Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.564
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(1): 62-76, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34963057

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a neuropeptide that plays numerous important roles in synaptic development and plasticity. While its importance in fundamental physiology is well established, studies of BDNF often produce conflicting and unclear results, and the scope of existing research makes the prospect of setting future directions daunting. In this review, we examine the importance of spatial and temporal factors on BDNF activity, particularly in processes such as synaptogenesis, Hebbian plasticity, homeostatic plasticity, and the treatment of psychiatric disorders. Understanding the fundamental physiology of when, where, and how BDNF acts and new approaches to control BDNF signaling in time and space can contribute to improved therapeutics and patient outcomes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Trastornos Mentales/metabolismo , Plasticidad Neuronal/fisiología , Neuropéptidos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Homeostasis/fisiología , Humanos , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/genética , Neurogénesis/fisiología , Neuropéptidos/genética , Psicotrópicos/farmacología , Psicotrópicos/uso terapéutico , Transmisión Sináptica/efectos de los fármacos , Resultado del Tratamiento
2.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33606976

RESUMEN

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Asunto(s)
Antidepresivos/farmacología , Receptor trkB/metabolismo , Animales , Antidepresivos/química , Antidepresivos/metabolismo , Sitios de Unión , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Colesterol/metabolismo , Embrión de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Modelos Animales , Simulación de Dinámica Molecular , Dominios Proteicos , Ratas , Receptor trkB/química , Corteza Visual/metabolismo
3.
Cell ; 167(1): 47-59.e15, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27616062

RESUMEN

Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP.


Asunto(s)
Regulación de la Temperatura Corporal/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Regulación de la Expresión Génica , Calor , Neuronas/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Núcleo Hipotalámico Ventromedial/citología , Animales , Conducta Animal , Ratones , Microdisección , Neuronas/metabolismo , Optogenética , ARN Mensajero/genética , Proteína S6 Ribosómica/metabolismo , Análisis de Secuencia de ARN , Núcleo Hipotalámico Ventromedial/metabolismo
4.
Cell ; 167(1): 233-247.e17, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662091

RESUMEN

Mammalian DNA methylation is a critical epigenetic mechanism orchestrating gene expression networks in many biological processes. However, investigation of the functions of specific methylation events remains challenging. Here, we demonstrate that fusion of Tet1 or Dnmt3a with a catalytically inactive Cas9 (dCas9) enables targeted DNA methylation editing. Targeting of the dCas9-Tet1 or -Dnmt3a fusion protein to methylated or unmethylated promoter sequences caused activation or silencing, respectively, of an endogenous reporter. Targeted demethylation of the BDNF promoter IV or the MyoD distal enhancer by dCas9-Tet1 induced BDNF expression in post-mitotic neurons or activated MyoD facilitating reprogramming of fibroblasts into myoblasts, respectively. Targeted de novo methylation of a CTCF loop anchor site by dCas9-Dnmt3a blocked CTCF binding and interfered with DNA looping, causing altered gene expression in the neighboring loop. Finally, we show that these tools can edit DNA methylation in mice, demonstrating their wide utility for functional studies of epigenetic regulation.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Edición Génica/métodos , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor de Unión a CCCTC , Proteína 9 Asociada a CRISPR , Línea Celular , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Elementos de Facilitación Genéticos , Genoma , Ratones , Proteína MioD/metabolismo , Neuronas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/metabolismo
5.
Nature ; 627(8003): 374-381, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326616

RESUMEN

Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala is a centre of salience networks that underlie emotional experiences and thus has a key role in long-term fear memory formation1. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide and BDNF signalling, MAPK and CREB activation, ubiquitination pathways, and synaptic connectivity as key components of long-term memory. Notably, upon long-term memory formation, a neuronal subpopulation defined by increased Penk and decreased Tac expression constituted the most prominent component of the memory engram of the basolateral amygdala. These transcriptional changes were observed both with single-cell RNA sequencing and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to determine that this neuronal subpopulation interacts with adjacent astrocytes, and functional experiments show that neurons require interactions with astrocytes to encode long-term memory.


Asunto(s)
Astrocitos , Comunicación Celular , Perfilación de la Expresión Génica , Memoria a Largo Plazo , Neuronas , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/fisiología , Complejo Nuclear Basolateral/citología , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Memoria a Largo Plazo/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Análisis de Secuencia de ARN , Imagen Individual de Molécula , Análisis de Expresión Génica de una Sola Célula , Ubiquitinación
6.
Cell ; 159(7): 1640-51, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25525881

RESUMEN

The perception of touch, including the direction of stimulus movement across the skin, begins with activation of low-threshold mechanosensory neurons (LTMRs) that innervate the skin. Here, we show that murine Aδ-LTMRs are preferentially tuned to deflection of body hairs in the caudal-to-rostral direction. This tuning property is explained by the finding that Aδ-LTMR lanceolate endings around hair follicles are polarized; they are concentrated on the caudal (downward) side of each hair follicle. The neurotrophic factor BDNF is synthesized in epithelial cells on the caudal, but not rostral, side of hair follicles, in close proximity to Aδ-LTMR lanceolate endings, which express TrkB. Moreover, ablation of BDNF in hair follicle epithelial cells disrupts polarization of Aδ-LTMR lanceolate endings and results in randomization of Aδ-LTMR responses to hair deflection. Thus, BDNF-TrkB signaling directs polarization of Aδ-LTMR lanceolate endings, which underlies direction-selective responsiveness of Aδ-LTMRs to hair deflection.


Asunto(s)
Ganglios Espinales/fisiología , Folículo Piloso/fisiología , Mecanorreceptores/fisiología , Tacto , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Embrión de Mamíferos , Células Epiteliales/fisiología , Folículo Piloso/citología , Técnicas In Vitro , Mecanorreceptores/clasificación , Ratones , Receptor trkB/metabolismo
7.
Nature ; 623(7986): 366-374, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914930

RESUMEN

The role of the nervous system in the regulation of cancer is increasingly appreciated. In gliomas, neuronal activity drives tumour progression through paracrine signalling factors such as neuroligin-3 and brain-derived neurotrophic factor1-3 (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors4,5. The consequent glioma cell membrane depolarization drives tumour proliferation4,6. In the healthy brain, activity-regulated secretion of BDNF promotes adaptive plasticity of synaptic connectivity7,8 and strength9-15. Here we show that malignant synapses exhibit similar plasticity regulated by BDNF. Signalling through the receptor tropomyosin-related kinase B16 (TrkB) to CAMKII, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. Linking plasticity of glioma synaptic strength to tumour growth, graded optogenetic control of glioma membrane potential demonstrates that greater depolarizing current amplitude promotes increased glioma proliferation. This potentiation of malignant synaptic strength shares mechanistic features with synaptic plasticity17-22 that contributes to memory and learning in the healthy brain23-26. BDNF-TrkB signalling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of glioma TrkB expression robustly inhibits tumour progression. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of paediatric glioblastoma and diffuse intrinsic pontine glioma. Together, these findings indicate that BDNF-TrkB signalling promotes malignant synaptic plasticity and augments tumour progression.


Asunto(s)
Adaptación Fisiológica , Glioma , Plasticidad Neuronal , Sinapsis , Animales , Niño , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Glioma/metabolismo , Glioma/patología , Ácido Glutámico/metabolismo , Neuronas/citología , Neuronas/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores AMPA/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Microambiente Tumoral , Optogenética
8.
Trends Biochem Sci ; 49(5): 445-456, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433044

RESUMEN

TrkB (neuronal receptor tyrosine kinase-2, NTRK2) is the receptor for brain-derived neurotrophic factor (BDNF) and is a critical regulator of activity-dependent neuronal plasticity. The past few years have witnessed an increasing understanding of the structure and function of TrkB, including its transmembrane domain (TMD). TrkB interacts with membrane cholesterol, which bidirectionally regulates TrkB signaling. Additionally, TrkB has recently been recognized as a binding target of antidepressant drugs. A variety of different antidepressants, including typical and rapid-acting antidepressants, as well as psychedelic compounds, act as allosteric potentiators of BDNF signaling through TrkB. This suggests that TrkB is the common target of different antidepressant compounds. Although more research is needed, current knowledge suggests that TrkB is a promising target for further drug development.


Asunto(s)
Glicoproteínas de Membrana , Receptor trkB , Humanos , Receptor trkB/metabolismo , Receptor trkB/química , Animales , Dominios Proteicos , Transducción de Señal , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/química , Antidepresivos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/química
9.
Cell ; 155(7): 1596-609, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24360280

RESUMEN

Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Aprendizaje/fisiología , Microglía/fisiología , Sinapsis , Animales , Receptor 1 de Quimiocinas CX3C , Expresión Génica , Ratones , Microglía/citología , Plasticidad Neuronal , Proteínas Quinasas/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Transducción de Señal
10.
Cell ; 148(5): 933-46, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385959

RESUMEN

Control of translation is a fundamental source of regulation in gene expression. The induction of protein synthesis by brain-derived neurotrophic factor (BDNF) critically contributes to enduring modifications of synaptic function, but how BDNF selectively affects only a minority of expressed mRNAs is poorly understood. We report that BDNF rapidly elevates Dicer, increasing mature miRNA levels and inducing RNA processing bodies in neurons. BDNF also rapidly induces Lin28, causing selective loss of Lin28-regulated miRNAs and a corresponding upregulation in translation of their target mRNAs. Binding sites for Lin28-regulated miRNAs are necessary and sufficient to confer BDNF responsiveness to a transcript. Lin28 deficiency, or expression of a Lin28-resistant Let-7 precursor miRNA, inhibits BDNF translation specificity and BDNF-dependent dendrite arborization. Our data establish that specificity in BDNF-regulated translation depends upon a two-part posttranscriptional control of miRNA biogenesis that generally enhances mRNA repression in association with GW182 while selectively derepressing and increasing translation of specific mRNAs.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Biosíntesis de Proteínas , Animales , Autoantígenos , ARN Helicasas DEAD-box/metabolismo , Hipocampo/citología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , Ribonucleasa III/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(17): e2303664121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621124

RESUMEN

Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Calcio , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Transmisión Sináptica/fisiología , Sinapsis/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Calcio de la Dieta , Receptor trkB/genética , Receptor trkB/metabolismo , Glutamatos/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(19): e2313590121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683978

RESUMEN

Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Exosomas , Músculo Esquelético , Exosomas/metabolismo , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/inervación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones , Fibronectinas/metabolismo , Neuronas Motoras/metabolismo , Interleucina-6/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Neuronas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Mioquinas
13.
PLoS Biol ; 21(4): e3002070, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37011100

RESUMEN

During development, patterned neural activity instructs topographic map refinement. Axons with similar patterns of neural activity converge onto target neurons and stabilize their synapses with these postsynaptic partners, restricting exploratory branch elaboration (Hebbian structural plasticity). On the other hand, non-correlated firing in inputs leads to synapse weakening and increased exploratory growth of axons (Stentian structural plasticity). We used visual stimulation to control the correlation structure of neural activity in a few ipsilaterally projecting (ipsi) retinal ganglion cell (RGC) axons with respect to the majority contralateral eye inputs in the optic tectum of albino Xenopus laevis tadpoles. Multiphoton live imaging of ipsi axons, combined with specific targeted disruptions of brain-derived neurotrophic factor (BDNF) signaling, revealed that both presynaptic p75NTR and TrkB are required for Stentian axonal branch addition, whereas presumptive postsynaptic BDNF signaling is necessary for Hebbian axon stabilization. Additionally, we found that BDNF signaling mediates local suppression of branch elimination in response to correlated firing of inputs. Daily in vivo imaging of contralateral RGC axons demonstrated that p75NTR knockdown reduces axon branch elongation and arbor spanning field volume.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Dendritas , Factor Neurotrófico Derivado del Encéfalo/fisiología , Dendritas/fisiología , Células Ganglionares de la Retina/fisiología , Axones/fisiología , Sinapsis/fisiología
14.
Nature ; 583(7818): 839-844, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32699414

RESUMEN

Mutations in the leptin gene (ob) result in a metabolic disorder that includes severe obesity1, and defects in thermogenesis2 and lipolysis3, both of which are adipose tissue functions regulated by the sympathetic nervous system. However, the basis of these sympathetic-associated abnormalities remains unclear. Furthermore, chronic leptin administration reverses these abnormalities in adipose tissue, but the underlying mechanism remains to be discovered. Here we report that ob/ob mice, as well as leptin-resistant diet-induced obese mice, show significant reductions of sympathetic innervation of subcutaneous white and brown adipose tissue. Chronic leptin treatment of ob/ob mice restores adipose tissue sympathetic innervation, which in turn is necessary to correct the associated functional defects. The effects of leptin on innervation are mediated via agouti-related peptide and pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus. Deletion of the gene encoding the leptin receptor in either population leads to reduced innervation in fat. These agouti-related peptide and pro-opiomelanocortin neurons act via brain-derived neurotropic factor-expressing neurons in the paraventricular nucleus of the hypothalamus (BDNFPVH). Deletion of BDNFPVH blunts the effects of leptin on innervation. These data show that leptin signalling regulates the plasticity of sympathetic architecture of adipose tissue via a top-down neural pathway that is crucial for energy homeostasis.


Asunto(s)
Tejido Adiposo/inervación , Tejido Adiposo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Leptina/metabolismo , Sistema Nervioso Simpático/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Leptina/deficiencia , Lipólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Transducción de Señal , Grasa Subcutánea/inervación , Grasa Subcutánea/metabolismo , Termogénesis
15.
Proc Natl Acad Sci U S A ; 120(3): e2214833120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36634145

RESUMEN

We have previously shown that recovery of visual responses to a deprived eye during the critical period in mouse primary visual cortex requires phosphorylation of the TrkB receptor for BDNF [M. Kaneko, J. L. Hanover, P. M. England, M. P. Stryker, Nat. Neurosci. 11, 497-504 (2008)]. We have now studied the temporal relationship between the production of mature BDNF and the recovery of visual responses under several different conditions. Visual cortical responses to an eye whose vision has been occluded for several days during the critical period and is then re-opened recover rapidly during binocular vision or much more slowly following reverse occlusion, when the previously intact fellow eye is occluded in a model of "patch therapy" for amblyopia. The time to recovery of visual responses differed by more than 18 h between these two procedures, but in each, the production of mature BDNF preceded the physiological recovery. These findings suggest that a spurt of BDNF production is permissive for the growth of connections serving the deprived eye to restore visual responses. Attenuation of recovery of deprived-eye responses by interference with TrkB receptor activation or reduction of BDNF production by interference with homeostatic synaptic scaling had effects consistent with this suggestion.


Asunto(s)
Ambliopía , Corteza Visual , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor trkB/metabolismo , Corteza Visual/fisiología , Visión Ocular , Privación Sensorial/fisiología , Plasticidad Neuronal/fisiología
16.
J Neurosci ; 44(23)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38719446

RESUMEN

Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in male rats trained to self-administer cocaine. Pairing 10 d of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay. Systemic blockade of tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in Layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates the extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.


Asunto(s)
Comportamiento de Búsqueda de Drogas , Extinción Psicológica , Plasticidad Neuronal , Corteza Prefrontal , Ratas Sprague-Dawley , Receptor trkB , Estimulación del Nervio Vago , Animales , Masculino , Ratas , Estimulación del Nervio Vago/métodos , Comportamiento de Búsqueda de Drogas/fisiología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inhibidores , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Extinción Psicológica/fisiología , Extinción Psicológica/efectos de los fármacos , Corteza Prefrontal/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Autoadministración , Cocaína/farmacología , Cocaína/administración & dosificación
17.
J Biol Chem ; 300(6): 107411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796067

RESUMEN

The myocyte enhancer factor (MEF2) family of transcription factors, originally discovered for its pivotal role in muscle development and function, has emerged as an essential regulator in various aspects of brain development and neuronal plasticity. The MEF2 transcription factors are known to regulate numerous important genes in the nervous system, including brain-derived neurotrophic factor (BDNF), a small secreted neurotrophin responsible for promoting the survival, growth, and differentiation of neurons. The expression of the Bdnf gene is spatiotemporally controlled by various transcription factors binding to both its proximal and distal regulatory regions. While previous studies have investigated the connection between MEF2 transcription factors and Bdnf, the endogenous function of MEF2 factors in the transcriptional regulation of Bdnf remains largely unknown. Here, we aimed to deepen the knowledge of MEF2 transcription factors and their role in the regulation of Bdnf comparatively in rat cortical and hippocampal neurons. As a result, we demonstrate that the MEF2 transcription factor-dependent enhancer located at -4.8 kb from the Bdnf gene regulates the endogenous expression of Bdnf in hippocampal neurons. In addition, we confirm neuronal activity-dependent activation of the -4.8 kb enhancer in vivo. Finally, we show that specific MEF2 family transcription factors have unique roles in the regulation of Bdnf, with the specific function varying based on the particular brain region and stimuli. Altogether, we present MEF2 family transcription factors as crucial regulators of Bdnf expression, fine-tuning Bdnf expression through both distal and proximal regulatory regions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Elementos de Facilitación Genéticos , Hipocampo , Factores de Transcripción MEF2 , Neuronas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción MEF2/genética , Animales , Hipocampo/metabolismo , Hipocampo/citología , Neuronas/metabolismo , Neuronas/citología , Ratas , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Regulación de la Expresión Génica , Células Cultivadas , Ratas Sprague-Dawley
18.
Genes Cells ; 29(1): 99-105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38009531

RESUMEN

Suppressor of cancer cell invasion (SCAI) acts as a transcriptional repressor of serum response factor (SRF)-mediated gene expression by binding to megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF), which is an SRF transcriptional coactivator. Growing evidence suggests that SCAI is a negative regulator of neuronal morphology, whereas MKL2/MRTFB is a positive regulator. The mRNA expression of SCAI is downregulated during brain development, suggesting that a reduction in SCAI contributes to the reduced suppression of SRF-mediated gene induction, thus increasing dendritic complexity and developing neuronal circuits. In the present study, we hypothesized that brain-derived neurotrophic factor (BDNF), which is important for neuronal plasticity and development, might alter SCAI mRNA levels. We therefore investigated the effects of BDNF on SCAI mRNA levels in primary cultured cortical neurons. Furthermore, because alternative splicing generates several SCAI variants in the brain, we measured SCAI variant mRNA after BDNF stimulation. Both SCAI variant 1 and total SCAI mRNA expression levels were downregulated by BDNF. Moreover, the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway was involved in the BDNF-mediated decrease in SCAI mRNA expression. Our findings provide insights into the molecular mechanism underlying a neurotrophic factor switch for the repressive transcriptional complex that includes SCAI.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuronas , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neuronas/metabolismo , Regulación de la Expresión Génica , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Invasividad Neoplásica , Células Cultivadas
19.
Genes Cells ; 29(5): 432-437, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467515

RESUMEN

The systemic effects of the artificial sweetener sorbitol on older adult individuals have not been elucidated. We assessed the effects of sorbitol consumption on cognitive and gingival health in a mouse model. Aged mice were fed 5% sorbitol for 3 months before their behavior was assessed, and brain and gingival tissues were collected. Long-term sorbitol consumption inhibited gingival tissue aging in aged mice. However, it caused cognitive decline and decreased brain-derived neurotrophic factor (BDNF) in the hippocampus. Sorbitol consumption did not affect homeostatic function; however, it may exert effects within the brain, particularly in the hippocampus.


Asunto(s)
Envejecimiento , Cognición , Hipocampo , Sorbitol , Animales , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Sorbitol/farmacología , Sorbitol/administración & dosificación , Ratones , Cognición/efectos de los fármacos , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones Endogámicos C57BL , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología
20.
Am J Pathol ; 194(1): 121-134, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918799

RESUMEN

Endometriosis is a common benign gynecologic condition. Endometriosis lesions are associated with endometrial cell proliferation, migration, invasion, and neovascularization, while the specific molecular mechanisms are still elusive. Transcriptome sequencing has been used for the identification of diagnostic markers in endometriosis. Here, transcriptome profiling revealed that kallikrein-related peptidase 4 (KLK4) expression was up-regulated in ectopic endometrium (EC) tissues of patients with endometriosis. KLK4 mediates the degradation of extracellular matrix proteins, and its proteolytic activity activates many tumorigenic and metastatic pathways via tumor invasion and migration. Nevertheless, whether KLK4 serves as an important regulatory factor in endometriosis remains unclear. This study confirmed that KLK4 was highly expressed in ectopic endometrial stromal cells (EC-ESCs). KLK4 overexpression promoted proliferation and suppressed apoptosis of EC-ESCs, induced cell migration and invasion, and enhanced angiogenesis in vivo. Mechanistically, KLK4 overexpression mediated the protein cleavage of pro-brain-derived neurotrophic factor in EC-ESCs. Finally, brain-derived neurotrophic factor was a vital downstream substrate of KLK4 maintained the proliferation, metastasis, and pro-angiogenesis abilities and inhibited apoptosis of ESCs through a rescue study. Together, these findings demonstrate the promotive role of KLK4 in endometriosis development. In addition, the study provides a new insight that KLK4 might be a potential therapeutic target and prognostic marker for patients with endometriosis.


Asunto(s)
Endometriosis , Femenino , Humanos , Angiogénesis , Factor Neurotrófico Derivado del Encéfalo , Movimiento Celular , Proliferación Celular , Endometriosis/patología , Endometrio/patología , Calicreínas/genética , Calicreínas/metabolismo , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA