothermal pretreatment and molten salt activation route was presented for preparing a self-doped porous biochar (HMBC) from a nitrogenous biomass precursor of water hyacinth. With an ultrahigh specific surface area (2240 m2 g-1), well-developed hierarchical porous structure, created internal structural defects and doped surface functionalities, HMBC exhibited an excellent adsorption performance and catalytic activity for phenol removal via peroxydisulfate (PDS) activation. Specifically, the porous structure promoted the adsorption of PDS on HMBC, forming a highly active HMBC/PDS* complex and thereby increasing the oxidation potential of the system. Meanwhile, the carbon defective structure, graphitic N and CO groups enhanced the electron transfer process, favoring the HMBC/PDS system to catalyze phenol oxidation via an electron transfer dominated pathway. Thus, the system degraded phenol effectively with an ultralow activation energy of 4.9 kJ mol-1 and a remarkable oxidant utilization efficiency of 8.2 mol mol-oxidant-1 h-1 g-1. More importantly, the system exhibited excellent resistance to water quality and good adaptability for decontaminating different organic pollutants with satisfactory mineralization efficiency. This study offers valuable insights into the rational designing of a low-cost biochar catalyst for efficient PDS activation towards organic wastewater remediation.


Asunto(s)
Carbón Orgánico , Eichhornia , Electrones , Porosidad , Fenol , Oxidantes
2.
Environ Res ; 244: 117917, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103779

RESUMEN

Heavy metals (Cd, Ni, Zn, Cu, Cr, and Pb) are widely recognized as being hazardous to human health and environmentally deleterious. Therefore water hyacinth is used as a greener adsorption material. This study is a bibliometric analysis of research developments on the adsorption of lead (Pb) using water hyacinth (1995-2023). The data was retrieved from the Scopus database and analyzed using VOSviewer software to determine the relationship between keywords from each published document. The results of this research was divided into three parts: 1) publication output, 2) global research, and 3) keyword research. From the data obtained, it was found that there has been an increasing research trend of adsorption of lead using water hyacinth, although it is not significant and fluctuating. Overall, this study can be used by researchers to quantitatively assess trends and future directions of this research topic.


Asunto(s)
Eichhornia , Metales Pesados , Contaminantes Químicos del Agua , Humanos , Plomo , Adsorción , Bibliometría , Contaminantes Químicos del Agua/análisis
3.
J Sep Sci ; 47(11): e2300730, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38819790

RESUMEN

A fast and effective analytical method with biomass solid-phase microextraction sorbent combined with a high-performance liquid chromatography-ultraviolet detector was proposed for the determination of benzoylurea (BU) insecticides in tea products. The novel sorbent was prepared by activating and then carbonizing water hyacinth with a fast growth rate and low application value as raw material and showed a high specific surface area and multiple interactions with analytes, such as electrostatic action, hydrogen bonding, and π-π conjugation. After optimizing the three most important extraction parameters (pH [X1], sample loading rate [X2], and solution volume [X3]) by Box-Behnken design, the as-established analytical method showed good extraction performance: excellent recovery (80.13%-106.66%) and wide linear range (1-400 µg/L) with a determination coefficient of 0.9992-0.9999, a low limit of detection of 0.02-0.1 µg/L and the satisfactory practical application results in tea products. All these indicate that the water hyacinth-derived material has the potential as a solid-phase extraction sorbent for the detection and removal of BU insecticides from tea products, and at the same time, it can also achieve the effect of rational use of biological resources, maintaining ecological balance, turning waste into treasure, and achieving industrial production.


Asunto(s)
Biomasa , Eichhornia , Insecticidas , , Insecticidas/análisis , Insecticidas/química , Insecticidas/aislamiento & purificación , Eichhornia/química , Té/química , Adsorción , Cromatografía Líquida de Alta Presión , Microextracción en Fase Sólida , Compuestos de Fenilurea/análisis , Compuestos de Fenilurea/química , Compuestos de Fenilurea/aislamiento & purificación
4.
Int J Phytoremediation ; 26(4): 546-556, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37667465

RESUMEN

This study focuses on applying phytoremediation as a low-effective and simple process to treat wastewater laden with 1,4 dioxane (DIOX). A floating macrophyte (Eichhornia crassipes) was cultivated under hydroponic conditions (relative humidity 50-67%, photoperiod cycle 18:6 h light/dark, and 28-33 °C) and subjected to different DIOX loads between 0.0 (control) and 11.5 mg/g fresh mass (FM). The aquatic plant achieved DIOX and chemical oxygen demand (COD) removal efficiencies of 76-96% and 67-94%, respectively, within 15 days. E. crassipes could tolerate elevated DIOX-associated stresses until a dose of 8.2 mg DIOX/g, which highly influenced the oxidative defense system. Malondialdehyde (MDA) content, hydrogen peroxide (H2O2), and total phenolic compounds (TPC) increased by 7.3, 8.4, and 4.5-times, respectively, in response to operating the phytoremediation unit at a DIOX load of 11.5 mg/g. The associated succulent value, proteins, chlorophyll-a, chlorophyll-b, and pigments dropped by 39.6%, 45.8%, 51.5%, 80.8%, and 55.5%, respectively. The suggested removal mechanism of DIOX by E. crassipes could be uptake followed by phytovolatilization, whereas direct photodegradation from sunlight contributed to about 19.36% of the total DIOX removal efficiencies. Recycling the exhausted E. crassipes for biochar production was a cost-efficient strategy, making the payback period of the phytoremediation project equals to 6.96 yr.


Eichhornia crassipes could be used in phytoremediation of 1,4 dioxane (DIOX)-laden water at DIOX load< 8.2 mg/g FM. E. crassipes removed 77­97% DIOX via uptake and phytovolatilization. Recycling exhausted-plant to produce biochar was cost-efficient with 7 yr-payback period.


Asunto(s)
Carbón Orgánico , Eichhornia , Contaminantes Químicos del Agua , Biodegradación Ambiental , Eichhornia/metabolismo , Hidroponía , Peróxido de Hidrógeno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Dioxanos/metabolismo , Clorofila/metabolismo
5.
Int J Phytoremediation ; 26(3): 405-415, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37578104

RESUMEN

An experiment was carried out to explore the impact of petroleum hydrocarbons (PHs)-degrading microbial consortium (MC) on phytoremediation ability and growth of water hyacinth (WH) plants in water contaminated with lead (Pb) and PHs. Buckets (12-L capacity) were filled with water and WH plants, PHs (2,400 mg L-1) and Pb (10 mg L-1) in respective buckets. Plants were harvested after 30 days of transplanting and results showed that PHs and Pb substantially reduced the agronomic (up to 62%) and physiological (up to 49%) attributes of WH plants. However, the application of MC resulted in a substantial increase in growth (38%) and physiology (22%) of WH plants over uninoculated contaminated control. The WH + MC were able to accumulate 93% Pb and degrade/accumulate 72% of PHs as compared to initial concentration. Furthermore, combined use of WH plants and MC in co-contamination of PHs and Pb, reduced Pb and PHs contents in water by 74% and 68%, respectively, than that of initially applied concentration. Our findings suggest that the WH in combination with PHs-degrading MC could be a suitable nature-based water remediation technology for organic and inorganic contaminants and in future it can be used for decontamination of mix pollutants from water bodies.


Phytoremediation by aquatic macrophytes is a promising technique for the cleanup of environmental toxins from wastewater. To our knowledge, this is the first study reporting the integrated use of water hyacinth (WH) plants and a newly developed multi-trait microbial consortium for the simultaneous remediation of organic (i.e., petroleum hydrocarbons) and inorganic (i.e., lead) pollutants from the contaminated water. Findings of this study provide the basic but important information on the combined use of WH and microbes for remediation of mix pollution from water bodies.


Asunto(s)
Eichhornia , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Plomo , Hidrocarburos , Plantas , Contaminantes del Suelo/análisis , Suelo
6.
Int J Phytoremediation ; 26(9): 1429-1438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584457

RESUMEN

The phytoremediation potential of floating aquatic plants to accumulate and remove two common PFAS from contaminated water was investigated. Free-floating hydrophytes Eichhornia crassipes and Pistia stratiotes were grown in water spiked with 0.5, 1, or 2 ppm perfluorooctanoic acid (PFOA) or perfluorooctanesulfonic acid (PFOS) for seven days. Both species were able to accumulate PFOA and PFOS in this time frame, with translocation factors (TF) ranging from 0.13 to 0.57 for P. stratiotes and 0.18 to 0.45 for E. stratiotes, respectively. E. crassipes accumulated a greater amount of PFOA and PFOS than P. stratiotes, with 178.9 ug PFOA and 308.5 ug PFOS removed by E. crassipes and 98.9 ug PFOA and 137.8 ug PFOS removed by P. stratiotes at the highest concentrations. Root tissue contained a higher concentration of PFOA and PFOS than shoot tissue in both species, and the concentration of PFOS was generally significantly higher than PFOA in both E. crassipes and P. stratiotes, with concentrations of 15.39 and 27.32 ppb PFOA and 17.41 and 80.62 ppb PFOS in shoots and roots of P. stratiotes and 12.59 and 37.37 ppb PFOA and 39.92 and 83.40 ppb PFOS in shoots and roots of E. crassipes, respectively. Both species may be candidates for further phytoremediation studies in aquatic ecosystems.


This study investigates the feasibility of using wetland plants for the phytoremediation of PFAS. Prior published studies examine various plant interactions with PFAS but do not evaluate remediation potential of P. stratiotes.


Asunto(s)
Ácidos Alcanesulfónicos , Araceae , Biodegradación Ambiental , Caprilatos , Eichhornia , Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/metabolismo , Caprilatos/metabolismo , Eichhornia/metabolismo , Contaminantes Químicos del Agua/metabolismo , Ácidos Alcanesulfónicos/metabolismo , Araceae/metabolismo
7.
Water Sci Technol ; 89(1): 212-224, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38214996

RESUMEN

Biochar-activated periodate (PI) is a promising technology toward antibiotic wastewater purification. However, the mechanism of pyrolysis temperature on PI activation efficiency by biochar has not yet been revealed. Herein, this work selected water hyacinth stems as raw materials to prepare biochar with different pyrolysis temperatures (400, 500, 600, and 700 °C), and applied it to degrade tetracycline (TC) wastewater through PI activation. The results show that biochar with a pyrolysis temperature of 700 °C (BC-700) possesses the best TC degradation performance (∼100% within 30 min). Besides, the degradation of TC by BC-700 is less interfered by coexisting anions and water matrix, and exhibits good reusability. Quenching experiments and open circuit voltage tests verified that IO3•, 1O2, and reactive complex BC-PI* are active species involved in TC degradation. In addition, by constructing the relationship between biochar surface properties and degradation rate kobs, it was revealed that the dominant role of pyridinic N in PI adsorption and formation of reactive complexes as well as the promotion of sp2-hybridized carbon in the electron transfer process. This work provides novel insights into the application of biochar in antibiotic wastewater treatment via PI activation.


Asunto(s)
Eichhornia , Ácido Peryódico , Contaminantes Químicos del Agua , Antibacterianos , Carbono , Aguas Residuales , Electrones , Carbón Orgánico/química , Tetraciclina/química , Contaminantes Químicos del Agua/química , Adsorción
8.
Ecol Appl ; 33(2): e2767, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36268601

RESUMEN

Invasive species cause environmental degradation, decrease biodiversity, and alter ecosystem function. Invasions can also drive changes in vector-borne and zoonotic diseases by altering important traits of wildlife hosts or disease vectors. Managing invasive species can restore biodiversity and ecosystem function, but it may have cascading effects on hosts, parasites, and human risk of infection. Water hyacinth, Eichhornia crassipes, is an extremely detrimental invader in many sites of human schistosome transmission, especially in Lake Victoria, where hyacinth is correlated with high snail abundance and hotspots of human schistosome infection. Hyacinth is often managed via removal or in situ destruction, but the effects of these strategies on snail intermediate hosts and schistosomes are not known. We evaluated the effects of water hyacinth invasion and these management strategies on the dynamics of human schistosomes, Schistosoma mansoni, and snails, Biomphalaria glabrata, in experimental mesocosms over 17 weeks. We hypothesized that hyacinth, which is inedible to snails, would affect snail growth, reproduction, and cercariae production through the balance of its competitive effects on edible algae and its production of edible detritus. We predicted that destruction would create a pulse of edible detrital resources, thereby increasing snail growth, reproduction, and parasite production. Conversely, we predicted that removal would have small or negligible effects on snails and schistosomes, because it would alleviate competition on edible algae without generating a resource pulse. We found that hyacinth invasion suppressed algae, changed the timing of peak snail abundance, and increased total production of human-infectious cercariae ~6-fold relative to uninvaded controls. Hyacinth management had complex effects on algae, snails, and schistosomes. Removal increased algal growth and snail abundance (but not biomass), and slightly reduced schistosome production. In contrast, destruction increased snail biomass (but not abundance), indicating increases in body size. Destruction caused the greatest schistosome production (10-fold more than the control), consistent with evidence that larger snails with greater access to food are most infectious. Our results highlight the dynamic effects of invasion and management on a globally impactful human parasite and its intermediate host. Ultimately, preventing or removing hyacinth invasions would simultaneously benefit human and environmental health outcomes.


Asunto(s)
Biomphalaria , Eichhornia , Animales , Humanos , Ecosistema , Biomphalaria/parasitología , Schistosoma mansoni , Caracoles , Plantas , Cercarias , Interacciones Huésped-Parásitos
9.
Mol Biol Rep ; 51(1): 35, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38157124

RESUMEN

BACKGROUND: Plant microbiome acts as an interface between plants and their environment, aiding in the functioning of the ecosystem, such as protection against abiotic and biotic stress along with improving nutrient uptake. The rhizosphere is an essential interface for the interaction between plants and microbes and plays a substantial part in the removal as well as uptake of heavy metals and antibiotics from contaminated locations. Eichhornia crassipes is a promising plant that contains a rich community of microbes in its rhizosphere. Microorganism's association with plants embodies a crucial pathway via which humans can also be exposed to antibiotic-resistant genes and bacteria. METHODS AND RESULTS: In our earlier study enhanced removal of ciprofloxacin was observed by plant growth-promoting Microbacterium sp. WHC1 in the presence of E. crassipes root exudates. Therefore, the V3-V4, hypervariable region of the 16 S rRNA gene was studied to assess the bacterial diversity and functional profiles of the microbiota associated with plant roots. Using the QIIME software program, 16 S rRNA data from the Next Generation Sequencing (NGS) platform was examined. Alpha diversity including Chao1, Observed Shannon, and Simpson index denote significantly higher bacterial diversity. Proteobacteria (79%) was the most abundant phylum which was present in the root samples followed by Firmicutes (8%) and Cyanobacteria (8%). Sulfuricurvum (36%) is the most abundant genus belonging to the family Helicobacteraceae and the species kujiense in the genus Sulfuricurvum is the most abundant species present in the root sample. Also, the bacterial communities in the rhizoplane of Eichhornia crassipes harbor the genes conferring resistance to beta-lactams, tetracycline, fluoroquinolones, and penams. CONCLUSION: Metagenomic studies on the E. crassipes microbiome showed that the bacterial communities constituting the root exudates of the Eichhornia aid them to survive in a polluted environment.


Asunto(s)
Eichhornia , Humanos , Ecosistema , Antibacterianos/metabolismo , Ciprofloxacina , Fluoroquinolonas , Bacterias/genética
10.
Environ Res ; 216(Pt 3): 114656, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341791

RESUMEN

The presence of di-(2-ethylhexyl) phthalate (DEHP) in the aquatic systems, specifically marine sediments has attracted considerable attention worldwide, as it enters the food chain and adversely affects the aquatic environment and subsequently human health. This study reports an efficient carbocatalytic activation of calcium peroxide (CP) using water hyacinth biochar (WHBC) toward the efficient remediation of DEHP-contaminated sediments and offer insights into biochar-mediated cellular cytotoxicity, using a combination of chemical and bioanalytical methods. The pyrolysis temperature (300-900 °C) for WHBC preparation significantly controlled catalytic capacity. Under the experimental conditions studied, the carbocatalyst exhibited 94% of DEHP removal. Singlet oxygen (1O2), the major active species in the WHBC/CP system and electron-rich carbonyl functional groups of carbocatalyst, played crucial roles in the non-radical activation of CP. Furthermore, cellular toxicity evaluation indicated lower cytotoxicity in hepatocarcinoma cells (HepG2) after exposure to WHBC (25-1000 µg mL-1) for 24 h and that WHBC induced cell cycle arrest at the G2/M phase. Findings clearly indicated the feasibility of the WHBC/CP process for the restoration of contaminated sediment and contributing to understanding the mechanisms of cytotoxic effects and apoptotic of carbocatalyst on HepG2.


Asunto(s)
Dietilhexil Ftalato , Eichhornia , Ácidos Ftálicos , Contaminantes Químicos del Agua , Humanos , Eichhornia/metabolismo , Dietilhexil Ftalato/toxicidad , Contaminantes Químicos del Agua/toxicidad
11.
Environ Res ; 231(Pt 1): 116074, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37150391

RESUMEN

The starch is one of the most essential food stuff and serves as a raw material for number of food products for the welfare of human. During the production process enormous volume of effluents are being released into the environment. In this regard, this study was performed to evaluate the physicochemical traits of Manihot esculenta processing effluent and possible sustainable approach to treat this issue using Eichhornia crassipes based biochar. The standard physicochemical properties analysis revealed that the most the parameters (EC was recorded as 4143.17 ± 67.12 mhom-1, TDS: 5825.62 ± 72.14 mg L-1, TS: 7489.21 ± 165.24 mg L-1, DO: 2.12 ± 0.21 mg L-1, BOD 2673.74 ± 153.53 mg L-1, COD: 6672.66 ± 131.21 mg L-1, and so on) were beyond the permissible limits and which can facilitate eutrophication. Notably, the DO level was considerably poor and thus can support the eutrophication. The trouble causing E. crassipes biomass was used as raw material for biochar preparation through pyrolysis process. The temperature ranging from 250 to 350 °C with residence time of 20-60 min were found as suitable temperature to provide high yield (56-33%). Furthermore, 10 g L-1 concentration of biochar showed maximum pollutant adsorption than other concentrations (5 g L-1 and 15 g L-1) from 1 L of effluent. The suitable temperature required to remediate the pollutants from the effluent by biochar was found as 45 °C and 35 °C at 10 g L-1 concentration. These results conclude that at such optimized condition, the E. crassipes effectively adsorbed most of the pollutants from the M. esculenta processing effluent. Furthermore, such pollutants adsorption pattern on biochar was confirmed by SEM analysis.


Asunto(s)
Eichhornia , Contaminantes Ambientales , Manihot , Contaminantes Químicos del Agua , Humanos , Eichhornia/química , Adsorción , Contaminantes Químicos del Agua/análisis
12.
Environ Res ; 231(Pt 3): 116216, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37224944

RESUMEN

The present investigation explores the feasibility of generating biogas from water hyacinth (WH) through a pretreatment process. The WH samples were subjected to a high concentration of H2SO4 pretreatment to enhance biogas production. The H2SO4 pretreatment aids in breaking down the lignocellulosic materials found in the WH. Additionally, it helps modify the cellulose, hemicellulose, and lignin, which assists in the anaerobic digestion process. The samples underwent pretreatment with 5% v/v H2SO4 for 60 min. Biogas production was conducted for both untreated and pretreated samples. Furthermore, sewage sludge and cow dung were used as inoculants to promote fermentation in the absence of oxygen. The results of this study demonstrate that the pretreatment of water hyacinth with 5% v/v H2SO4 for 60 min considerably enhances biogas production through the anaerobic co-digestion process. The maximum biogas production was recorded by T. Control-1, with a production rate of 155 mL on the 15th day compared to all other controls. All the pretreated samples showed the highest biogas production on the 15th day, which is comparatively five days earlier than the untreated samples. In terms of CH4 production, the maximum yield was observed between the 25th and 27th days. These findings suggest that water hyacinth is a viable source of biogas production, and the pretreatment method significantly improves biogas yield. This study presents a practical and innovative approach to biogas production from water hyacinth and highlights the potential for further research in this area.


Asunto(s)
Biocombustibles , Eichhornia , Anaerobiosis , Metano , Aguas del Alcantarillado , Nutrientes , Digestión
13.
Environ Res ; 231(Pt 2): 116152, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37224949

RESUMEN

The number of studies about the use of efficient techniques to treat contaminated water bodies has increased in recent years. The use of bioremediation method for the reduction of contaminants from aqueous system is receiving a lot of attention. Thus, this study was designed to assess the Eichhornia crassipes biochar amended pollutants sorption competence of multi-metal tolerant Aspergillus flavus on South Pennar River. The physicochemical characteristics declared that the, half of the parameters (turbidity, TDS, BOD, COD, Ca, Mg, Fe, free NH3, Cl-, and F-) of South Pennar River were beyond the permissible limits. Furthermore, the lab-scale bioremediation investigation with different treatment groups (group I, II, and III) revealed that the group III (E. crassipes biochar and A. flavus mycelial biomass) showed considerable remediation efficiency on South Pennar River water in 10 days of treatment. The metals adsorbed on the surface of E. crassipes biochar and A. flavus mycelial biomass was also affirmed by SEM analysis. Hence such findings, E. crassipes biochar amended A. flavus mycelial biomass could be a sustainable method of remediating contaminated South Pennar River water.


Asunto(s)
Eichhornia , Contaminantes Ambientales , Contaminantes Químicos del Agua , Contaminantes Ambientales/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Metales/análisis , Biodegradación Ambiental
14.
Environ Res ; 231(Pt 2): 116199, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37211182

RESUMEN

Making silage is a green process to use the fast-growing water hyacinth (Eichhornia crassipes) biomass. However, the high moisture (∼95%) of the water hyacinth is the biggest challenge to making silage while its effects on fermentation processes are less studied. In this study, water hyacinths silage with different initial moistures were conducted to investigate the fermentation microbial communities and their roles on the silage qualities. Results show that both silages with 70% (S70) and 90% (S90) of initial moistures achieved the target of silage fermentation, however, their microbial processes were significantly different. Their succession directions of microbial communities were different: Plant cells in S70 were destroyed by the air-dry treatment, thus there were more soluble carbohydrates, which helped the inoculated fermentative bacteria become dominant (Lactobacillus spp. > 69%) and produce abundant lactic acid; In contrast, stochastic succession became dominant over time in S90 (NST = 0.79), in which Lactobacillus spp. and Clostridium spp. produced butyric that also obviously decreased the pH and promoted the fermentation process. Different microbial succession led to different metabolic patterns: S70 had stronger starch and sucrose metabolisms while S90 had stronger amino acid and nitrogen metabolisms. Consequently, S70 had higher lactic acid, crude protein and lower ammonia nitrogen and S90 had higher in vitro digestibility of dry matter and higher relative feeding value. Moreover, the variance partitioning analysis indicated that moisture could only explain less information (5.9%) of the microbial assemblage than pH value (41.4%). Therefore, the colonization of acid-producing bacteria and establishment of acidic environment were suggested as the key on the silage fermentation no matter how much is the initial moisture. This work can provide a basis for the future preparation of high-moisture raw biomasses for silage.


Asunto(s)
Eichhornia , Ensilaje , Ensilaje/análisis , Ensilaje/microbiología , Lactobacillus/metabolismo , Ácido Láctico/metabolismo , Bacterias/metabolismo , Fermentación , Nitrógeno/análisis
15.
Bioprocess Biosyst Eng ; 46(2): 183-193, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36437376

RESUMEN

We investigated the capacity of water hyacinth leaves (LEC) to biosorb 75 mg/L acid red 27 (AR27) in a continuous system comprising 30 successive biosorption/desorption cycles in a packed-bed column at pH 2.0 and 56.5 L/m2·h volumetric flux. Using 0.025 M NaHCO3 eluent at 113 L/m2·h volumetric flux, all the dye was desorbed (100% desorption efficiency) from the loaded LEC biomass within 5-6 h. The same biosorbent was used for 147.5 consecutive days. The AR27 biosorption capacity, breakthrough time, and exhaustion time decreased from 69.4 to 34.5 mg/g, 74.81 to 14.1 h, and 101.1 to 34.1 h, respectively, and the critical bed height increased from 1.04 to 2.35 cm, as the number of biosorption/desorption cycles increased from 1 to 30. LEC life factor based on biosorption capacity predicted that the packed bed would be exhausted after 51.95 cycles. LEC is a promising biosorbent for bioremediation of AR27-laden wastewaters.


Asunto(s)
Eichhornia , Contaminantes Químicos del Agua , Colorante de Amaranto , Aguas Residuales , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Biomasa
16.
Bioprocess Biosyst Eng ; 46(7): 995-1009, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37160769

RESUMEN

Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (µmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.


Asunto(s)
Eichhornia , Residuos Industriales , Aceites de Plantas/química , Anaerobiosis , Aceite de Palma , Reactores Biológicos , Metano/metabolismo , Digestión , Eliminación de Residuos Líquidos
17.
Int J Phytoremediation ; 25(2): 172-186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35522852

RESUMEN

For a long time, water hyacinth has been considered a very stubborn and troublesome weed. However, research has shown that it can be used to remove many pollutants from water. Among the different pollutants, potentially toxic elements (PTE) or their ions have been found to be very toxic for humans, animals, and plants. Among the many conventional methods for removing PTE from wastewaters, phytoremediation has several advantages. This method is highly eco-friendly, cost-effective, and can remove a wide range of metal pollutants and organic pollutants. Both, living and non-living water hyacinth plants, can be used for remediation - either entirely or their parts. Study on mechanisms and different factors involved in the process would help to effectively use water hyacinth for remediation. This review presents different studies conducted in the past thirty years for the removal of PTEs. Detailed analysis of the work done in this field showed that in spite of the main advantages provided by the plant, not much has been done to increase the efficiency of the remediation process and for reusing the water hyacinth biomass for other applications after desorption of the PTE. Hence, the section on scope for future work highlights these prospective ideas. Novelty statement: Water hyacinth, which is a very stubborn weed and has a negative impact on the environment, can be constructively used to remove potentially toxic elements (PTEs) along with other pollutants from wastewaters. Different parts of the water hyacinth plant like roots, leaves, and stems or the entire plant can be used. Further, either the live plant or its other forms, such as dried powder, biochar, or activated carbon can be used. This review focuses on different forms of water hyacinth plant used, the advantages and limitations associated with these methods and the scope for future work.


Asunto(s)
Eichhornia , Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Humanos , Aguas Residuales , Biodegradación Ambiental , Estudios Prospectivos , Contaminantes Químicos del Agua/análisis
18.
ScientificWorldJournal ; 2023: 4947272, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035537

RESUMEN

Water hyacinth (Eichhornia crassipes) degrades and obstructs the integrity of freshwater ecosystems. However, little attention has been paid to monitoring water hyacinth's spatial extent, its determinants, and its effects on water quality in Lake Victoria, Uganda. The specific objectives of this paper are to (i) assess the spatial extent and distribution of water hyacinth; (ii) examine the determinants of water hyacinth distribution, and (iii) assess its impact on water quality. High-resolution satellite images (2016-2019) were obtained and used to monitor the spatial extent of the water hyacinth, a household survey was conducted to examine the determinants of the water hyacinth's extent and patterns while water samples were drawn and analysed for physicochemical properties. Results show that the coverage and distribution of water hyacinth varied over space and time. Water hyacinth coverage primarily increased with a decrease in water surface area. The perceived factors that triggered the water hyacinth spread included the morphology of the Bay, effluent discharge, strong winds, speed of water current, water-level changes, ferry navigation, and construction activities at the shore. Water parameters significantly impacted by hyacinth were pH, TP, BOD, COD, DO, turbidity, and transparency. This study recommends the strict development and implementation of integrated weed control measures, catchment management plans, and point and nonpoint pollution source control.


Asunto(s)
Eichhornia , Lagos , Calidad del Agua , Ecosistema , Lagos/análisis , Uganda , Calidad del Agua/normas , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/normas
19.
Int J Mol Sci ; 24(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37240279

RESUMEN

In this paper, water hyacinth is used to prepare biochar (WBC). A biochar-aluminum-zinc-layered double hydroxide composite functional material (WL) is synthesized via a simple co-precipitation method which is used to adsorb and remove benzotriazole (BTA) and lead (Pb2+) in an aqueous solution. In particular, this research paper uses various characterization methods to analyze WL and to explore the adsorption performance and adsorption mechanism of WL on BTA and Pb2+ in an aqueous solution through batch adsorption experiments combined with model fitting and spectroscopy techniques. The results indicate that the surface of WL contains a thick sheet-like structure with many wrinkles which would provide many adsorption sites for pollutants. At room temperature (25 °C), the maximum adsorption capacities of WL on BTA and Pb2+ are 248.44 mg·g-1 and 227.13 mg·g-1, respectively. In a binary system, during the process of using WL to adsorb BTA and Pb2+, compared with that in the absorption on Pb2+, WL shows a stronger affinity in the adsorption on BTA, and BTA would thus be preferred in the absorption process. The adsorption process of WL on BTA and Pb2+ is spontaneous and is endothermic monolayer chemisorption. In addition, the adsorption of WL on BTA and Pb2+ involves many mechanisms, but the main adsorption mechanisms are different. Among them, hydrogen bonding dominates the adsorption on BTA, while functional groups (C-O and C=O) complexation dominates the adsorption on Pb2+. When WL adsorbs BTA and Pb2+, the coexistence of cations (K+, Na+, and Ca2+) has a strong anti-interference ability, and WL can use a lower concentration of fulvic acid (FA) (<20 mg·L-1) to improve its adsorption performance. Last but not least, WL has a stable regenerative performance in a one-component system and a binary system, which indicates that WL has excellent potential for the remediation of BTA and Pb2+ in water.


Asunto(s)
Eichhornia , Contaminantes Químicos del Agua , Adsorción , Plomo , Carbón Orgánico/química , Hidróxido de Aluminio , Cinética
20.
Molecules ; 28(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37110715

RESUMEN

The application of fungicides (such as tebuconazole) can impose harmful impacts on the ecosystem and humans. In this study, a new calcium modified water hyacinth-based biochar (WHCBC) was prepared and its effectiveness for removing tebuconazole (TE) via adsorption from water was tested. The results showed that Ca was loaded chemically (CaC2O4) onto the surface of WHCBC. The adsorption capacity of the modified biochar increased by 2.5 times in comparison to that of the unmodified water hyacinth biochar. The enhanced adsorption was attributed to the improved chemical adsorption capacity of the biochar through calcium modification. The adsorption data were better fitted to the pseudo-second-order kinetics and the Langmuir isotherm model, indicating that the adsorption process was dominated by monolayer adsorption. It was found that liquid film diffusion was the main rate-limiting step in the adsorption process. The maximum adsorption capacity of WHCBC was 40.5 mg/g for TE. The results indicate that the absorption mechanisms involved surface complexation, hydrogen bonding, and π-π interactions. The inhibitory rate of Cu2+ and Ca2+ on the adsorption of TE by WHCBC were at 4.05-22.8%. In contrast, the presence of other coexisting cations (Cr6+, K+, Mg2+, Pb2+), as well as natural organic matter (humic acid), could promote the adsorption of TE by 4.45-20.9%. In addition, the regeneration rate of WHCBC was able to reach up to 83.3% after five regeneration cycles by desorption stirring with 0.2 mol/L HCl (t = 360 min). The results suggest that WHCBC has a potential in application for removing TE from water.


Asunto(s)
Eichhornia , Contaminantes Químicos del Agua , Humanos , Calcio , Adsorción , Cinética , Ecosistema , Estudios de Factibilidad , Carbón Orgánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA