Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 87: 239-261, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29494238

RESUMEN

The number of DNA polymerases identified in each organism has mushroomed in the past two decades. Most newly found DNA polymerases specialize in translesion synthesis and DNA repair instead of replication. Although intrinsic error rates are higher for translesion and repair polymerases than for replicative polymerases, the specialized polymerases increase genome stability and reduce tumorigenesis. Reflecting the numerous types of DNA lesions and variations of broken DNA ends, translesion and repair polymerases differ in structure, mechanism, and function. Here, we review the unique and general features of polymerases specialized in lesion bypass, as well as in gap-filling and end-joining synthesis.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Enzimas Reparadoras del ADN/clasificación , ADN Polimerasa Dirigida por ADN/clasificación , Humanos , Modelos Biológicos , Modelos Moleculares
2.
Annu Rev Biochem ; 87: 263-294, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29709199

RESUMEN

Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette-ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11-RAD50-NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and enabling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , Proteína Homóloga de MRE11/metabolismo , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Inmunidad Innata , Proteína Homóloga de MRE11/química , Proteína Homóloga de MRE11/genética , Modelos Biológicos , Modelos Moleculares , Transducción de Señal , Telómero/metabolismo
3.
Nature ; 598(7880): 368-372, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34526721

RESUMEN

Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription-repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA.


Asunto(s)
Microscopía por Crioelectrón , Reparación del ADN , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , ARN Polimerasa II/química , ARN Polimerasa II/ultraestructura , Transcripción Genética , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/ultraestructura , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/ultraestructura , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/ultraestructura , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción/ultraestructura , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura , Ubiquitinación
4.
Cell ; 145(2): 212-23, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21496642

RESUMEN

Human exonuclease 1 (hExo1) plays important roles in DNA repair and recombination processes that maintain genomic integrity. It is a member of the 5' structure-specific nuclease family of exonucleases and endonucleases that includes FEN-1, XPG, and GEN1. We present structures of hExo1 in complex with a DNA substrate, followed by mutagenesis studies, and propose a common mechanism by which this nuclease family recognizes and processes diverse DNA structures. hExo1 induces a sharp bend in the DNA at nicks or gaps. Frayed 5' ends of nicked duplexes resemble flap junctions, unifying the mechanisms of endo- and exonucleolytic processing. Conformational control of a mobile region in the catalytic site suggests a mechanism for allosteric regulation by binding to protein partners. The relative arrangement of substrate binding sites in these enzymes provides an elegant solution to a complex geometrical puzzle of substrate recognition and processing.


Asunto(s)
Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , ADN/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Secuencia de Aminoácidos , Endonucleasas/genética , Endonucleasas de ADN Solapado/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
5.
Cell ; 145(1): 54-66, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21458667

RESUMEN

The MR (Mre11 nuclease and Rad50 ABC ATPase) complex is an evolutionarily conserved sensor for DNA double-strand breaks, highly genotoxic lesions linked to cancer development. MR can recognize and process DNA ends even if they are blocked and misfolded. To reveal its mechanism, we determined the crystal structure of the catalytic head of Thermotoga maritima MR and analyzed ATP-dependent conformational changes. MR adopts an open form with a central Mre11 nuclease dimer and two peripheral Rad50 molecules, a form suited for sensing obstructed breaks. The Mre11 C-terminal helix-loop-helix domain binds Rad50 and attaches flexibly to the nuclease domain, enabling large conformational changes. ATP binding to the two Rad50 subunits induces a rotation of the Mre11 helix-loop-helix and Rad50 coiled-coil domains, creating a clamp conformation with increased DNA-binding activity. The results suggest that MR is an ATP-controlled transient molecular clamp at DNA double-strand breaks.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Enzimas Reparadoras del ADN/química , Reparación del ADN , Proteínas de Unión al ADN/química , Thermotoga maritima/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Thermotoga maritima/metabolismo , Difracción de Rayos X
6.
Mol Cell ; 69(6): 979-992.e6, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29547724

RESUMEN

Human nineteen complex (NTC) acts as a multimeric E3 ubiquitin ligase in DNA repair and splicing. The transfer of ubiquitin is mediated by Prp19-a homotetrameric component of NTC whose elongated coiled coils serve as an assembly axis for two other proteins called SPF27 and CDC5L. We find that Prp19 is inactive on its own and have elucidated the structural basis of its autoinhibition by crystallography and mutational analysis. Formation of the NTC core by stepwise assembly of SPF27, CDC5L, and PLRG1 onto the Prp19 tetramer enables ubiquitin ligation. Protein-protein crosslinking of NTC, functional assays in vitro, and assessment of its role in DNA damage response provide mechanistic insight into the organization of the NTC core and the communication between PLRG1 and Prp19 that enables E3 activity. This reveals a unique mode of regulation for a complex E3 ligase and advances understanding of its dynamics in various cellular pathways.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Proteínas Nucleares/metabolismo , Factores de Empalme de ARN/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Cristalización , Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Mutación , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformación Proteica , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteína de Replicación A/metabolismo , Células Sf9 , Spodoptera , Relación Estructura-Actividad , Ubiquitinación , Repeticiones WD40
7.
Chembiochem ; 24(13): e202200756, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36917742

RESUMEN

We report a two-step validation approach to evaluate the suitability of metal-binding groups for targeting DNA damage-repair metalloenzymes using model enzyme SNM1A. A fragment-based screening approach was first used to identify metal-binding fragments suitable for targeting the enzyme. Effective fragments were then incorporated into oligonucleotides using the copper-catalysed azide-alkyne cycloaddition reaction. These modified oligonucleotides were recognised by SNM1A at >1000-fold lower concentrations than their fragment counterparts. The exonuclease SNM1A is a key enzyme involved in the repair of interstrand crosslinks, a highly cytotoxic form of DNA damage. However, SNM1A and other enzymes of this class are poorly understood, as there is a lack of tools available to facilitate their study. Our novel approach of incorporating functional fragments into oligonucleotides is broadly applicable to generating modified oligonucleotide structures with high affinity for DNA damage-repair enzymes.


Asunto(s)
Proteínas de Ciclo Celular , Exodesoxirribonucleasas , Exodesoxirribonucleasas/metabolismo , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Oligonucleótidos/química
8.
Nat Rev Mol Cell Biol ; 12(2): 90-103, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21252998

RESUMEN

The maintenance of genome stability depends on the DNA damage response (DDR), which is a functional network comprising signal transduction, cell cycle regulation and DNA repair. The metabolism of DNA double-strand breaks governed by the DDR is important for preventing genomic alterations and sporadic cancers, and hereditary defects in this response cause debilitating human pathologies, including developmental defects and cancer. The MRE11 complex, composed of the meiotic recombination 11 (MRE11), RAD50 and Nijmegen breakage syndrome 1 (NBS1; also known as nibrin) proteins is central to the DDR, and recent insights into its structure and function have been gained from in vitro structural analysis and studies of animal models in which the DDR response is deficient.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Animales , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Humanos , Pyrococcus furiosus/química , Pyrococcus furiosus/metabolismo
9.
Cell ; 135(1): 14-6, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18854148

RESUMEN

Genomic instability in ataxia telangiectasia-like disorder and Nijmegen breakage syndrome is due to disruption of the Mre11-Rad50-Nbs1 complex. Buis et al. (2008) and Williams et al. (2008) now reveal the importance of the nuclease activity of Mre11 for mammalian genome maintenance and present a molecular view of its active site.


Asunto(s)
Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Animales , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Ratones , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo
10.
Cell ; 135(1): 85-96, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18854157

RESUMEN

The Mre11/Rad50/NBS1 (MRN) complex maintains genomic stability by bridging DNA ends and initiating DNA damage signaling through activation of the ATM kinase. Mre11 possesses DNA nuclease activities that are highly conserved in evolution but play unknown roles in mammals. To define the functions of Mre11, we engineered targeted mouse alleles that either abrogate nuclease activities or inactivate the entire MRN complex. Mre11 nuclease deficiency causes a striking array of phenotypes indistinguishable from the absence of MRN, including early embryonic lethality and dramatic genomic instability. We identify a crucial role for the nuclease activities in homology-directed double-strand-break repair and a contributing role in activating the ATR kinase. However, the nuclease activities are not required to activate ATM after DNA damage or telomere deprotection. Therefore, nucleolytic processing by Mre11 is an essential function of fundamental importance in DNA repair, distinct from MRN control of ATM signaling.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular Transformada , Proliferación Celular , Roturas del ADN de Doble Cadena , Daño del ADN , Enzimas Reparadoras del ADN/química , Proteínas de Unión al ADN/química , Fibroblastos/metabolismo , Proteína Homóloga de MRE11 , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Telómero/metabolismo , Proteínas Supresoras de Tumor/metabolismo
11.
Mol Cell ; 57(4): 648-661, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25661488

RESUMEN

Deficiency in repair of damaged DNA leads to genomic instability and is closely associated with tumorigenesis. Most DNA double-strand-breaks (DSBs) are repaired by two major mechanisms, homologous-recombination (HR) and non-homologous-end-joining (NHEJ). Although Akt has been reported to suppress HR, its role in NHEJ remains elusive. Here, we report that Akt phosphorylates XLF at Thr181 to trigger its dissociation from the DNA ligase IV/XRCC4 complex, and promotes its interaction with 14-3-3ß leading to XLF cytoplasmic retention, where cytosolic XLF is subsequently degraded by SCF(ß-TRCP) in a CKI-dependent manner. Physiologically, upon DNA damage, XLF-T181E expressing cells display impaired NHEJ and elevated cell death. Whereas a cancer-patient-derived XLF-R178Q mutant, deficient in XLF-T181 phosphorylation, exhibits an elevated tolerance of DNA damage. Together, our results reveal a pivotal role for Akt in suppressing NHEJ and highlight the tight connection between aberrant Akt hyper-activation and deficiency in timely DSB repair, leading to genomic instability and tumorigenesis.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Proteínas 14-3-3/metabolismo , Secuencia de Aminoácidos , Carcinogénesis/genética , Citoplasma/metabolismo , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Datos de Secuencia Molecular , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Ligasas SKP Cullina F-box/fisiología , Alineación de Secuencia
12.
Nucleic Acids Res ; 49(5): 2418-2434, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33590097

RESUMEN

Cockayne syndrome (CS) is a segmental premature aging syndrome caused primarily by defects in the CSA or CSB genes. In addition to premature aging, CS patients typically exhibit microcephaly, progressive mental and sensorial retardation and cutaneous photosensitivity. Defects in the CSB gene were initially thought to primarily impair transcription-coupled nucleotide excision repair (TC-NER), predicting a relatively consistent phenotype among CS patients. In contrast, the phenotypes of CS patients are pleiotropic and variable. The latter is consistent with recent work that implicates CSB in multiple cellular systems and pathways, including DNA base excision repair, interstrand cross-link repair, transcription, chromatin remodeling, RNAPII processing, nucleolin regulation, rDNA transcription, redox homeostasis, and mitochondrial function. The discovery of additional functions for CSB could potentially explain the many clinical phenotypes of CSB patients. This review focuses on the diverse roles played by CSB in cellular pathways that enhance genome stability, providing insight into the molecular features of this complex premature aging disease.


Asunto(s)
ADN Helicasas/fisiología , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , ADN Helicasas/química , Reparación del ADN , Enzimas Reparadoras del ADN/química , ADN Ribosómico/biosíntesis , Regulación de la Expresión Génica , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/química , ARN Polimerasa II/metabolismo , Transcripción Genética
13.
Nucleic Acids Res ; 49(2): 1023-1032, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33367848

RESUMEN

Pseudomonas putida MPE exemplifies a novel clade of manganese-dependent single-strand DNA endonuclease within the binuclear metallophosphoesterase superfamily. MPE is encoded within a widely conserved DNA repair operon. Via structure-guided mutagenesis, we identify His113 and His81 as essential for DNA nuclease activity, albeit inessential for hydrolysis of bis-p-nitrophenylphosphate. We propose that His113 contacts the scissile phosphodiester and serves as a general acid catalyst to expel the OH leaving group of the product strand. We find that MPE cleaves the 3' and 5' single-strands of tailed duplex DNAs and that MPE can sense and incise duplexes at sites of short mismatch bulges and opposite a nick. We show that MPE is an ambidextrous phosphodiesterase capable of hydrolyzing the ssDNA backbone in either orientation to generate a mixture of 3'-OH and 3'-PO4 cleavage products. The directionality of phosphodiester hydrolysis is dictated by the orientation of the water nucleophile vis-à-vis the OH leaving group, which must be near apical for the reaction to proceed. We propose that the MPE active site and metal-bound water nucleophile are invariant and the enzyme can bind the ssDNA productively in opposite orientations.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ADN de Cadena Simple/metabolismo , Desoxirribonucleasa I/metabolismo , Pseudomonas putida/enzimología , Proteínas Bacterianas/química , Emparejamiento Base , Dominio Catalítico , Reparación de la Incompatibilidad de ADN , Reparación del ADN , Enzimas Reparadoras del ADN/química , Desoxirribonucleasa I/química , Histidina/química , Hidrólisis , Manganeso/química , Modelos Moleculares , Nitrofenoles/metabolismo , Fosfatos/química , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Agua
14.
J Biol Chem ; 297(1): 100862, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34116057

RESUMEN

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Asunto(s)
ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Elonguina/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Polimerasa II/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/genética , ADN Helicasas/química , ADN Helicasas/ultraestructura , Reparación del ADN/genética , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/ultraestructura , Elonguina/química , Elonguina/ultraestructura , Humanos , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/ultraestructura , ARN Polimerasa II/química , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/ultraestructura , Ubiquitinación/genética
15.
J Biol Chem ; 295(15): 4761-4772, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32144205

RESUMEN

MutT homologue 1 (MTH1) removes oxidized nucleotides from the nucleotide pool and thereby prevents their incorporation into the genome and thereby reduces genotoxicity. We previously reported that MTH1 is an efficient catalyst of O6-methyl-dGTP hydrolysis suggesting that MTH1 may also sanitize the nucleotide pool from other methylated nucleotides. We here show that MTH1 efficiently catalyzes the hydrolysis of N6-methyl-dATP to N6-methyl-dAMP and further report that N6-methylation of dATP drastically increases the MTH1 activity. We also observed MTH1 activity with N6-methyl-ATP, albeit at a lower level. We show that N6-methyl-dATP is incorporated into DNA in vivo, as indicated by increased N6-methyl-dA DNA levels in embryos developed from MTH1 knock-out zebrafish eggs microinjected with N6-methyl-dATP compared with noninjected embryos. N6-methyl-dATP activity is present in MTH1 homologues from distantly related vertebrates, suggesting evolutionary conservation and indicating that this activity is important. Of note, N6-methyl-dATP activity is unique to MTH1 among related NUDIX hydrolases. Moreover, we present the structure of N6-methyl-dAMP-bound human MTH1, revealing that the N6-methyl group is accommodated within a hydrophobic active-site subpocket explaining why N6-methyl-dATP is a good MTH1 substrate. N6-methylation of DNA and RNA has been reported to have epigenetic roles and to affect mRNA metabolism. We propose that MTH1 acts in concert with adenosine deaminase-like protein isoform 1 (ADAL1) to prevent incorporation of N6-methyl-(d)ATP into DNA and RNA. This would hinder potential dysregulation of epigenetic control and RNA metabolism via conversion of N6-methyl-(d)ATP to N6-methyl-(d)AMP, followed by ADAL1-catalyzed deamination producing (d)IMP that can enter the nucleotide salvage pathway.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxiadenina/metabolismo , Desoxirribonucleótidos/metabolismo , Evolución Molecular , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Dominio Catalítico , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Embrión no Mamífero/metabolismo , Humanos , Hidrólisis , Cinética , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Especificidad por Sustrato , Pez Cebra , Hidrolasas Nudix
16.
Nucleic Acids Res ; 47(7): 3784-3794, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30753618

RESUMEN

Cockayne syndrome group B (CSB, also known as ERCC6) protein is involved in many DNA repair processes and essential for transcription-coupled repair (TCR). The central region of CSB has the helicase motif, whereas the C-terminal region contains important regulatory elements for repair of UV- and oxidative stress-induced damages and double-strand breaks (DSBs). A previous study suggested that a small part (∼30 residues) within this region was responsible for binding to ubiquitin (Ub). Here, we show that the Ub-binding of CSB requires a larger part of CSB, which was previously identified as a winged-helix domain (WHD) and is involved in the recruitment of CSB to DSBs. We also present the crystal structure of CSB WHD in complex with Ub. CSB WHD folds as a single globular domain, defining a class of Ub-binding domains (UBDs) different from 23 UBD classes identified so far. The second α-helix and C-terminal extremity of CSB WHD interact with Ub. Together with structure-guided mutational analysis, we identified the residues critical for the binding to Ub. CSB mutants defective in the Ub binding reduced repair of UV-induced damage. This study supports the notion that DSB repair and TCR may be associated with the Ub-binding of CSB.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/química , Enzimas Reparadoras del ADN/química , Proteínas de Unión a Poli-ADP-Ribosa/química , Ubiquitina/química , Ubiquitinas/química , Factores de Transcripción Winged-Helix/química , Secuencia de Aminoácidos/genética , Supervivencia Celular , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Daño del ADN/genética , Daño del ADN/efectos de la radiación , ADN Helicasas/genética , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Enzimas Reparadoras del ADN/genética , Humanos , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Conformación Proteica en Hélice alfa/genética , Ubiquitina/genética , Ubiquitinas/genética , Rayos Ultravioleta , Factores de Transcripción Winged-Helix/genética
17.
Nucleic Acids Res ; 47(16): 8337-8347, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31372632

RESUMEN

DNA repair is critical for maintaining genomic integrity. Finding DNA lesions initiates the entire repair process. In human nucleotide excision repair (NER), XPC-RAD23B recognizes DNA lesions and recruits downstream factors. Although previous studies revealed the molecular features of damage identification by the yeast orthologs Rad4-Rad23, the dynamic mechanisms by which human XPC-RAD23B recognizes DNA defects have remained elusive. Here, we directly visualized the motion of XPC-RAD23B on undamaged and lesion-containing DNA using high-throughput single-molecule imaging. We observed three types of one-dimensional motion of XPC-RAD23B along DNA: diffusive, immobile and constrained. We found that consecutive AT-tracks led to increase in proteins with constrained motion. The diffusion coefficient dramatically increased according to ionic strength, suggesting that XPC-RAD23B diffuses along DNA via hopping, allowing XPC-RAD23B to bypass protein obstacles during the search for DNA damage. We also examined how XPC-RAD23B identifies cyclobutane pyrimidine dimers (CPDs) during diffusion. XPC-RAD23B makes futile attempts to bind to CPDs, consistent with low CPD recognition efficiency. Moreover, XPC-RAD23B binds CPDs in biphasic states, stable for lesion recognition and transient for lesion interrogation. Taken together, our results provide new insight into how XPC-RAD23B searches for DNA lesions in billions of base pairs in human genome.


Asunto(s)
Enzimas Reparadoras del ADN/química , Reparación del ADN , ADN Viral/química , Proteínas de Unión al ADN/química , ADN/química , Dímeros de Pirimidina/química , Bacteriófago lambda/química , Bacteriófago lambda/genética , Sitios de Unión , ADN/genética , ADN/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Difusión , Humanos , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Concentración Osmolar , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Dímeros de Pirimidina/metabolismo , Imagen Individual de Molécula
18.
Nucleic Acids Res ; 47(20): 10678-10692, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31501894

RESUMEN

CSB, a member of the SWI2/SNF2 superfamily, has been implicated in evicting histones to promote the DSB pathway choice towards homologous recombination (HR) repair. However, how CSB promotes HR repair remains poorly characterized. Here we demonstrate that CSB interacts with both MRE11/RAD50/NBS1 (MRN) and BRCA1 in a cell cycle regulated manner, with the former requiring its WHD and occurring predominantly in early S phase. CSB interacts with the BRCT domain of BRCA1 and this interaction is regulated by CDK-dependent phosphorylation of CSB on S1276. The CSB-BRCA1 interaction, which peaks in late S/G2 phase, is responsible for mediating the interaction of CSB with the BRCA1-C complex consisting of BRCA1, MRN and CtIP. While dispensable for histone eviction at DSBs, CSB phosphorylation on S1276 is necessary to promote efficient MRN- and CtIP-mediated DNA end resection, thereby restricting NHEJ and enforcing the DSB repair pathway choice to HR. CSB phosphorylation on S1276 is also necessary to support cell survival in response to DNA damage-inducing agents. These results altogether suggest that CSB interacts with BRCA1 to promote DNA end resection for HR repair and that although prerequisite, CSB-mediated histone eviction alone is insufficient to promote the pathway choice towards HR.


Asunto(s)
Proteína BRCA1/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Fase G2 , Complejos Multiproteicos/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Fase S , Proteína BRCA1/química , Camptotecina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN Helicasas/química , Reparación del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/química , Fase G2/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/química , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Fase S/efectos de los fármacos , Proteínas de Unión a Telómeros/metabolismo
19.
Genes Dev ; 27(16): 1752-68, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23964092

RESUMEN

Poly-ADP-ribosylation is a unique post-translational modification participating in many biological processes, such as DNA damage response. Here, we demonstrate that a set of Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains recognizes poly(ADP-ribose) (PAR) both in vitro and in vivo. Among these FHA and BRCT domains, the FHA domains of APTX and PNKP interact with iso-ADP-ribose, the linkage of PAR, whereas the BRCT domains of Ligase4, XRCC1, and NBS1 recognize ADP-ribose, the basic unit of PAR. The interactions between PAR and the FHA or BRCT domains mediate the relocation of these domain-containing proteins to DNA damage sites and facilitate the DNA damage response. Moreover, the interaction between PAR and the NBS1 BRCT domain is important for the early activation of ATM during DNA damage response and ATM-dependent cell cycle checkpoint activation. Taken together, our results demonstrate two novel PAR-binding modules that play important roles in DNA damage response.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Daño del ADN/fisiología , Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Reparación del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Ligasas/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
20.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806087

RESUMEN

Cockayne syndrome group B protein (CSB), a member of the SWI/SNF superfamily, resides in an elongating RNA polymerase II (RNAPII) complex and regulates transcription elongation. CSB contains a C-terminal winged helix domain (WHD) that binds to ubiquitin and plays an important role in DNA repair. However, little is known about the role of the CSB-WHD in transcription regulation. Here, we report that CSB is dependent upon its WHD to regulate RNAPII abundance at promoter proximal pause (PPP) sites of several actively transcribed genes, a key step in the regulation of transcription elongation. We show that two ubiquitin binding-defective mutations in the CSB-WHD, which impair CSB's ability to promote cell survival in response to treatment with cisplatin, have little impact on its ability to stimulate RNAPII occupancy at PPP sites. In addition, we demonstrate that two cancer-associated CSB mutations, which are located on the opposite side of the CSB-WHD away from its ubiquitin-binding pocket, impair CSB's ability to promote RNAPII occupancy at PPP sites. Taken together, these results suggest that CSB promotes RNAPII association with PPP sites in a manner requiring the CSB-WHD but independent of its ubiquitin-binding activity. These results further imply that CSB-mediated RNAPII occupancy at PPP sites is mechanistically separable from CSB-mediated repair of cisplatin-induced DNA damage.


Asunto(s)
ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Regulación de la Expresión Génica , Mutación , Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Polimerasa II/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Cisplatino/efectos adversos , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , ADN Helicasas/química , Enzimas Reparadoras del ADN/química , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/química , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA