Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.604
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(16): 3025-3040.e6, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35882231

RESUMEN

Non-allelic recombination between homologous repetitive elements contributes to evolution and human genetic disorders. Here, we combine short- and long-DNA read sequencing of repeat elements with a new bioinformatics pipeline to show that somatic recombination of Alu and L1 elements is widespread in the human genome. Our analysis uncovers tissue-specific non-allelic homologous recombination hallmarks; moreover, we find that centromeres and cancer-associated genes are enriched for retroelements that may act as recombination hotspots. We compare recombination profiles in human-induced pluripotent stem cells and differentiated neurons and find that the neuron-specific recombination of repeat elements accompanies chromatin changes during cell-fate determination. Finally, we report that somatic recombination profiles are altered in Parkinson's and Alzheimer's disease, suggesting a link between retroelement recombination and genomic instability in neurodegeneration. This work highlights a significant contribution of the somatic recombination of repeat elements to genomic diversity in health and disease.


Asunto(s)
Genoma Humano , Retroelementos , Elementos Alu/genética , Recombinación Homóloga , Humanos , Elementos de Nucleótido Esparcido Largo , Secuencias Repetitivas de Ácidos Nucleicos
2.
Cell ; 172(4): 797-810.e13, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29395326

RESUMEN

Aberrant activation of innate immune receptors can cause a spectrum of immune disorders, such as Aicardi-Goutières syndrome (AGS). One such receptor is MDA5, a viral dsRNA sensor that induces antiviral immune response. Using a newly developed RNase-protection/RNA-seq approach, we demonstrate here that constitutive activation of MDA5 in AGS results from the loss of tolerance to cellular dsRNAs formed by Alu retroelements. While wild-type MDA5 cannot efficiently recognize Alu-dsRNAs because of its limited filament formation on imperfect duplexes, AGS variants of MDA5 display reduced sensitivity to duplex structural irregularities, assembling signaling-competent filaments on Alu-dsRNAs. Moreover, we identified an unexpected role of an RNA-rich cellular environment in suppressing aberrant MDA5 oligomerization, highlighting context dependence of self versus non-self discrimination. Overall, our work demonstrates that the increased efficiency of MDA5 in recognizing dsRNA comes at a cost of self-recognition and implicates a unique role of Alu-dsRNAs as virus-like elements that shape the primate immune system.


Asunto(s)
Elementos Alu/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Helicasa Inducida por Interferón IFIH1/inmunología , Malformaciones del Sistema Nervioso/inmunología , Multimerización de Proteína/inmunología , ARN Bicatenario/inmunología , Autotolerancia , Células A549 , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/patología , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Helicasa Inducida por Interferón IFIH1/genética , Muramidasa , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Fragmentos de Péptidos , Multimerización de Proteína/genética , ARN Bicatenario/genética , Células THP-1
3.
Cell ; 172(5): 897-909.e21, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474918

RESUMEN

X-linked Dystonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease that is endemic to the Philippines and is associated with a founder haplotype. We integrated multiple genome and transcriptome assembly technologies to narrow the causal mutation to the TAF1 locus, which included a SINE-VNTR-Alu (SVA) retrotransposition into intron 32 of the gene. Transcriptome analyses identified decreased expression of the canonical cTAF1 transcript among XDP probands, and de novo assembly across multiple pluripotent stem-cell-derived neuronal lineages discovered aberrant TAF1 transcription that involved alternative splicing and intron retention (IR) in proximity to the SVA that was anti-correlated with overall TAF1 expression. CRISPR/Cas9 excision of the SVA rescued this XDP-specific transcriptional signature and normalized TAF1 expression in probands. These data suggest an SVA-mediated aberrant transcriptional mechanism associated with XDP and may provide a roadmap for layered technologies and integrated assembly-based analyses for other unsolved Mendelian disorders.


Asunto(s)
Trastornos Distónicos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Genoma Humano , Transcriptoma/genética , Empalme Alternativo/genética , Elementos Alu/genética , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Estudios de Cohortes , Familia , Femenino , Sitios Genéticos , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Intrones/genética , Masculino , Repeticiones de Minisatélite/genética , Modelos Genéticos , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elementos de Nucleótido Esparcido Corto , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo
4.
Cell ; 172(4): 811-824.e14, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29395325

RESUMEN

Type I interferon (IFN) is produced when host sensors detect foreign nucleic acids, but how sensors differentiate self from nonself nucleic acids, such as double-stranded RNA (dsRNA), is incompletely understood. Mutations in ADAR1, an adenosine-to-inosine editing enzyme of dsRNA, cause Aicardi-Goutières syndrome, an autoinflammatory disorder associated with spontaneous interferon production and neurologic sequelae. We generated ADAR1 knockout human cells to explore ADAR1 substrates and function. ADAR1 primarily edited Alu elements in RNA polymerase II (pol II)-transcribed mRNAs, but not putative pol III-transcribed Alus. During the IFN response, ADAR1 blocked translational shutdown by inhibiting hyperactivation of PKR, a dsRNA sensor. ADAR1 dsRNA binding and catalytic activities were required to fully prevent endogenous RNA from activating PKR. Remarkably, ADAR1 knockout neuronal progenitor cells exhibited MDA5 (dsRNA sensor)-dependent spontaneous interferon production, PKR activation, and cell death. Thus, human ADAR1 regulates sensing of self versus nonself RNA, allowing pathogen detection while avoiding autoinflammation.


Asunto(s)
Adenosina Desaminasa/metabolismo , Elementos Alu , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Biosíntesis de Proteínas , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Muerte Celular/genética , Muerte Celular/inmunología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/inmunología , Células-Madre Neurales/citología , Células-Madre Neurales/inmunología , Células-Madre Neurales/patología , ARN Polimerasa II/genética , ARN Polimerasa II/inmunología , ARN Polimerasa II/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , eIF-2 Quinasa/genética , eIF-2 Quinasa/inmunología , eIF-2 Quinasa/metabolismo
5.
Mol Cell ; 84(11): 2087-2103.e8, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38815579

RESUMEN

RNA splicing is pivotal in post-transcriptional gene regulation, yet the exponential expansion of intron length in humans poses a challenge for accurate splicing. Here, we identify hnRNPM as an essential RNA-binding protein that suppresses cryptic splicing through binding to deep introns, maintaining human transcriptome integrity. Long interspersed nuclear elements (LINEs) in introns harbor numerous pseudo splice sites. hnRNPM preferentially binds at intronic LINEs to repress pseudo splice site usage for cryptic splicing. Remarkably, cryptic exons can generate long dsRNAs through base-pairing of inverted ALU transposable elements interspersed among LINEs and consequently trigger an interferon response, a well-known antiviral defense mechanism. Significantly, hnRNPM-deficient tumors show upregulated interferon-associated pathways and elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity by repressing cryptic splicing and suggest that targeting hnRNPM in tumors may be used to trigger an inflammatory immune response, thereby boosting cancer surveillance.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo M , Intrones , Elementos de Nucleótido Esparcido Largo , Empalme del ARN , ARN Bicatenario , Humanos , Ribonucleoproteína Heterogénea-Nuclear Grupo M/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo M/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Interferones/metabolismo , Interferones/genética , Animales , Células HEK293 , Ratones , Transcriptoma , Exones , Sitios de Empalme de ARN , Elementos Alu/genética
6.
Mol Cell ; 83(18): 3234-3235, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37738962

RESUMEN

A recent study by Liang et al.1 reveals that interacting enhancer RNAs (eRNAs) and promoter-transcribed upstream antisense RNAs (uaRNAs) can identify enhancer-promoter interactions. Complementary sequences within the interacting eRNAs and uaRNAs, predominantly Alu sequences, confer the specificity for eRNA-uaRNA pairing and hence enhancer-promoter recognition.


