Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35420133

RESUMEN

The ectopic expression of the transcription factors OCT4, SOX2, KLF4 and MYC (OSKM) enables reprogramming of differentiated cells into pluripotent embryonic stem cells. Methods based on partial and reversible in vivo reprogramming are a promising strategy for tissue regeneration and rejuvenation. However, little is known about the barriers that impair reprogramming in an in vivo context. We report that natural killer (NK) cells significantly limit reprogramming, both in vitro and in vivo. Cells and tissues in the intermediate states of reprogramming upregulate the expression of NK-activating ligands, such as MULT1 and ICAM1. NK cells recognize and kill partially reprogrammed cells in a degranulation-dependent manner. Importantly, in vivo partial reprogramming is strongly reduced by adoptive transfer of NK cells, whereas it is significantly increased by their depletion. Notably, in the absence of NK cells, the pancreatic organoids derived from OSKM-expressing mice are remarkably large, suggesting that ablating NK surveillance favours the acquisition of progenitor-like properties. We conclude that NK cells pose an important barrier for in vivo reprogramming, and speculate that this concept may apply to other contexts of transient cellular plasticity.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes , Animales , Diferenciación Celular , Reprogramación Celular/genética , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Células Asesinas Naturales/metabolismo , Factor 4 Similar a Kruppel/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Factores de Transcripción SOXB1/metabolismo
2.
Cell Mol Life Sci ; 81(1): 256, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866991

RESUMEN

Pulmonary hypertension (PH) is characterized by vascular remodeling predominantly driven by a phenotypic switching in pulmonary artery smooth muscle cells (PASMCs). However, the underlying mechanisms for this phenotypic alteration remain incompletely understood. Here, we identified that RNA methyltransferase METTL3 is significantly elevated in the lungs of hypoxic PH (HPH) mice and rats, as well as in the pulmonary arteries (PAs) of HPH rats. Targeted deletion of Mettl3 in smooth muscle cells exacerbated hemodynamic consequences of hypoxia-induced PH and accelerated pulmonary vascular remodeling in vivo. Additionally, the absence of METTL3 markedly induced phenotypic switching in PASMCs in vitro. Mechanistically, METTL3 depletion attenuated m6A modification and hindered the processing of pri-miR-143/145, leading to a downregulation of miR-143-3p and miR-145-5p. Inhibition of hnRNPA2B1, an m6A mediator involved in miRNA maturation, similarly resulted in a significant reduction of miR-143-3p and miR-145-5p. We demonstrated that miR-145-5p targets Krüppel-like factor 4 (KLF4) and miR-143-3p targets fascin actin-bundling protein 1 (FSCN1) in PASMCs. The decrease of miR-145-5p subsequently induced an upregulation of KLF4, which in turn suppressed miR-143/145 transcription, establishing a positive feedback circuit between KLF4 and miR-143/145. This regulatory circuit facilitates the persistent suppression of contractile marker genes, thereby sustaining PASMC phenotypic switch. Collectively, hypoxia-induced upregulation of METTL3, along with m6A mediated regulation of miR-143/145, might serve as a protective mechanism against phenotypic switch of PASMCs. Our results highlight a potential therapeutic strategy targeting m6A modified miR-143/145-KLF4 loop in the treatment of PH.


Asunto(s)
Adenosina , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Metiltransferasas , MicroARNs , Miocitos del Músculo Liso , Arteria Pulmonar , Factor 4 Similar a Kruppel/metabolismo , Animales , MicroARNs/genética , MicroARNs/metabolismo , Arteria Pulmonar/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Miocitos del Músculo Liso/metabolismo , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratas , Fenotipo , Masculino , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Músculo Liso Vascular/metabolismo , Ratones Endogámicos C57BL , Remodelación Vascular/genética , Ratas Sprague-Dawley , Humanos
3.
Cell Mol Life Sci ; 81(1): 278, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916835

RESUMEN

Ephrin receptor A2 (EphA2), a member of the Ephrin receptor family, is closely related to the progression of oral squamous cell carcinoma (OSCC). Cancer stem cells (CSCs) play essential roles in OSCC development and occurrence. The underlying mechanisms between EphA2 and CSCs, however, are not yet fully understood. Here, we found that EphA2 was overexpressed in OSCC tissues and was associated with poor prognosis. Knockdown of EphA2 dampened the CSC phenotype and the tumour-initiating frequency of OSCC cells. Crucially, the effects of EphA2 on the CSC phenotype relied on KLF4, a key transcription factor for CSCs. Mechanistically, EphA2 activated the ERK signalling pathway, promoting the nuclear translocation of YAP. Subsequently, YAP was bound to TEAD3, leading to the transcription of KLF4. Overall, our findings revealed that EphA2 can enhance the stemness of OSCC cells, and this study identified the EphA2/KLF4 axis as a potential target for treating OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Neoplasias de la Boca , Células Madre Neoplásicas , Receptor EphA2 , Factor 4 Similar a Kruppel/metabolismo , Humanos , Receptor EphA2/metabolismo , Receptor EphA2/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Animales , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Femenino , Ratones Desnudos , Masculino , Pronóstico , Sistema de Señalización de MAP Quinasas/genética , Transcripción Genética
4.
Acta Pharmacol Sin ; 45(6): 1189-1200, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38438579

RESUMEN

Maintenance of intestinal barrier function contributes to gastrointestinal homeostasis and therefore cardiovascular diseases. A number of studies show that intestinal permeability is affected by excessive inflammatory responses. Krüppel-like factor (KLF) 4 is one of the critical transcriptional factors, which controls multiple immune responses. In this study we investigated the role of KLF4 in regulating intestinal inflammation and permeability during the atherosclerotic process. Atherosclerotic model was established in ApoE-/- mice by feeding a high fat high cholesterol (HFHC) diet. We showed that colon expression levels of KLF4 and tight junction proteins were significantly decreased whereas inflammatory responses increased in atherosclerotic mice. Overexpression of colon epithelial Klf4 decreased atherosclerotic plaque formation and vascular inflammation in atherosclerotic mice, accompanied by remarkable suppression of intestinal NF-κB activation. We found that overexpression of epithelial Klf4 in atherosclerotic mice significantly increased intestinal tight junction expression and ameliorated endotoxemia, whereas replenishment of LPS abolished these benefits. Overexpression of Klf4 reversed LPS-induced permeability and downregulation of ZO-1 and Occludin in Caco-2 cells in vitro. HFHC diet stimulated the expression of epithelial microRNA-34a, whereas silence of epithelial Klf4 abolished the benefits of microRNA-34a sponge, a specific miR-34a inhibitor, on intestinal permeability and atherosclerotic development. A clinical cohort of 24 atherosclerotic patients supported colon KLF4/NF-κB/tight junction protein axis mediated intestine/cardiovascular interaction in patients with atherosclerosis. Taken together, intestinal epithelial KLF4 protects against intestinal inflammation and barrier dysfunction, ameliorating atherosclerotic plaque formation.


Asunto(s)
Aterosclerosis , Endotoxemia , Mucosa Intestinal , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Ratones Endogámicos C57BL , MicroARNs , FN-kappa B , Factor 4 Similar a Kruppel/metabolismo , Animales , Aterosclerosis/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , FN-kappa B/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Humanos , Endotoxemia/metabolismo , Ratones , Mucosa Intestinal/metabolismo , Masculino , Células CACO-2 , Permeabilidad , Lipopolisacáridos , Funcion de la Barrera Intestinal
5.
Nucleic Acids Res ; 50(21): 12235-12250, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36477888

RESUMEN

Neural differentiation of embryonic stem cells (ESCs) requires precisely orchestrated gene regulation, a process governed in part by changes in 3D chromatin structure. How these changes regulate gene expression in this context remains unclear. In this study, we observed enrichment of the transcription factor KLF4 at some poised or closed enhancers at TSS-linked regions of genes associated with neural differentiation. Combination analysis of ChIP, HiChIP and RNA-seq data indicated that KLF4 loss in ESCs induced changes in 3D chromatin structure, including increased chromatin interaction loops between neural differentiation-associated genes and active enhancers, leading to upregulated expression of neural differentiation-associated genes and therefore early neural differentiation. This study suggests KLF4 inhibits early neural differentiation by regulation of 3D chromatin structure, which is a new mechanism of early neural differentiation.


Asunto(s)
Cromatina , Células Madre Embrionarias , Factor 4 Similar a Kruppel , Diferenciación Celular/genética , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Factor 4 Similar a Kruppel/metabolismo
6.
Nucleic Acids Res ; 50(4): 2005-2018, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35137179

RESUMEN

The second cell fate decision in the early stage of mammalian embryonic development is pivotal; however, the underlying molecular mechanism is largely unexplored. Here, we report that Prmt1 acts as an important regulator in primitive endoderm (PrE) formation. First, Prmt1 depletion promotes PrE gene expression in mouse embryonic stem cells (ESCs). Single-cell RNA sequencing and flow cytometry assays demonstrated that Prmt1 depletion in mESCs contributes to an emerging cluster, where PrE genes are upregulated significantly. Furthermore, the efficiency of extraembryonic endoderm stem cell induction increased in Prmt1-depleted ESCs. Second, the pluripotency factor Klf4 methylated at Arg396 by Prmt1 is required for recruitment of the repressive mSin3a/HDAC complex to silence PrE genes. Most importantly, an embryonic chimeric assay showed that Prmt1 inhibition and mutated Klf4 at Arg 396 induce the integration of mouse ESCs into the PrE lineage. Therefore, we reveal a regulatory mechanism for cell fate decisions centered on Prmt1-mediated Klf4 methylation.


Asunto(s)
Embrión de Mamíferos/metabolismo , Endodermo , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Diferenciación Celular , Desarrollo Embrionario , Endodermo/metabolismo , Femenino , Factor 4 Similar a Kruppel/metabolismo , Ratones , Células Madre Embrionarias de Ratones , Embarazo
7.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001623

RESUMEN

Vascular endothelial cells (ECs) sense and respond to hemodynamic forces such as pulsatile shear stress (PS) and oscillatory shear stress (OS). Among the metabolic pathways, glycolysis is differentially regulated by atheroprone OS and atheroprotective PS. Studying the molecular mechanisms by which PS suppresses glycolytic flux at the epigenetic, transcriptomic, and kinomic levels, we have demonstrated that glucokinase regulatory protein (GCKR) was markedly induced by PS in vitro and in vivo, although PS down-regulates other glycolysis enzymes such as hexokinase (HK1). Using next-generation sequencing data, we identified the binding of PS-induced Krüppel-like factor 4 (KLF4), which functions as a pioneer transcription factor, binding to the GCKR promoter to change the chromatin structure for transactivation of GCKR. At the posttranslational level, PS-activated AMP-activated protein kinase (AMPK) phosphorylates GCKR at Ser-481, thereby enhancing the interaction between GCKR and HK1 in ECs. In vivo, the level of phosphorylated GCKR Ser-481 and the interaction between GCKR and HK1 were increased in the thoracic aorta of wild-type AMPKα2+/+ mice in comparison with littermates with EC ablation of AMPKα2 (AMPKα2-/-). In addition, the level of GCKR was elevated in the aortas of mice with a high level of voluntary wheel running. The underlying mechanisms for the PS induction of GCKR involve regulation at the epigenetic level by KLF4 and at the posttranslational level by AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Aorta Torácica/metabolismo , Epigénesis Genética , Glucólisis/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Aorta Torácica/citología , Fenómenos Biomecánicos , Hexoquinasa/genética , Hexoquinasa/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Masculino , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Unión Proteica , Reología , Transcriptoma
8.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338749

RESUMEN

Mitral valve prolapse (MVP) is a common valvular disease, affecting 2-3% of the adult human population and is a degenerative condition. A total of 5-10% of the afflicted will develop severe mitral regurgitation, cardiac dysfunction, congestive heart failure, and sudden cardiac death. Naturally occurring myxomatous MVP in dogs closely resembles MVP in humans structurally, and functional consequences are similar. In both species, valvular interstitial cells (VICs) in affected valves exhibit phenotype consistent with activated myofibroblasts with increased alpha-smooth muscle actin (αSMA) expression. Using VICs collected from normal and MVP-affected valves of dogs, we analyzed the miRNA expression profile of the cells and their associated small extracellular vesicles (sEV) using RNA sequencing to understand the role of non-coding RNAs and sEV in MVP pathogenesis. miR-145 was shown to be upregulated in both the affected VICs and sEV, and overexpression of miR-145 by mimic transfection in quiescent VIC recapitulates the activated myofibroblastic phenotype. Concurrently, KLF4 expression was noted to be suppressed by miR-145, confirming the miR-145-KLF4-αSMA axis. Targeting this axis may serve as a potential therapy in controlling pathologic abnormalities found in MVP valves.


Asunto(s)
Estenosis de la Válvula Aórtica , Factor 4 Similar a Kruppel , MicroARNs , Prolapso de la Válvula Mitral , Adulto , Animales , Perros , Humanos , Válvula Aórtica/patología , Células Cultivadas , MicroARNs/genética , Prolapso de la Válvula Mitral/metabolismo , Prolapso de la Válvula Mitral/patología , Actinas/metabolismo , Factor 4 Similar a Kruppel/metabolismo
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732122

RESUMEN

Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes.


Asunto(s)
Condrocitos , Glucosamina , Homeostasis , Factor 4 Similar a Kruppel , Especies Reactivas de Oxígeno , Silibina , Glucosamina/farmacología , Glucosamina/metabolismo , Humanos , Silibina/farmacología , Glicosilación/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Homeostasis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor 4 Similar a Kruppel/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Cartílago/metabolismo , Cartílago/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Osteoartritis/metabolismo , Osteoartritis/tratamiento farmacológico
10.
J Neuroinflammation ; 20(1): 44, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823628

RESUMEN

BACKGROUND: We have previously demonstrated that the expression of kruppel-like transcription factor-4 (KLF-4) is upregulated in astrocytes following acute ischemic stroke (AIS) and found that KLF4 confers vascular protection against cerebral ischemic injury. However, the functional role of KLF4 in astrocyte after AIS is far from clear. METHODS: The intrinsic relationship between KLF4 and A1/A2 reactive astrocytes and the impact of astrocytic KLF4 on the activation of A1/A2 subtype astrocytes were evaluated in middle cerebral artery occlusion (MCAO) mice and oxygen-glucose deprivation and restoration (OGD/R) astrocytes. RESULTS: Our results demonstrated that astrocytic KLF4 expression and complement C3-positive A1 and S100 calcium binding protein A10 (S100A10)-positive A2 astrocytes were induced in the ischemic penumbra following focal cerebral ischemia, and the time course of upregulation of astrocytic KLF4 correlated closely with the activation of A2 astrocytes. The dual immunofluorescent studies displayed that in the ischemic hemisphere, where the high levels of KLF4 were expressed, there were relatively low levels of C3 expressed in the reactive astrocytes and vice versa, but KLF4 was always co-stained well with S100A10. Mechanistic analyses revealed that astrocytic KLF4 inhibited the activation of A1 astrocyte but promoted A2 astrocyte polarization after OGD/R by modulating expressions of nuclear factor-kB. CONCLUSIONS: Astrocyte-derived KLF4 has a critical role in regulating the activation of A1/A2 reactive astrocytes following AIS.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Factor 4 Similar a Kruppel , Accidente Cerebrovascular , Animales , Ratones , Astrocitos/metabolismo , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Oxígeno/metabolismo , Accidente Cerebrovascular/metabolismo , Factor 4 Similar a Kruppel/metabolismo
11.
Cell Mol Biol Lett ; 28(1): 105, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38105235

RESUMEN

BACKGROUND: Pulmonary fibrosis is a growing clinical problem that develops as a result of abnormal wound healing, leading to breathlessness, pulmonary dysfunction and ultimately death. However, therapeutic options for pulmonary fibrosis are limited because the underlying pathogenesis remains incompletely understood. Circular RNAs, as key regulators in various diseases, remain poorly understood in pulmonary fibrosis induced by silica. METHODS: We performed studies with fibroblast cell lines and silica-induced mouse pulmonary fibrosis models. The expression of circZNF609, miR-145-5p, and KLF4 was determined by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RNA immunoprecipitation (RIP) assays and m6A RNA immunoprecipitation assays (MeRIP), Western blotting, immunofluorescence assays, and CCK8 were performed to investigate the role of the circZNF609/miR-145-5p/KLF4 axis and circZNF609-encoded peptides in fibroblast activation. RESULTS: Our data showed that circZNF609 was downregulated in activated fibroblasts and silica-induced fibrotic mouse lung tissues. Overexpression of circZNF609 could inhibit fibroblast activation induced by transforming growth factor-ß1 (TGF-ß1). Mechanically, we revealed that circZNF609 regulates pulmonary fibrosis via miR-145-5p/KLF4 axis and circZNF609-encoded peptides. Furthermore, circZNF609 was highly methylated and its expression was controlled by N6-methyladenosine (m6A) modification. Lastly, in vivo studies revealed that overexpression of circZNF609 attenuates silica-induced lung fibrosis in mice. CONCLUSIONS: Our data indicate that circZNF609 is a critical regulator of fibroblast activation and silica-induced lung fibrosis. The circZNF609 and its derived peptides may represent novel promising targets for the treatment of pulmonary fibrosis.


Asunto(s)
MicroARNs , Fibrosis Pulmonar , ARN Circular , Animales , Ratones , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Dióxido de Silicio/efectos adversos , Factor de Crecimiento Transformador beta1/metabolismo , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , ARN Circular/genética
12.
Mol Cell Proteomics ; 20: 100064, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33640491

RESUMEN

Prostate cancer (PCa) is the most frequently diagnosed cancer in men and the third cause of cancer mortality. PCa initiation and growth are driven by the androgen receptor (AR). The AR is activated by androgens such as testosterone and controls prostatic cell proliferation and survival. Here, we report an AR signaling network generated using BioID proximity labeling proteomics in androgen-dependent LAPC4 cells. We identified 31 AR-associated proteins in nonstimulated cells. Strikingly, the AR signaling network increased to 182 and 200 proteins, upon 24 h or 72 h of androgenic stimulation, respectively, for a total of 267 nonredundant AR-associated candidates. Among the latter group, we identified 213 proteins that were not previously reported in databases. Many of these new AR-associated proteins are involved in DNA metabolism, RNA processing, and RNA polymerase II transcription. Moreover, we identified 44 transcription factors, including the Kru¨ppel-like factor 4 (KLF4), which were found interacting in androgen-stimulated cells. Interestingly, KLF4 repressed the well-characterized AR-dependent transcription of the KLK3 (PSA) gene; AR and KLF4 also colocalized genome-wide. Taken together, our data report an expanded high-confidence proximity network for AR, which will be instrumental to further dissect the molecular mechanisms underlying androgen signaling in PCa cells.


Asunto(s)
Receptores Androgénicos/metabolismo , Línea Celular , Humanos , Calicreínas/genética , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Antígeno Prostático Específico/genética , Receptores Androgénicos/genética
13.
Biochem Biophys Res Commun ; 587: 29-35, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34864392

RESUMEN

During reprogramming of somatic cells, heightened proliferation is one of the earliest changes observed. While other early events such as mesenchymal-to-epithelial transition have been well studied, the mechanisms by which the cell cycle switches from a slow cycling state to a faster cycling state are still incompletely understood. To investigate the role of Oct-3/4 in this early transition, we created a 4-Hydroxytamoxifen (OHT) dependent Oct-3/4 Estrogen Receptor fusion (OctER). We confirmed that OctER can substitute for Oct-3/4 to reprogram mouse embryonic fibroblasts to a pluripotent state. During the early stages of reprograming, Oct-3/4 and Klf4 individually did not affect cell proliferation but in combination hastened the cell cycle. Using OctER + Klf4, we found that proliferative enhancement is OHT dose-dependent, suggesting that OctER is the driver of this transition. We identified Cyclin A2 as a likely target of Oct-3/4 + Klf4. In mESC, Klf4 and Oct-3/4 bind ∼100bp upstream of Cyclin A2 CCRE, suggesting a potential regulatory role. Using inducible OctER, we show a dose-dependent induction of Cyclin A2 promoter-reporter activity. Taken together, our results suggest that Cyclin A2 is a key early target during reprogramming, and support the view that a rapid cell cycle assists the transition to pluripotency.


Asunto(s)
Ciclo Celular/genética , Reprogramación Celular/genética , Ciclina A2/genética , Fibroblastos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular , Proliferación Celular , Ciclina A2/metabolismo , Embrión de Mamíferos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Factores de Tiempo , Transducción Genética
14.
Ann Rheum Dis ; 81(2): 268-277, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34750102

RESUMEN

OBJECTIVES: Systemic sclerosis (SSc) is a complex disease of unknown aetiology in which inflammation and fibrosis lead to multiple organ damage. There is currently no effective therapy that can halt the progression of fibrosis or reverse it, thus studies that provide novel insights into disease pathogenesis and identify novel potential therapeutic targets are critically needed. METHODS: We used global gene expression and genome-wide DNA methylation analyses of dermal fibroblasts (dFBs) from a unique cohort of twins discordant for SSc to identify molecular features of this pathology. We validated the findings using in vitro, ex vivo and in vivo models. RESULTS: Our results revealed distinct differentially expressed and methylated genes, including several transcription factors involved in stem cell differentiation and developmental programmes (KLF4, TBX5, TFAP2A and homeobox genes) and the microRNAs miR-10a and miR-10b which target several of these deregulated genes. We show that KLF4 expression is reduced in SSc dFBs and its expression is repressed by TBX5 and TFAP2A. We also show that KLF4 is antifibrotic, and its conditional knockout in fibroblasts promotes a fibrotic phenotype. CONCLUSIONS: Our data support a role for epigenetic dysregulation in mediating SSc susceptibility in dFBs, illustrating the intricate interplay between CpG methylation, miRNAs and transcription factors in SSc pathogenesis, and highlighting the potential for future use of epigenetic modifiers as therapies.


Asunto(s)
Fibroblastos/patología , Regulación de la Expresión Génica/fisiología , Factor 4 Similar a Kruppel/metabolismo , Esclerodermia Sistémica , Piel/patología , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Factor 4 Similar a Kruppel/genética , MicroARNs/metabolismo , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología , Piel/metabolismo , Proteínas de Dominio T Box/metabolismo , Factor de Transcripción AP-2/metabolismo , Transcriptoma
15.
Eur J Clin Invest ; 52(9): e13804, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35506324

RESUMEN

BACKGROUND: Vascular aging is an important risk factor for various cardiovascular diseases. Transcription factor krüppel-like factor 4 (KLF4) could regulate the phenotypic transformation of the vascular smooth muscle cell (VSMC) in the pathogenesis of aortic diseases. The present study aimed to explore the role and mechanism of KLF4 in angiotensin II (Ang II)-induced VSMC senescence. METHODS: The VSMC senescence mouse model was induced by sustained release of Ang II (1.0 µg/kg/min) for 4 weeks. The premature senescent VSMCs were induced by Ang II (0.1 µmol/L) for 72 h. Cellular senescence was measured by senescence-associated ß-galactosidase (SA-ß-gal) activity and p53/p16 expression. The autophagic activity was evaluated by autophagic flux and autophagic marker expression. RESULTS: The expression of KLF4 was extremely increased in abdominal aorta tissues after 1-week Ang II stimulation (p < .01) but began to decrease in later periods. Decreased expression of KLF4 was also detected in premature senescent VSMCs. Overexpression of KLF4 could enhance the antisenescence ability of VSMCs. Significantly decreased amounts of SA-ß-gal-positive cells and lower p53/p16 expression were detected in KLF4-overexpressing VSMCs (p < .01). Next, telomerase reverse transcriptase (TERT) was identified as a direct downstream target of KLF4 in VSMCs. Overexpression of KLF4 in VSMCs prevented the decreased expression of TERT under Ang II stimulation condition, which could in turn, contribute to the enhanced autophagic activity, and ultimately to the improved antisenescence ability of VSMCs. CONCLUSIONS: Our results demonstrated that overexpression of KLF4 prevented Ang II-induced VSMC senescence by promoting TERT-mediated autophagy. These findings provided novel potential targets for the prevention and therapy of vascular aging.


Asunto(s)
Angiotensina II , Autofagia , Factor 4 Similar a Kruppel , Músculo Liso Vascular , Angiotensina II/farmacología , Animales , Células Cultivadas , Senescencia Celular , Factor 4 Similar a Kruppel/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína p53 Supresora de Tumor
16.
Respir Res ; 23(1): 340, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496404

RESUMEN

BACKGROUND: Premature infants, subjected to supplemental oxygen and mechanical ventilation, may develop bronchopulmonary dysplasia, a chronic lung disease characterized by alveolar dysplasia and impaired vascularization. We and others have shown that hyperoxia causes senescence in cultured lung epithelial cells and fibroblasts. Although miR-34a modulates senescence, it is unclear whether it contributes to hyperoxia-induced senescence. We hypothesized that hyperoxia increases miR-34a levels, leading to cellular senescence. METHODS: We exposed mouse lung epithelial (MLE-12) cells and primary human small airway epithelial cells to hyperoxia (95% O2/5% CO2) or air (21% O2/5% CO2) for 24 h. Newborn mice (< 12 h old) were exposed to hyperoxia (> 95% O2) for 3 days and allowed to recover in room air until postnatal day 7. Lung samples from premature human infants requiring mechanical ventilation and control subjects who were not mechanically ventilated were employed. RESULTS: Hyperoxia caused senescence as indicated by loss of nuclear lamin B1, increased p21 gene expression, and senescence-associated secretory phenotype factors. Expression of miR-34a-5p was increased in epithelial cells and newborn mice exposed to hyperoxia, and in premature infants requiring mechanical ventilation. Transfection with a miR-34a-5p inhibitor reduced hyperoxia-induced senescence in MLE-12 cells. Additionally, hyperoxia increased protein levels of the oncogene and tumor-suppressor Krüppel-like factor 4 (KLF4), which were inhibited by a miR-34a-5p inhibitor. Furthermore, KLF4 knockdown by siRNA transfection reduced hyperoxia-induced senescence. CONCLUSION: Hyperoxia increases miR-34a-5p, leading to senescence in lung epithelial cells. This is dictated in part by upregulation of KLF4 signaling. Therefore, inhibiting hyperoxia-induced senescence via miR-34a-5p or KLF4 suppression may provide a novel therapeutic strategy to mitigate the detrimental consequences of hyperoxia in the neonatal lung.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Factor 4 Similar a Kruppel , MicroARNs , Animales , Humanos , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/tratamiento farmacológico , Dióxido de Carbono , Senescencia Celular , Células Epiteliales/metabolismo , Hiperoxia/genética , Hiperoxia/metabolismo , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Pulmón/metabolismo , MicroARNs/metabolismo
17.
Int Arch Allergy Immunol ; 183(7): 785-795, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35390783

RESUMEN

INTRODUCTION: Childhood asthma is a common chronic inflammatory lung disease in children, among which airway inflammation is the main driving factor of asthma symptoms. Follistatin-like protein 1 (FSTL1) is involved in multiple inflammatory processes, but its role in airway inflammation has not been fully elucidated. METHODS: We used lipopolysaccharide (LPS) to stimulate human primary bronchial epithelial (BEAS-2B) cells to establish an in vitro airway inflammation model. The expression of FSTL1 was detected by qPCR. Cell Counting Kit-8 and Annexin V-PI double staining was used to analyze the viability and apoptosis of BEAS-2B. The content of IL-6, IL-8 and TNF-α was determined by ELISA kit. Western blot was used to detect the protein expression level of the bone morphogenetic protein 4 (BMP4) and KLF4. The levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde were measured to assess oxidative stress. RESULTS: The mRNA expression of FSTL1 was significantly increased in LPS-treated BEAS-2B cells. Silencing of FSTL1 inhibited the release of IL-6, IL-8, TNF-α, and cell apoptosis as well as enhanced the activities of SOD, CAT, and GSH-Px. Silencing of FSTL1 reversed the inflammatory state of cells by upregulating BMP4 and increasing the expression level of KLF4. CONCLUSION: Silencing of FSTL1 reduced LPS-induced BEAS-2B cell damage by regulating the BMP4/KLF4 axis. FSTL1 may be a potential target for the treatment of asthma.


Asunto(s)
Asma , Proteína Morfogenética Ósea 4 , Proteínas Relacionadas con la Folistatina , Asma/genética , Asma/metabolismo , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Niño , Células Epiteliales/metabolismo , Proteínas Relacionadas con la Folistatina/genética , Proteínas Relacionadas con la Folistatina/metabolismo , Silenciador del Gen , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Lipopolisacáridos/farmacología , Estrés Oxidativo , Superóxido Dismutasa , Factor de Necrosis Tumoral alfa/metabolismo
18.
Liver Int ; 42(11): 2562-2576, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36017822

RESUMEN

Tumour recurrence and drug resistance in hepatocellular carcinoma remain challenging. Cancer stem cells (CSCs) are responsible for tumour initiation because of their stemness characteristics. CSCs accounting for drug resistance and tumour relapse are promising therapeutic targets. We report that Abelson interactor 2 (ABI2) is a novel therapeutic target of HCC CSCs. First, ABI2 was upregulated in HCC tissues compared with liver tissues and was associated with tumour size, pathological grade, liver cirrhosis, worse prognosis and a high recurrence rate. Functional studies illustrate that ABI2 knockdown suppresses cell growth, migration, invasion and sorafenib resistance in vitro. Furthermore, ABI2 knockdown inhibited HCC sphere formation and decreased the CD24+ , CD133+ and CD326+ CSCs populations, suggesting the suppression of HCC stemness characteristics. A tumour xenograft model and limiting dilution assay demonstrated the inhibition of tumorigenicity and tumour initiation. Moreover, molecular mechanism studies showed that ABI2 recruits and directly interacts with the transcription factor MEOX2, which binds to the KLF4 and NANOG promoter regions to activate their transcription. Furthermore, overexpression of MEOX2 restored HCC malignant behaviour and the CSC population. The ABI2-mediated transcriptional axis MEOX2/KLF4-NANOG promotes HCC growth, metastasis and sorafenib resistance by maintaining the CSC population, suggesting that ABI2 is a promising CSC target in HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/uso terapéutico , Humanos , Factor 4 Similar a Kruppel/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Factores de Transcripción
19.
Pharmacol Res ; 180: 106244, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35550167

RESUMEN

Sorafenib, a multikinase inhibitor, has been widely used as a first-line anticancer drug for advanced hepatocellular carcinoma (HCC). However, the development of drug resistance to sorafenib is frequently observed in clinical applications. Potential nonkinase targets of sorafenib have not been well documented and may provide insights into reversing drug resistance and enhancing drug efficacy. Herein, we report that sorafenib exerts its anticancer effects by activating metallothionein 1 G (MT1G) expression. MT1G is a novel marker in HCC that correlates well with patient survival. MT1G overexpression suppressed the cellular proliferation, migration, invasion, and tumour formation of HCC and sensitised cells to sorafenib treatment. However, the disruption of MT1G attenuated the anticancer effects of sorafenib. Mechanistically, sorafenib upregulated MT1G expression via hypomethylation of its promoter region by binding and inhibiting DNA methyltransferase 1 (DNMT1) and increasing its promoter accessibility in HCC cells. Activation of MT1G also inhibited CA9 transcription through the suppression of HIF1A as mediated by KLF4. Our collective data revealed that sorafenib exerts its anticancer effects through epigenetic regulation of the DNMT1/MT1G/KLF4/CA9 axis in HCC and the activation of MT1G might constitute a strategy for enhancing the effect of sorafenib to suppress HCC cells.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Sorafenib , Antígenos de Neoplasias , Antineoplásicos/farmacología , Anhidrasa Carbónica IX/genética , Anhidrasa Carbónica IX/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Resistencia a Antineoplásicos , Epigénesis Genética , Humanos , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metalotioneína/genética , Metalotioneína/metabolismo , Transducción de Señal/efectos de los fármacos , Sorafenib/farmacología
20.
J Cardiovasc Pharmacol ; 80(1): 82-94, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35794074

RESUMEN

ABSTRACT: Essential oil from fructus of Alpinia zerumbet (EOFAZ) protects vascular endothelial cell (VEC) injury. Stimulation and injury factors can induce phenotypic changes in VECs and the occurrence of endothelial-mesenchymal transformation (EndMT), accelerating the occurrence and development of cardiovascular diseases. We investigated the role of EOFAZ in EndMT induced by transforming growth factor-ß1 (TGF-ß1). All experiments were performed using human umbilical vein endothelial cells (HUVECs). HUVECs were preincubated with EOFAZ for 2 hours and then coincubated with TGF-ß1 for 72 hours. Krüpple-like factor 4 (KLF4) was inhibited by small interfering RNA or overexpressed by adenovirus infection. Wound healing, transwell, and angiogenesis assays were used to evaluate the migration ability of HUVECs. Quantitative RT-PCR and Western blotting were used for mRNA and protein expression analyses, respectively. Immunofluorescence staining was used to detect expression of related markers. A coimmunoprecipitation assay verified the interaction between KLF4 and acetylated histone H3. TGF-ß1 contributed to EndMT in HUVECs in a time-dependent manner, mainly manifested as an increase in cell migration ability and changes in the expression of EndMT-related mRNAs and proteins. EOFAZ could inhibit EndMT induced by TGF-ß1. The results after transfection with siKLF4 were similar to those of EOFAZ treatment. After EOFAZ treatment, the expression of KLF4 and acetylated histone H3 decreased, and protein interactions between them decreased, while expression of the Notch/Snail signal axis decreased. EOFAZ can attenuate endothelial injuries and suppress EndMT in HUVECs under TGF-ß1 stimulation conditions because it may downregulate KLF4, decrease histone H3 acetylation, and inhibit the transduction of the Notch/Snail signaling axis.


Asunto(s)
Alpinia , Aceites Volátiles , Factor de Crecimiento Transformador beta1 , Alpinia/metabolismo , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Histonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor 4 Similar a Kruppel/metabolismo , Aceites Volátiles/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA