RESUMEN
RNA viruses have notoriously high mutation rates due to error-prone replication by their RNA polymerase. However, natural selection concentrates variability in a few key viral proteins. To test whether this stems from different mutation tolerance profiles among viral proteins, we measured the effect of >40,000 non-synonymous mutations across the full proteome of coxsackievirus B3 as well as >97% of all possible codon deletions in the nonstructural proteins. We find significant variation in mutational tolerance within and between individual viral proteins, which correlated with both general and protein-specific structural and functional attributes. Furthermore, mutational fitness effects remained stable across cell lines, suggesting selection pressures are mostly conserved across environments. In addition to providing a rich dataset for understanding virus biology and evolution, our results illustrate that incorporation of mutational tolerance data into druggable pocket discovery can aid in selecting targets with high barriers to drug resistance.
Asunto(s)
Enterovirus Humano B , Mutación , Proteoma , Enterovirus Humano B/genética , Proteoma/metabolismo , Humanos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Aptitud Genética , Replicación Viral/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismoRESUMEN
Enteroviruses contain conserved RNA structures at the extreme 5' end of their genomes that recruit essential proteins 3CD and PCBP2 to promote genome replication. However, the high-resolution structures and mechanisms of these replication-linked RNAs (REPLRs) are limited. Here, we determined the crystal structures of the coxsackievirus B3 and rhinoviruses B14 and C15 REPLRs at 1.54, 2.2 and 2.54 Å resolution, revealing a highly conserved H-type four-way junction fold with co-axially stacked sA-sD and sB-sC helices that are stabilized by a long-range Aâ¢Câ¢U base-triple. Such conserved features observed in the crystal structures also allowed us to predict the models of several other enteroviral REPLRs using homology modeling, which generated models almost identical to the experimentally determined structures. Moreover, our structure-guided binding studies with recombinantly purified full-length human PCBP2 showed that two previously proposed binding sites, the sB-loop and 3' spacer, reside proximally and bind a single PCBP2. Additionally, the DNA oligos complementary to the 3' spacer, the high-affinity PCBP2 binding site, abrogated its interactions with enteroviral REPLRs, suggesting the critical roles of this single-stranded region in recruiting PCBP2 for enteroviral genome replication and illuminating the promising prospects of developing therapeutics against enteroviral infections targeting this replication platform.
Asunto(s)
Genoma Viral , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Viral , Proteínas de Unión al ARN , Replicación Viral , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral/genética , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Sitios de Unión , Cristalografía por Rayos X , Enterovirus/genética , Enterovirus Humano B/genéticaRESUMEN
Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.
Asunto(s)
Regiones no Traducidas 5' , Infecciones por Coxsackievirus , Enterovirus Humano B , Interacciones Microbiota-Huesped , MicroARNs , Biosíntesis de Proteínas , ARN Viral , Animales , Humanos , Ratones , Regiones no Traducidas 5'/genética , Antivirales/metabolismo , Infecciones por Coxsackievirus/genética , Infecciones por Coxsackievirus/virología , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidad , Enterovirus Humano B/fisiología , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virología , MicroARNs/genética , MicroARNs/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Tropismo Viral/genética , Replicación Viral/genética , Cisteína Endopeptidasas/metabolismo , Protocadherinas/deficiencia , Protocadherinas/genética , Miocarditis , Interacciones Microbiota-Huesped/genéticaRESUMEN
Coxsackievirus B3 (CVB3) is an enterovirus that causes diseases such as pancreatitis and myocarditis in humans. Approximately 10% of the CVB3 RNA genome consists of a highly structured 5' untranslated region (5' UTR) that is organized into six domains and contains a type I internal ribosome entry site (IRES). These features are common to all enteroviruses. Each RNA domain plays a vital role in translation and replication during the viral multiplication cycle. We used SHAPE-MaP chemistry to generate secondary structures of the 5' UTR from the avirulent strain CVB3/GA and the virulent strain CVB3/28. Our comparative models show how key nucleotide substitutions cause major restructuring of domains II and III of the 5' UTR in CVB3/GA. Despite these structural shifts, the molecule maintains several well-characterized RNA elements, which allows persistence of the unique avirulent strain. The results shed light on the 5' UTR regions serving as virulence determinants and those required for fundamental viral mechanisms. We used the SHAPE-MaP data to produce theoretical tertiary models using 3dRNA v2.0. These models suggest a compact conformation of the 5' UTR from the virulent strain CVB3/28 that brings critical domains into close contact. In contrast, the model of the 5' UTR from the avirulent strain CVB3/GA suggests a more extended conformation where the same critical domains are more separated. Our results suggest that the structure and orientation of RNA domains in the 5' UTR are responsible for low-efficiency translation, low viral titers, and absence of virulence observed during infection by CVB3/GA. IMPORTANCE Human enteroviruses, which include five different species and over 100 serotypes, are responsible for diseases ranging from mild respiratory infections to serious infections of pancreas, heart, and neural tissue. All enteroviral RNA genomes have a long and highly structured 5' untranslated region (5' UTR) containing an internal ribosome entry site (IRES). Major virulence determinants are located in the 5' UTR. We present RNA structure models that directly compare the 5' UTR derived from virulent and avirulent strains of the enterovirus coxsackievirus B3 (CVB3). The secondary-structure models show rearrangement of RNA domains known to be virulence determinants and conservation of structure in RNA elements known to be vital for translation and replication in the avirulent strain CVB3/GA. The tertiary-structure models reveal reorientation of RNA domains in CVB3/GA. Identifying the details of structure in these critical RNA domains will help direct antiviral approaches to this major human pathogen.
Asunto(s)
Infecciones por Coxsackievirus , Enterovirus Humano B , ARN Viral , Humanos , Regiones no Traducidas 5' , Infecciones por Coxsackievirus/genética , Enterovirus Humano B/genética , Células HeLa , Sitios Internos de Entrada al Ribosoma , Fenotipo , ARN Viral/genética , ARN Viral/metabolismo , Virulencia , Factores de VirulenciaRESUMEN
Host-pathogen dynamics are constantly at play during enteroviral infection. Coxsackievirus B (CVB) is a common juvenile enterovirus that infects multiple organs and drives inflammatory diseases including acute pancreatitis and myocarditis. Much like other enteroviruses, CVB is capable of manipulating host machinery to hijack and subvert autophagy for its benefit. We have previously reported that CVB triggers the release of infectious extracellular vesicles (EVs) which originate from autophagosomes. These EVs facilitate efficient dissemination of infectious virus. Here, we report that TBK1 (Tank-binding kinase 1) suppresses release of CVB-induced EVs. TBK1 is a multimeric kinase that directly activates autophagy adaptors for efficient cargo recruitment and induces type-1 interferons during viral-mediated STING recruitment. Positioning itself at the nexus of pathogen elimination, we hypothesized that loss of TBK1 could exacerbate CVB infection due to its specific role in autophagosome trafficking. Here we report that infection with CVB during genetic TBK1 knockdown significantly increases viral load and potentiates the bulk release of viral EVs. Similarly, suppressing TBK1 with small interfering RNA (siRNA) caused a marked increase in intracellular virus and EV release, while treatment in vivo with the TBK1-inhibitor Amlexanox exacerbated viral pancreatitis and EV spread. We further demonstrated that viral EV release is mediated by the autophagy modifier proteins GABARAPL1 and GABARAPL2 which facilitate autophagic flux. We observe that CVB infection stimulates autophagy and increases the release of GABARAPL1/2-positive EVs. We conclude that TBK1 plays additional antiviral roles by inducing autophagic flux during CVB infection independent of interferon signaling, and the loss of TBK1 better allows CVB-laden autophagosomes to circumvent lysosomal degradation, increasing the release of virus-laden EVs. This discovery sheds new light on the mechanisms involved in viral spread and EV propagation during acute enteroviral infection and highlights novel intracellular trafficking protein targets for antiviral therapy.
Asunto(s)
Infecciones por Coxsackievirus , Enterovirus , Vesículas Extracelulares , Pancreatitis , Enfermedad Aguda , Proteínas Reguladoras de la Apoptosis/genética , Autofagia , Enterovirus/genética , Enterovirus Humano B/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Bicatenario , ARN Interferente Pequeño , Replicación Viral/genéticaRESUMEN
Enteroviruses (EVs), single-stranded, positive-sense RNA viruses, can be classified into four species (A-D), which have previously been linked to a diverse range of disease manifestations and infections affecting the central nervous system. In the Enterovirus species B (EV-B), Echovirus type 11 (E11) has been observed to occasionally circulate in Taiwan, which was responsible for an epidemic of enterovirus infections in 2018. Here, 48 clinical specimens isolated in 2003, 2004, 2009, and 2018 were collected for the high-throughput sequencing. Notably, we identified 2018 Taiwanese strains having potential recombinations in the 3D gene, as well as one 2003 strain having a double recombination with E6 and Coxsackievirus B5 in the P2 and P3 regions, respectively. Additionally, one amino acid signature mutated from the Histidine (H) in throat swab specimens to the Tyrosine (Y) in cerebral spinal fluid specimens was detected at position 1496 (or 57) of the genomic coordinate (or 3A gene) to further demonstrate intra-host evolution in different organs. In conclusion, this study identifies potential intertypic recombination events and an intra-host signature mutation in E11 strains, isolated during a 2018 neurological disease outbreak in Taiwan, contributing to our understanding of its evolution and pathogenesis.
Asunto(s)
Infecciones por Enterovirus , Enterovirus , Humanos , Filogenia , Enterovirus Humano B/genética , Enterovirus/genética , Infecciones por Enterovirus/epidemiología , Recombinación GenéticaRESUMEN
Enteroviruses cause a wide range of neurological illnesses such as encephalitis, meningitis, and acute flaccid paralysis. Two types of enteroviruses, echovirus E4 and E9, have recently been detected in South Africa and are known to be associated with meningitis and encephalitis. The objective of this study was to characterize enterovirus strains detected in cerebrospinal fluid specimens of hospitalized patients in the private and public sector to identify genotypes associated with meningitis and encephalitis. From January 2019 to June 2021 enterovirus positive nucleic acid samples were obtained from a private (n = 116) and a public sector (n = 101) laboratory. These enteroviruses were typed using a nested set of primers targeting the VP1 region of the enterovirus genome, followed by Sanger sequencing and BLASTn analysis. Forty-two percent (91/217) of the strains could be genotyped. Enterovirus B species was the major species detected in 95% (86/91) of the specimens, followed by species C in 3% (3/91) and species A in 2% (2/91) of the specimens. Echovirus E4 and E9 were the two major types identified in this study and were detected in 70% (64/91) and in 10% (9/91) of specimens, respectively. Echovirus E11 has previously been identified in sewage samples from South Africa, but this study is the first to report Echovirus E11 in cerebrospinal fluid specimens from South African patients. The genotypes identified during this study are known to be associated with encephalitis and meningitis. The predominant detection of echovirus E4 followed by E9 corresponds with other studies conducted in South Africa.
Asunto(s)
Encefalitis , Infecciones por Enterovirus , Enterovirus , Meningitis , Humanos , Lactante , Sudáfrica/epidemiología , Sector Público , Enterovirus/genética , Infecciones por Enterovirus/diagnóstico , Enterovirus Humano B/genética , Meningitis/epidemiología , Líquido Cefalorraquídeo , FilogeniaRESUMEN
Echovirus 11 (E11) has gained attention owing to its association with severe neonatal infections. Due to the limited data available, the World Health Organization (WHO) considers public health risk to the general population to be low. The present study investigated the genetic variation and molecular evolution of E11 genomes collected from May to December 2023. Whole genome sequencing (WGS) was performed for 16 E11 strains. Phylogenetic analysis on WG showed how all Italian strains belonged to genogroup D5, similarly to other E11 strains recently reported in France and Germany all together aggregated into separate clusters. A cluster-specific recombination pattern was also identified using phylogenetic analysis of different genome regions. Echovirus 6 was identified as the major recombinant virus in 3Cpro and 3Dpol regions. The molecular clock analysis revealed that the recombination event probably occurred in June 2018 (95% HPD interval: Jan 2016-Jan 2020). Shannon entropy analyses, within P1 region, showed how 11 amino acids exhibited relatively high entropy. Five of them were exposed on the canyon region which is responsible for receptor binding with the neonatal Fc receptor. The present study showed the recombinant origin of a new lineage of E11 associated with severe neonatal infections.
Asunto(s)
Infecciones por Echovirus , Enterovirus Humano B , Genoma Viral , Genotipo , Filogenia , Recombinación Genética , Humanos , Recién Nacido , Genoma Viral/genética , Enterovirus Humano B/genética , Enterovirus Humano B/clasificación , Enterovirus Humano B/aislamiento & purificación , Infecciones por Echovirus/virología , Infecciones por Echovirus/epidemiología , Variación Genética , Secuenciación Completa del Genoma , Evolución Molecular , Italia/epidemiologíaRESUMEN
The sensitivity of enteroviruses to disinfectants varies among genetically similar variants and coincides with amino acid changes in capsid proteins, although the effect of individual substitutions remains unknown. Here, we employed reverse genetics to investigate how amino acid substitutions in coxsackievirus B5 (CVB5) capsid proteins affect the virus' sensitivity to free chlorine and heat treatment. Of ten amino acid changes observed in CVB5 variants with free chlorine resistance, none significantly reduced the chlorine sensitivity, indicating a minor role of the capsid composition in chlorine sensitivity of CVB5. Conversely, a subset of these amino acid changes located at the C-terminal region of viral protein 1 led to reduced heat sensitivity. Cryo-electron microscopy revealed that these changes affect the assembly of intermediate viral states (altered and empty particles), suggesting that the mechanism for reduced heat sensitivity could be related to improved molecular packing of CVB5, resulting in greater stability or altered dynamics of virus uncoating during infection.
Asunto(s)
Proteínas de la Cápside , Cloro , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , Cloro/farmacología , Microscopía por Crioelectrón , Sustitución de Aminoácidos , Enterovirus Humano B/genética , AminoácidosRESUMEN
AIMS: Enteroviruses are significant human pathogens associated with a range of mild to severe diseases. This study aims to understand the diversity and genetic characterization of enteroviruses circulated in southwest China's border cities by using environmental surveillance. METHODS AND RESULTS: A total of 96 sewage samples were collected in three border cities and a port located in Yunnan Province, China from July 2020 to June 2022. After cell culture and VP1 sequencing, a total of 590 enterovirus isolates were identified, belonging to 21 types. All PV strains were Sabin-like with ≤6 nucleotide mutations in the VP1 coding region. Echovirus 6, echovirus 21 (a rare serotype in previous studies), and coxsackievirus B5 were the predominant serotypes, which accounted for 21.19%, 18.31%, and 13.39% of the total isolates, respectively. The prevalence of the common serotypes varied across different border cities and periods. Phylogenetic analysis revealed the presence of multiple evolutionary lineages for E21, E6, and E30, some of which formed distinct branches. CONCLUSIONS: High diversity of enteroviruses and distinct lineages of predominant serotypes circulated in southwest China's border cities.
Asunto(s)
Infecciones por Enterovirus , Enterovirus , Humanos , Ciudades , Filogenia , China/epidemiología , Infecciones por Enterovirus/epidemiología , Enterovirus Humano B/genética , Antígenos Virales/genética , Monitoreo del Ambiente/métodosRESUMEN
RNA viruses exist as genetically heterogeneous populations due to high mutation rates, and many of these mutations reduce fitness and/or replication speed. However, it is unknown whether mutations can increase replication speed of a virus already well adapted to replication in cultured cells. By sequentially passaging coxsackievirus B3 in cultured cells and collecting the very earliest progeny, we selected for increased replication speed. We found that a single mutation in a viral capsid protein, VP1-F106L, was sufficient for the fast-replication phenotype. Characterization of this mutant revealed quicker genome release during entry compared to wild-type virus, highlighting a previously unappreciated infection barrier. However, this mutation also reduced capsid stability in vitro and reduced replication and pathogenesis in mice. These results reveal a tradeoff between overall replication speed and fitness. Importantly, this approach-selecting for the earliest viral progeny-could be applied to a variety of viral systems and has the potential to reveal unanticipated inefficiencies in viral replication cycles.
Asunto(s)
Enterovirus Humano B/genética , Infecciones por Enterovirus/virología , Replicación Viral/genética , Animales , Clonación Molecular , Enterovirus Humano B/fisiología , Células HeLa , Humanos , Ratones , Ratones Noqueados , Mutación , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Replicación Viral/fisiologíaRESUMEN
Coxsackie virus B5 (CVB5), a main serotype in human Enterovirus B (EVB), can cause severe viral encephalitis and aseptic meningitis among infants and children. Currently, there is no approved vaccine or antiviral therapy available against CVB5 infection. Here, we determined the atomic structures of CVB5 in three forms: mature full (F) particle (2.73 Å), intermediate altered (A) particle (2.81 Å), and procapsid empty (E) particle (2.95 Å). Structural analysis of F particle of CVB5 unveiled similar structures of "canyon," "puff," and "knob" as those other EV-Bs. We observed structural rearrangements that are alike during the transition from F to A particle, indicative of similar antigenicity, cell entry, and uncoating mechanisms shared by all EV-Bs. Further comparison of structures and sequences among all structure-known EV-Bs revealed that while the residues targeted by neutralizing MAbs are diversified and drive the evolution of EV-Bs, the relative conserved residues recognized by uncoating receptors could serve as the basis for the development of antiviral vaccines and therapeutics. IMPORTANCE As one of the main serotypes in Enterovirus B, CVB5 has been commonly reported in recent years. The atomic structures of CVB5 shown here revealed classical features found in EV-Bs and the structural rearrangement occurring during particle expansion and uncoating. Also, structure- and sequence-based comparison between CVB5 and other structure-known EV-Bs screened out key domains important for viral evolution and survival. All these provide insights into the development of vaccine and therapeutics for EV-Bs.
Asunto(s)
Enterovirus Humano B , Evolución Biológica , Cápside/química , Infecciones por Coxsackievirus/virología , Enterovirus Humano B/química , Enterovirus Humano B/genética , Enterovirus Humano B/ultraestructura , Humanos , Dominios ProteicosRESUMEN
Coxsackievirus A9 (CVA9), an enterovirus, is a common cause of pediatric aseptic meningitis and neonatal sepsis. During cell entry, enterovirus capsids undergo conformational changes leading to expansion, formation of large pores, externalization of VP1 N termini, and loss of the lipid factor from VP1. Factors such as receptor binding, heat, and acidic pH can trigger capsid expansion in some enteroviruses. Here, we show that fatty acid-free bovine serum albumin or neutral endosomal ionic conditions can independently prime CVA9 for expansion and genome release. Our results showed that CVA9 treatment with albumin or endosomal ions generated a heterogeneous population of virions, which could be physically separated by asymmetric flow field flow fractionation and computationally by cryo-electron microscopy (cryo-EM) and image processing. We report cryo-EM structures of CVA9 A-particles obtained by albumin or endosomal ion treatment and a control nonexpanded virion to 3.5, 3.3, and 2.9 Å resolution, respectively. Whereas albumin promoted stable expanded virions, the endosomal ionic concentrations induced unstable CVA9 virions which easily disintegrated, losing their genome. Loss of most of the VP4 molecules and exposure of negatively charged amino acid residues in the capsid's interior after expansion created a repulsive viral RNA-capsid interface, aiding genome release. IMPORTANCE Coxsackievirus A9 (CVA9) is a common cause of meningitis and neonatal sepsis. The triggers and mode of action of RNA release into the cell unusually do not require receptor interaction. Rather, a slow process in the endosome, independent of low pH, is required. Here, we show by biophysical separation, cryogenic electron microscopy, and image reconstruction that albumin and buffers mimicking the endosomal ion composition can separately and together expand and prime CVA9 for uncoating. Furthermore, we show in these expanded particles that VP4 is present at only ~10% of the occupancy found in the virion, VP1 is externalized, and the genome is repelled by the negatively charged, repulsive inner surface of the capsid that occurs due to the expansion. Thus, we can now link observations from cell biology of infection with the physical processes that occur in the capsid to promote genome uncoating.
Asunto(s)
Cationes , Enterovirus Humano B , Humanos , Albúminas/farmacología , Proteínas de la Cápside/metabolismo , Cationes/farmacología , Microscopía por Crioelectrón , Endosomas/metabolismo , Enterovirus Humano B/efectos de los fármacos , Enterovirus Humano B/genética , Enterovirus Humano B/ultraestructura , Infecciones por Enterovirus/patología , Infecciones por Enterovirus/virología , ARN/metabolismo , Virión/efectos de los fármacos , Virión/metabolismo , Virión/ultraestructura , Genoma ViralRESUMEN
Neonatal echovirus infections are characterized by severe hepatitis and neurological complications that can be fatal. Here, we show that expression of the human homologue of the neonatal Fc receptor (hFcRn), the primary receptor for echoviruses, and ablation of type I interferon (IFN) signaling are key host determinants involved in echovirus pathogenesis. We show that expression of hFcRn alone is insufficient to confer susceptibility to echovirus infections in mice. However, expression of hFcRn in mice deficient in type I interferon (IFN) signaling, hFcRn-IFNAR-/-, recapitulate the echovirus pathogenesis observed in humans. Luminex-based multianalyte profiling from E11 infected hFcRn-IFNAR-/- mice revealed a robust systemic immune response to infection, including the induction of type I IFNs. Furthermore, similar to the severe hepatitis observed in humans, E11 infection in hFcRn-IFNAR-/- mice caused profound liver damage. Our findings define the host factors involved in echovirus pathogenesis and establish in vivo models that recapitulate echovirus disease in humans.
Asunto(s)
Enterovirus Humano B/patogenicidad , Infecciones por Enterovirus/virología , Genoma Viral/genética , Hepatitis/virología , Antígenos de Histocompatibilidad Clase I/metabolismo , Interferón Tipo I/metabolismo , Receptores Fc/metabolismo , Transducción de Señal , Animales , Enterovirus Humano B/genética , Infecciones por Enterovirus/inmunología , Femenino , Expresión Génica , Hepatitis/inmunología , Hepatocitos/inmunología , Hepatocitos/virología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunidad , Hígado/inmunología , Hígado/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Fc/genéticaRESUMEN
Hand, foot, and mouth disease (HFMD) is a common pediatric infectious illness caused by enteroviruses (EVs). EV-A serotypes are the main pathogens associated with HFMD. In this study, 213 stool samples from 213 children with severe HFMD in Yunnan, China in 2013, 2015, and 2016 were further analyzed retrospectively for EV-B infection. A total of 70.0% of the specimens tested positive for EV.20 EV serotypes were detected. The predominant serotype was enterovirus A71 (EV-A71, 27.7%), followed by coxsackievirus B4 (CV-B4, 16.4%), CV-A16 (9.9%), CV-B5 (6.6%), and Echovirus 9 (E-9,4.7%). EV-A and EV-B accounted for 45.1% and 41.3%, respectively. Among the positive specimens, 28.6% were CV-Bs. Co-infection was present in 19.3% of these cases. In the study, CV-B5 and the majority of CV-B4 isolates belonged to genotypes VI and C3, respectively. This result indicates that EV-B, especially CV-Bs, might be the important agents associated with HFMD and this knowledge will contribute to the prevention and treatment of the disease.
Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Niño , Humanos , Lactante , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/complicaciones , Estudios Retrospectivos , China/epidemiología , Enterovirus Humano B/genética , Infecciones por Enterovirus/complicacionesRESUMEN
BACKGROUND: CVB5 can cause respiratory infections. However, the molecular epidemiological information about CVB5 in respiratory tract samples is still limited. Here, we report five cases in which CVB5 was detected in sputum sample of pneumonia children patients from Kunming, Southwest China. METHODS: CVB5 isolates were obtained from sputum samples of patients with pneumonia. Whole-genome sequencing of CVB5 isolates was performed using segmented PCR, and phylogenetic, mutation and recombination analysis. The effect of mutations in the VP1 protein on hydration were analyzed by Protscale. The tertiary models of VP1 proteins were established by Colabfold, and the effect of mutations in VP1 protein on volume modifications and binding affinity were analyzed by Pymol software and PROVEAN. RESULTS: A total of five CVB5 complete genome sequences were obtained. No obvious homologous recombination signals comparing with other coxsackie B viruses were observed in the five isolates. Phylogenetic analysis showed that the five CVB5 sputum isolates were from an independent branch in genogroup E. Due to the mutation, the structure and spatial of the VP1 protein N-terminus have changed significantly. Comparing to the Faulkner (CVB5 prototype strain), PROVEAN revealed three deleterious substitutions: Y75F, N166T (KM35), T140I (KM41). The last two of the three deleterious substitutions significantly increased the hydrophobicity of the residues. CONCLUSIONS: We unexpectedly found five cases of CVB5 infection instead of rhinoviruses infection during our routine surveillance of rhinoviruses in respiratory tract samples. All five patients were hospitalized with pneumonia symptoms and were not tested for enterovirus during their hospitalization. This report suggests that enterovirus surveillance in patients with respiratory symptoms should be strengthened.
Asunto(s)
Infecciones por Enterovirus , Enterovirus , Neumonía , Humanos , Niño , Filogenia , Esputo , Enterovirus Humano B/genética , Enterovirus/genética , China/epidemiología , Antígenos Virales/genéticaRESUMEN
BACKGROUND: Echovirus 30 is prone to cause hand-foot-and-mouth disease in infants and children. However, molecular epidemiologic information on the spread of E30 in southwestern China remains limited. In this study, we determined and analyzed the whole genomic sequences of E30 strains isolated from the stools of patients with hand-foot-and-mouth disease in Yunnan Province, China, in 2019. METHODS: E30 isolates were obtained from fecal samples of HFMD patients. The whole genomes were sequenced by segmented PCR and analyzed for phylogeny, mutation and recombination. MEGA and DNAStar were used to align the present isolates with the reference strains. The VP1 sequence of the isolates were analyzed for selection pressure using datamonkey server. RESULTS: The complete genome sequences of four E30 were obtained from this virus isolation. Significant homologous recombination signals in the P2-3'UTR region were found in all four isolates with other serotypes. Phylogenetic analysis showed that the four E30 isolates belonged to lineage H. Comparison of the VP1 sequences of these four isolates with other E30 reference strains using three selection pressure analysis models FUBAR, FEL, and MEME, revealed a positive selection site at 133rd position. CONCLUSIONS: This study extends the whole genome sequence of E30 in GenBank, in which mutations and recombinations have driven the evolution of E30 and further improved and enriched the genetic characteristics of E30, providing fundamental data for the prevention and control of diseases caused by E30. Furthermore, we demonstrated the value of continuous and extensive surveillance of enterovirus serotypes other than the major HFMD-causing viruses.
Asunto(s)
Fiebre Aftosa , Enfermedad de Boca, Mano y Pie , Niño , Animales , Lactante , Humanos , Filogenia , China/epidemiología , Enterovirus Humano B/genética , Enfermedad de Boca, Mano y Pie/epidemiologíaRESUMEN
Enteroviruses are a common cause of seasonal childhood infections. The vast majority of enterovirus infections are mild and self-limiting, although neonates can sometimes develop severe disease. Myocarditis is a rare complication of enterovirus infection. Between June 2022 and April 2023, twenty cases of severe neonatal enteroviral myocarditis caused by coxsackie B viruses were reported in the United Kingdom. Sixteen required critical care support and two died. Enterovirus PCR on whole blood was the most sensitive diagnostic test. We describe the initial public health investigation into this cluster and aim to raise awareness among paediatricians, laboratories and public health specialists.
Asunto(s)
Infecciones por Enterovirus , Enterovirus , Miocarditis , Recién Nacido , Humanos , Niño , Miocarditis/diagnóstico , Miocarditis/complicaciones , Infecciones por Enterovirus/complicaciones , Infecciones por Enterovirus/diagnóstico , Enterovirus/genética , Enterovirus Humano B/genética , Salud PúblicaRESUMEN
Echovirus 11 (E11) has recently been associated with a series of nine neonatal cases of severe hepatitis in France. Here, we present severe hepatitis caused by E11 in a pair of twins. In one of the neonates, the clinical picture evolved to fulminant hepatitis. The E11 genome showed 99% nucleotide identity with E11 strains reported in the cases in France. Rapid genome characterisation using next generation sequencing is essential to identify new and more pathogenetic variants.
Asunto(s)
Infecciones por Echovirus , Hepatitis A , Hepatitis , Necrosis Hepática Masiva , Recién Nacido , Humanos , Masculino , Italia/epidemiología , Francia/epidemiología , Enterovirus Humano B/genética , Infecciones por Echovirus/diagnóstico , Infecciones por Echovirus/epidemiologíaRESUMEN
We report nine severe neonatal infections caused by a new variant of echovirus 11. All were male, eight were twins. At illness onset, they were 3-5 days-old and had severe sepsis and liver failure. This new variant, detected in France since April 2022, is still circulating and has caused more fatal neonatal enterovirus infections in 2022 and 2023 (8/496; 1.6%, seven associated with echovirus 11) compared with 2016 to 2021 (7/1,774; 0.4%). National and international alerts are warranted.