Asunto(s)
Elementos Transponibles de ADN , Secuencias Reguladoras de Ácidos Nucleicos , Elementos Transponibles de ADN/genética , Regiones Promotoras Genéticas , ARN sin Sentido , Elementos Alu/genética
7.
Cell ; 160(3): 420-32, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635456

RESUMEN

The barrier to curing HIV-1 is thought to reside primarily in CD4(+) T cells containing silent proviruses. To characterize these latently infected cells, we studied the integration profile of HIV-1 in viremic progressors, individuals receiving antiretroviral therapy, and viremic controllers. Clonally expanded T cells represented the majority of all integrations and increased during therapy. However, none of the 75 expanded T cell clones assayed contained intact virus. In contrast, the cells bearing single integration events decreased in frequency over time on therapy, and the surviving cells were enriched for HIV-1 integration in silent regions of the genome. Finally, there was a strong preference for integration into, or in close proximity to, Alu repeats, which were also enriched in local hotspots for integration. The data indicate that dividing clonally expanded T cells contain defective proviruses and that the replication-competent reservoir is primarily found in CD4(+) T cells that remain relatively quiescent.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , VIH-1/fisiología , Integración Viral , Latencia del Virus , Elementos Alu , Células Clonales , Virus Defectuosos/genética , Virus Defectuosos/fisiología , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , Memoria Inmunológica , Provirus/fisiología , Análisis de la Célula Individual
8.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418917

RESUMEN

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Asunto(s)
Empalme Alternativo , Evolución Molecular , Hominidae , Proteínas de Dominio T Box , Cola (estructura animal) , Animales , Humanos , Ratones , Empalme Alternativo/genética , Elementos Alu/genética , Modelos Animales de Enfermedad , Genoma/genética , Hominidae/anatomía & histología , Hominidae/genética , Intrones/genética , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Fenotipo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/embriología , Exones/genética
9.
Mol Cell ; 82(1): 209-217.e7, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34951964

RESUMEN

Extrachromosomal circular DNA (eccDNA) is common in somatic tissue, but its existence and effects in the human germline are unexplored. We used microscopy, long-read DNA sequencing, and new analytic methods to document thousands of eccDNAs from human sperm. EccDNAs derived from all genomic regions and mostly contained a single DNA fragment, although some consisted of multiple fragments. The generation of eccDNA inversely correlates with the meiotic recombination rate, and chromosomes with high coding-gene density and Alu element abundance form the least eccDNA. Analysis of insertions in human genomes further indicates that eccDNA can persist in the human germline when the circular molecules reinsert themselves into the chromosomes. Our results suggest that eccDNA has transient and permanent effects on the germline. They explain how differences in the physical and genetic map might arise and offer an explanation of how Alu elements coevolved with genes to protect genome integrity against deleterious mutations producing eccDNA.


Asunto(s)
Cromosomas Humanos , ADN Circular/metabolismo , Meiosis , Recombinación Genética , Espermatozoides/metabolismo , Elementos Alu , ADN Circular/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Mutación
10.
Cell ; 159(1): 134-147, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25242744

RESUMEN

Exon circularization has been identified from many loci in mammals, but the detailed mechanism of its biogenesis has remained elusive. By using genome-wide approaches and circular RNA recapitulation, we demonstrate that exon circularization is dependent on flanking intronic complementary sequences. Such sequences and their distribution exhibit rapid evolutionary changes, showing that exon circularization is evolutionarily dynamic. Strikingly, exon circularization efficiency can be regulated by competition between RNA pairing across flanking introns or within individual introns. Importantly, alternative formation of inverted repeated Alu pairs and the competition between them can lead to alternative circularization, resulting in multiple circular RNA transcripts produced from a single gene. Collectively, exon circularization mediated by complementary sequences in human introns and the potential to generate alternative circularization products extend the complexity of mammalian posttranscriptional regulation.


Asunto(s)
Empalme Alternativo , Exones , Genoma Humano , Elementos Alu , Animales , Secuencia de Bases , Células Madre Embrionarias/metabolismo , Evolución Molecular , Humanos , Intrones , Mamíferos/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Alineación de Secuencia
11.
Nature ; 619(7971): 868-875, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438529

RESUMEN

Enhancers determine spatiotemporal gene expression programs by engaging with long-range promoters1-4. However, it remains unknown how enhancers find their cognate promoters. We recently developed a RNA in situ conformation sequencing technology to identify enhancer-promoter connectivity using pairwise interacting enhancer RNAs and promoter-derived noncoding RNAs5,6. Here we apply this technology to generate high-confidence enhancer-promoter RNA interaction maps in six additional cell lines. Using these maps, we discover that 37.9% of the enhancer-promoter RNA interaction sites are overlapped with Alu sequences. These pairwise interacting Alu and non-Alu RNA sequences tend to be complementary and potentially form duplexes. Knockout of Alu elements compromises enhancer-promoter looping, whereas Alu insertion or CRISPR-dCasRx-mediated Alu tethering to unregulated promoter RNAs can create new loops to homologous enhancers. Mapping 535,404 noncoding risk variants back to the enhancer-promoter RNA interaction maps enabled us to construct variant-to-function maps for interpreting their molecular functions, including 15,318 deletions or insertions in 11,677 Alu elements that affect 6,497 protein-coding genes. We further demonstrate that polymorphic Alu insertion at the PTK2 enhancer can promote tumorigenesis. Our study uncovers a principle for determining enhancer-promoter pairing specificity and provides a framework to link noncoding risk variants to their molecular functions.


Asunto(s)
Elementos Alu , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , ARN , Elementos Alu/genética , Línea Celular , Elementos de Facilitación Genéticos/genética , Quinasa 1 de Adhesión Focal/genética , Regulación de la Expresión Génica , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex , Regiones Promotoras Genéticas/genética , ARN/química , ARN/genética , ARN/metabolismo , Eliminación de Secuencia
12.
Nat Rev Mol Cell Biol ; 17(2): 83-96, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26648264

RESUMEN

Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina/metabolismo , Genoma , Inosina/metabolismo , Edición de ARN , ARN Mensajero/genética , Adenosina Desaminasa/metabolismo , Elementos Alu , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Transducción de Señal
13.
Cell ; 152(3): 453-66, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374342

RESUMEN

There are ~650,000 Alu elements in transcribed regions of the human genome. These elements contain cryptic splice sites, so they are in constant danger of aberrant incorporation into mature transcripts. Despite posing a major threat to transcriptome integrity, little is known about the molecular mechanisms preventing their inclusion. Here, we present a mechanism for protecting the human transcriptome from the aberrant exonization of transposable elements. Quantitative iCLIP data show that the RNA-binding protein hnRNP C competes with the splicing factor U2AF65 at many genuine and cryptic splice sites. Loss of hnRNP C leads to formation of previously suppressed Alu exons, which severely disrupt transcript function. Minigene experiments explain disease-associated mutations in Alu elements that hamper hnRNP C binding. Thus, by preventing U2AF65 binding to Alu elements, hnRNP C plays a critical role as a genome-wide sentinel protecting the transcriptome. The findings have important implications for human evolution and disease.


Asunto(s)
Elementos Alu , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Transcriptoma , Evolución Molecular , Exones , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoprecipitación , Sitios de Empalme de ARN , Análisis de Secuencia de ARN , Factor de Empalme U2AF
14.
Nature ; 608(7923): 569-577, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922514

RESUMEN

A major challenge in human genetics is to identify the molecular mechanisms of trait-associated and disease-associated variants. To achieve this, quantitative trait locus (QTL) mapping of genetic variants with intermediate molecular phenotypes such as gene expression and splicing have been widely adopted1,2. However, despite successes, the molecular basis for a considerable fraction of trait-associated and disease-associated variants remains unclear3,4. Here we show that ADAR-mediated adenosine-to-inosine RNA editing, a post-transcriptional event vital for suppressing cellular double-stranded RNA (dsRNA)-mediated innate immune interferon responses5-11, is an important potential mechanism underlying genetic variants associated with common inflammatory diseases. We identified and characterized 30,319 cis-RNA editing QTLs (edQTLs) across 49 human tissues. These edQTLs were significantly enriched in genome-wide association study signals for autoimmune and immune-mediated diseases. Colocalization analysis of edQTLs with disease risk loci further pinpointed key, putatively immunogenic dsRNAs formed by expected inverted repeat Alu elements as well as unexpected, highly over-represented cis-natural antisense transcripts. Furthermore, inflammatory disease risk variants, in aggregate, were associated with reduced editing of nearby dsRNAs and induced interferon responses in inflammatory diseases. This unique directional effect agrees with the established mechanism that lack of RNA editing by ADAR1 leads to the specific activation of the dsRNA sensor MDA5 and subsequent interferon responses and inflammation7-9. Our findings implicate cellular dsRNA editing and sensing as a previously underappreciated mechanism of common inflammatory diseases.


Asunto(s)
Adenosina Desaminasa , Predisposición Genética a la Enfermedad , Enfermedades del Sistema Inmune , Inflamación , Edición de ARN , ARN Bicatenario , Adenosina/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Elementos Alu/genética , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/patología , Inmunidad Innata , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Inosina/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferones/genética , Interferones/inmunología , Sitios de Carácter Cuantitativo/genética , Edición de ARN/genética , ARN Bicatenario/genética , Proteínas de Unión al ARN/metabolismo
15.
Mol Cell ; 77(3): 475-487.e11, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31759822

RESUMEN

How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.


Asunto(s)
Elementos Alu/fisiología , Histonas/metabolismo , Factores de Transcripción TFIII/metabolismo , Acetilación , Elementos Alu/genética , Línea Celular , Cromatina/metabolismo , Cromatina/fisiología , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Histonas/genética , Proteínas de Homeodominio/genética , Humanos , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional , ARN Polimerasa III/metabolismo , Factores de Transcripción TFIII/genética , Transcripción Genética/genética
16.
Cell ; 149(4): 740-52, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579280

RESUMEN

Mobile DNAs have had a central role in shaping our genome. More than half of our DNA is comprised of interspersed repeats resulting from replicative copy and paste events of retrotransposons. Although most are fixed, incapable of templating new copies, there are important exceptions to retrotransposon quiescence. De novo insertions cause genetic diseases and cancers, though reliably detecting these occurrences has been difficult. New technologies aimed at uncovering polymorphic insertions reveal that mobile DNAs provide a substantial and dynamic source of structural variation. Key questions going forward include how and how much new transposition events affect human health and disease.


Asunto(s)
Elementos Transponibles de ADN , Genoma Humano , Elementos Alu , Animales , Secuencia de Bases , Evolución Biológica , Humanos , Datos de Secuencia Molecular
17.
Cell ; 149(4): 847-59, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22541070

RESUMEN

Alu RNA accumulation due to DICER1 deficiency in the retinal pigmented epithelium (RPE) is implicated in geographic atrophy (GA), an advanced form of age-related macular degeneration that causes blindness in millions of individuals. The mechanism of Alu RNA-induced cytotoxicity is unknown. Here we show that DICER1 deficit or Alu RNA exposure activates the NLRP3 inflammasome and triggers TLR-independent MyD88 signaling via IL18 in the RPE. Genetic or pharmacological inhibition of inflammasome components (NLRP3, Pycard, Caspase-1), MyD88, or IL18 prevents RPE degeneration induced by DICER1 loss or Alu RNA exposure. These findings, coupled with our observation that human GA RPE contains elevated amounts of NLRP3, PYCARD, and IL18 and evidence of increased Caspase-1 and MyD88 activation, provide a rationale for targeting this pathway in GA. Our findings also reveal a function of the inflammasome outside the immune system and an immunomodulatory action of mobile elements.


Asunto(s)
Elementos Alu , ARN Helicasas DEAD-box/metabolismo , Atrofia Geográfica/inmunología , Atrofia Geográfica/patología , Inflamasomas/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Ribonucleasa III/metabolismo , Animales , Proteínas Portadoras/metabolismo , Atrofia Geográfica/metabolismo , Humanos , Inflamasomas/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Epitelio Pigmentado de la Retina/patología , Receptores Toll-Like/metabolismo
18.
Nature ; 588(7836): 169-173, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33087935

RESUMEN

Cancer therapies that target epigenetic repressors can mediate their effects by activating retroelements within the human genome. Retroelement transcripts can form double-stranded RNA (dsRNA) that activates the MDA5 pattern recognition receptor1-6. This state of viral mimicry leads to loss of cancer cell fitness and stimulates innate and adaptive immune responses7,8. However, the clinical efficacy of epigenetic therapies has been limited. To find targets that would synergize with the viral mimicry response, we sought to identify the immunogenic retroelements that are activated by epigenetic therapies. Here we show that intronic and intergenic SINE elements, specifically inverted-repeat Alus, are the major source of drug-induced immunogenic dsRNA. These inverted-repeat Alus are frequently located downstream of 'orphan' CpG islands9. In mammals, the ADAR1 enzyme targets and destabilizes inverted-repeat Alu dsRNA10, which prevents activation of the MDA5 receptor11. We found that ADAR1 establishes a negative-feedback loop, restricting the viral mimicry response to epigenetic therapy. Depletion of ADAR1 in patient-derived cancer cells potentiates the efficacy of epigenetic therapy, restraining tumour growth and reducing cancer initiation. Therefore, epigenetic therapies trigger viral mimicry by inducing a subset of inverted-repeats Alus, leading to an ADAR1 dependency. Our findings suggest that combining epigenetic therapies with ADAR1 inhibitors represents a promising strategy for cancer treatment.


Asunto(s)
Adenosina Desaminasa/metabolismo , Elementos Alu/efectos de los fármacos , Elementos Alu/genética , Decitabina/farmacología , Decitabina/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Transcripción Genética/efectos de los fármacos , Inmunidad Adaptativa/efectos de los fármacos , Adenosina Desaminasa/deficiencia , Elementos Alu/inmunología , Animales , Línea Celular Tumoral , Islas de CpG/efectos de los fármacos , Islas de CpG/genética , ADN Intergénico/efectos de los fármacos , ADN Intergénico/genética , ADN Intergénico/inmunología , ADN-Citosina Metilasas/antagonistas & inhibidores , Retroalimentación Fisiológica , Humanos , Inmunidad Innata/efectos de los fármacos , Helicasa Inducida por Interferón IFIH1/metabolismo , Intrones/efectos de los fármacos , Intrones/genética , Intrones/inmunología , Secuencias Invertidas Repetidas/efectos de los fármacos , Secuencias Invertidas Repetidas/genética , Secuencias Invertidas Repetidas/inmunología , Masculino , Ratones , Imitación Molecular/efectos de los fármacos , Imitación Molecular/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , ARN Bicatenario/efectos de los fármacos , ARN Bicatenario/genética , ARN Bicatenario/inmunología , Proteínas de Unión al ARN/antagonistas & inhibidores , Virus/efectos de los fármacos , Virus/inmunología
19.
Mol Cell ; 71(2): 352-361.e5, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30017585

RESUMEN

Virus infection induces stochastic activation of the interferon-ß gene. Three previously identified Alu-like DNA elements called NRCs (NF-κB reception centers) function by capturing and delivering NF-κB to the IFNB1 enhancer via stochastic interchromosomal interactions. We show that the transcription factor ThPOK binds cooperatively with NF-κB to NRCs and mediates their physical proximity with the IFNB1 gene via its ability to oligomerize when bound to DNA. ThPOK knockdown significantly decreased the frequency of interchromosomal interactions, NF-κB DNA binding to the IFNB1 enhancer, and virus-induced IFNB1 gene activation. We also demonstrate that cooperative DNA binding between ThPOK and NF-κB on the same face of the double DNA helix is required for interchromosomal interactions and distinguishes NRCs from various other Alu elements bearing κB sites. These studies show how DNA binding cooperativity of stereospecifically aligned transcription factors provides the necessary ultrasensitivity for the all-or-none stochastic cell responses to virus infection.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Interferón beta/metabolismo , Factores de Transcripción/metabolismo , Elementos Alu , Cromosomas/genética , Cromosomas/metabolismo , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Células HEK293 , Células HeLa , Humanos , Interferón beta/genética , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , Procesos Estocásticos , Factores de Transcripción/genética , Transcripción Genética , Virosis/metabolismo
20.
Nucleic Acids Res ; 52(13): 7761-7779, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38850156

RESUMEN

Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 (Alu-permissive) strains, but not in HeLa-JVM or HeLa-H1 (Alu-nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA-derived SINEs and tRNA-derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR-Alu (SVA) element, and an L1 ORF1-containing mRNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu-permissive and Alu-nonpermissive HeLa strains, suggesting that 7SL- and tRNA-derived SINEs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1-containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu-permissive and Alu-nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu-nonpermissive HeLa strains.


Asunto(s)
Elementos Alu , Elementos de Nucleótido Esparcido Largo , Humanos , Células HeLa , Elementos Alu/genética , Elementos de Nucleótido Esparcido Largo/genética , Elementos de Nucleótido Esparcido Corto/genética , Animales , Retroelementos/genética , ARN/genética , ARN/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA