Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 791
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 149(1): 63-74, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22464323

RESUMEN

Osteoblasts are an important component of the hematopoietic microenvironment in bone. However, the mechanisms by which osteoblasts control hematopoiesis remain unknown. We show that augmented HIF signaling in osteoprogenitors results in HSC niche expansion associated with selective expansion of the erythroid lineage. Increased red blood cell production occurred in an EPO-dependent manner with increased EPO expression in bone and suppressed EPO expression in the kidney. In contrast, inactivation of HIF in osteoprogenitors reduced EPO expression in bone. Importantly, augmented HIF activity in osteoprogenitors protected mice from stress-induced anemia. Pharmacologic or genetic inhibition of prolyl hydroxylases1/2/3 in osteoprogenitors elevated EPO expression in bone and increased hematocrit. These data reveal an unexpected role for osteoblasts in the production of EPO and modulation of erythropoiesis. Furthermore, these studies demonstrate a molecular role for osteoblastic PHD/VHL/HIF signaling that can be targeted to elevate both HSCs and erythroid progenitors in the local hematopoietic microenvironment.


Asunto(s)
Eritropoyesis , Eritropoyetina/metabolismo , Osteoblastos/metabolismo , Transducción de Señal , Anemia/prevención & control , Animales , Células Precursoras Eritroides/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/metabolismo , Ratones , Factor de Transcripción Sp7 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
2.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129199

RESUMEN

Skeletal elements frequently associate with vasculature and somatosensory nerves, which regulate bone development and homeostasis. However, the deep, internal location of bones in many vertebrates has limited in vivo exploration of the neurovascular-bone relationship. Here, we use the zebrafish caudal fin, an optically accessible organ formed of repeating bony ray skeletal units, to determine the cellular relationship between nerves, bones and endothelium. In adult zebrafish, we establish the presence of somatosensory axons running through the inside of the bony fin rays, juxtaposed with osteoblasts on the inner hemiray surface. During development we show that the caudal fin progresses through sequential stages of endothelial plexus formation, bony ray addition, ray innervation and endothelial remodeling. Surprisingly, the initial stages of fin morphogenesis proceed normally in animals lacking either fin endothelium or somatosensory nerves. Instead, we find that sp7+ osteoblasts are required for endothelial remodeling and somatosensory axon innervation in the developing fin. Overall, this study demonstrates that the proximal neurovascular-bone relationship in the adult caudal fin is established during fin organogenesis and suggests that ray-associated osteoblasts pattern axons and endothelium.


Asunto(s)
Aletas de Animales/fisiología , Axones/metabolismo , Endotelio/metabolismo , Organogénesis/fisiología , Pez Cebra/crecimiento & desarrollo , Aletas de Animales/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Endotelio/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor de Transcripción Sp7/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Development ; 147(21)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32188632

RESUMEN

Bones do not normally have lymphatics. However, individuals with generalized lymphatic anomaly (GLA) or Gorham-Stout disease (GSD) develop ectopic lymphatics in bone. Despite growing interest in the development of tissue-specific lymphatics, the cellular origin of bone lymphatic endothelial cells (bLECs) is not known and the development of bone lymphatics has not been fully characterized. Here, we describe the development of bone lymphatics in mouse models of GLA and GSD. Through lineage-tracing experiments, we show that bLECs arise from pre-existing Prox1-positive LECs. We show that bone lymphatics develop in a stepwise manner where regional lymphatics grow, breach the periosteum and then invade bone. We also show that the development of bone lymphatics is impaired in mice that lack osteoclasts. Last, we show that rapamycin can suppress the growth of bone lymphatics in our models of GLA and GSD. In summary, we show that bLECs can arise from pre-existing LECs and that rapamycin can prevent the growth of bone lymphatics.


Asunto(s)
Huesos/embriología , Vasos Linfáticos/embriología , Animales , Huesos/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Integrasas/metabolismo , Vasos Linfáticos/efectos de los fármacos , Ratones Transgénicos , Mutación/genética , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Sirolimus/farmacología , Factor de Transcripción Sp7/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Cell Tissue Res ; 393(2): 265-279, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37247031

RESUMEN

Osteoblast differentiation is regulated by various transcription factors, signaling molecules, and posttranslational modifiers. The histone acetyltransferase Mof (Kat8) is involved in distinct physiological processes. However, the exact role of Mof in osteoblast differentiation and growth remains unknown. Herein, we demonstrated that Mof expression with histone H4K16 acetylation increased during osteoblast differentiation. Inhibition of Mof by siRNA knockdown or small molecule inhibitor, MG149 which is a potent histone acetyltransferase inhibitor, reduced the expression level and transactivation potential of osteogenic key markers, Runx2 and Osterix, thus inhibiting osteoblast differentiation. Besides, Mof overexpression also enhanced the protein levels of Runx2 and Osterix. Mof could directly bind the promoter region of Runx2/Osterix to potentiate their mRNA levels, possibly through Mof-mediated H4K16ac to facilitate the activation of transcriptional programs. Importantly, Mof physically interacts with Runx2/Osterix for the stimulation of osteoblast differentiation. Yet, Mof knockdown showed indistinguishable effect on cell proliferation or apoptosis in MSCs and preosteoblast cells. Taken together, our results uncover Mof functioning as a novel regulator of osteoblast differentiation via the promotional effects on Runx2/Osterix and rationalize Mof as a potential therapeutic target, like possible application of inhibitor MG149 for the treatment of osteosarcoma or developing specific Mof activator to ameliorate osteoporosis.


Asunto(s)
Osteogénesis , Factores de Transcripción , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Histona Acetiltransferasas/metabolismo , Osteoblastos , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Ratones
5.
FASEB J ; 36(2): e22115, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032415

RESUMEN

Bone loss is a hallmark of inflammatory bone diseases caused by aberrantly activated osteoclasts (OCLs). Studies have shown that OCLs exhibit various phenotypes and functions due to variations in the source(s) of precursor cells, cytokine expressions, and microenvironment-dependent factors. During these conditions, inflammatory osteoclasts (iOCLs) lose their immune-suppressive effect relative to OCLs under physiological conditions. This induces TNF α-producing CD4+ T cells in an antigen-dependent manner and finally leads to cascade amplification of iOCLs. OCL-derived exosomes have been reported to regulate OCL formation and inhibit the osteoblast activity. However, the specific function and mechanism of iOCL-derived exosomes on osteoblast have not been studied yet. In the present study, we compare the osteoblast promoting activities of iOCL-derived exosomes and OCL-derived exosomes. We found that iOCLs exosomes specifically target osteoblasts through ephrinA2/EphA2. Mechanistically, the lncRNA LIOCE is enriched in iOCL exosomes and promotes the osteoblast activity after being incorporated into osteoblasts. Furthermore, our results revealed that exosomal lncRNA LIOCE stabilizes osteogenic transcription factor Osterix by interacting and reducing the ubiquitination level of Osterix. This study demonstrated that the bone loss is alleviated in the inflammatory osteolysis mice model after injection of iOCL exosomes encapsulating lncRNA LIOCE. The role of exosomes encapsulating lncRNA LIOCE in promoting bone formation was well established in the rat bone repair model. Our results indicate that iOCL-derived exosomal lncRNA LIOCE promotes bone formation by upregulating Osx expression, and thus, the exosomes encapsulating lncRNA LIOCE may be an effective strategy to increase bone formation in osteoporosis and other bone metabolic disorders.


Asunto(s)
Exosomas/genética , Inflamación/genética , Osteoblastos/fisiología , Osteoclastos/fisiología , Osteogénesis/genética , ARN Largo no Codificante/genética , Factor de Transcripción Sp7/genética , Células 3T3 , Animales , Diferenciación Celular/genética , Línea Celular , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Osteólisis/genética , Osteoporosis/genética , Ratas , Factores de Transcripción/genética , Ubiquitinación/genética , Regulación hacia Arriba/genética
6.
Mol Ther ; 30(10): 3226-3240, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35642253

RESUMEN

Circular RNAs (circRNAs) play an important role in biological activities, especially in regulating osteogenic differentiation of stem cells. However, no studies have reported the role of circRNAs in early osseointegration. Here we identified a new circRNA, circRNA422, from rat bone marrow mesenchymal stem cells (BMSCs) cultured on sandblasted, large-grit, acid-etched titanium surfaces. The results showed that circRNA422 significantly enhanced osteogenic differentiation of BMSCs with increased expression levels of alkaline phosphatase, the SP7 transcription factor (SP7/osterix), and lipoprotein receptor-related protein 5 (LRP5). Silencing of circRNA422 had opposite effects. There were two SP7 binding sites on the LRP5 promoter, indicating a direct regulatory relationship between SP7 and LRP5. circRNA422 could regulate early osseointegration in in vivo experiments. These findings revealed an important function of circRNA422 during early osseointegration. Therefore, circRNA422 may be a potential therapeutic target for enhancing implant osseointegration.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/farmacología , Animales , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Células Madre Mesenquimatosas/metabolismo , Oseointegración/genética , Osteogénesis/genética , ARN Circular/genética , Ratas , Factor de Transcripción Sp7/metabolismo , Titanio/química , Titanio/metabolismo , Titanio/farmacología
7.
Curr Osteoporos Rep ; 21(2): 241-252, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36881265

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to summarize the different roles of the transcription factor SP7 in regulating bone formation and remodeling, discuss current studies in investigating the causal relationship between SP7 mutations and human skeletal disease, and highlight potential therapeutic treatments that targeting SP7 and the gene networks that it controls. RECENT FINDINGS: Cell-type and stage-specific functions of SP7 have been identified during bone formation and remodeling. Normal bone development regulated by SP7 is strongly associated with human bone health. Dysfunction of SP7 results in common or rare skeletal diseases, including osteoporosis and osteogenesis imperfecta with different inheritance patterns. SP7-associated signaling pathways, SP7-dependent target genes, and epigenetic regulations of SP7 serve as new therapeutic targets in the treatment of skeletal disorders. This review addresses the importance of SP7-regulated bone development in studying bone health and skeletal disease. Recent advances in whole genome and exome sequencing, GWAS, multi-omics, and CRISPR-mediated activation and inhibition have provided the approaches to investigate the gene-regulatory networks controlled by SP7 in bone and the therapeutic targets to treat skeletal disease.


Asunto(s)
Osteogénesis Imperfecta , Osteogénesis , Humanos , Osteogénesis/genética , Osteogénesis Imperfecta/genética , Huesos , Mutación , Transducción de Señal/genética , Factor de Transcripción Sp7/genética
8.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894935

RESUMEN

Deubiquitinases (DUBs) are essential for bone remodeling by regulating the differentiation of osteoblast and osteoclast. USP17 encodes for a deubiquitinating enzyme, specifically known as ubiquitin-specific protease 17, which plays a critical role in regulating protein stability and cellular signaling pathways. However, the role of USP17 during osteoblast differentiation has not been elusive. In this study, we initially investigated whether USP17 could regulate the differentiation of osteoblasts. Moreover, USP17 overexpression experiments were conducted to assess the impact on osteoblast differentiation induced by bone morphogenetic protein 4 (BMP4). The positive effect was confirmed through alkaline phosphatase (ALP) expression and activity studies since ALP is a representative marker of osteoblast differentiation. To confirm this effect, Usp17 knockdown was performed, and its impact on BMP4-induced osteoblast differentiation was examined. As expected, knockdown of Usp17 led to the suppression of both ALP expression and activity. Mechanistically, it was observed that USP17 interacted with Osterix (Osx), which is a key transcription factor involved in osteoblast differentiation. Furthermore, overexpression of USP17 led to an increase in Osx protein levels. Thus, to investigate whether this effect was due to the intrinsic function of USP17 in deubiquitination, protein stabilization experiments and ubiquitination analysis were conducted. An increase in Osx protein levels was attributed to an enhancement in protein stabilization via USP17-mediated deubiquitination. In conclusion, USP17 participates in the deubiquitination of Osx, contributing to its protein stabilization, and ultimately promoting the differentiation of osteoblasts.


Asunto(s)
Osteoblastos , Osteogénesis , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Osteogénesis/genética , Osteoblastos/metabolismo , Diferenciación Celular/genética , Estabilidad Proteica , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo
9.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901736

RESUMEN

Epigenetic modifications are critical for cell differentiation and growth. As a regulator of H3K9 methylation, Setdb1 is implicated in osteoblast proliferation and differentiation. The activity and nucleus localization of Setdb1 are regulated by its binding partner, Atf7ip. However, whether Atf7ip is involved in the regulation of osteoblast differentiation remains largely unclear. In the present study, we found that Atf7ip expression was upregulated during the osteogenesis of primary bone marrow stromal cells and MC3T3-E1 cells, and was induced in PTH-treated cells. The overexpression of Atf7ip impaired osteoblast differentiation in MC3T3-E1 cells regardless of PTH treatment, as measured by the expression of osteoblast differentiation markers, Alp-positive cells, Alp activity, and calcium deposition. Conversely, the depletion of Atf7ip in MC3T3-E1 cells promoted osteoblast differentiation. Compared with the control mice, animals with Atf7ip deletion in the osteoblasts (Oc-Cre;Atf7ipf/f) showed more bone formation and a significant increase in the bone trabeculae microarchitecture, as reflected by µ-CT and bone histomorphometry. Mechanistically, Atf7ip contributed to the nucleus localization of Setdb1 in MC3T3-E1, but did not affect Setdb1 expression. Atf7ip negatively regulated Sp7 expression, and through specific siRNA, Sp7 knockdown attenuated the enhancing role of Atf7ip deletion in osteoblast differentiation. Through these data, we identified Atf7ip as a novel negative regulator of osteogenesis, possibly via its epigenetic regulation of Sp7 expression, and demonstrated that Atf7ip inhibition is a potential therapeutic measure for enhancing bone formation.


Asunto(s)
Epigénesis Genética , Osteogénesis , Animales , Ratones , Osteogénesis/genética , Factor de Transcripción Sp7/genética , Diferenciación Celular/genética , Osteoblastos/metabolismo , Proteínas Represoras/genética
10.
Dev Biol ; 470: 37-48, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152274

RESUMEN

Mesenchymal stem cells are candidates for therapeutic strategies in periodontal repair due to their osteogenic potential. In this study, we identified epigenetic markers during osteogenic differentiation, taking advantage of the individual pattern of mesenchymal cells of the periodontal ligament with high (h-PDLCs) and low (l-PDLCs) osteogenic capacity. We found that the involvement of non-coding RNAs in the regulation of the RUNX2 gene is strongly associated with high osteogenic potential. Moreover, we evaluated miRs and genes that encode enzymes to process miRs and their biogenesis. Our data show the high expression of the XPO5 gene, and miRs 7 and 22 observed in the l-PDLCs might be involved in acquiring osteogenic potential, suppressing RUNX2 gene expression. Further, an inversely proportional correlation between lncRNAs (HOTAIR and HOTTIP) and RUNX2 gene expression was observed in both l- and h-PDLCs, and it was also related to the distinct osteogenic phenotypes. Thus, our results indicate the low expression of XPO5 in h-PDLC might be the limiting point for blocking the miRs biogenesis, allowing the high gene expression of RUNX2. In accordance, the low expression of miRs, HOTAIR, and HOTTIP could be a prerequisite for increased osteogenic potential in h-PDLCs. These results will help us to better understand the underlying mechanisms of osteogenesis, considering the heterogeneity in the osteogenic potential of PDLCs that might be related to a distinct transcriptional profile of lncRNAs and the biogenesis machinery.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Células Madre Mesenquimatosas/fisiología , MicroARNs/metabolismo , Osteogénesis , Ligamento Periodontal/citología , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/metabolismo , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , MicroARNs/genética , Ligamento Periodontal/metabolismo , Fenotipo , ARN Largo no Codificante/genética , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Transcripción Genética , Transcriptoma , Adulto Joven
11.
Biochem Biophys Res Commun ; 587: 9-15, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34861472

RESUMEN

OBJECTIVE: The role of circadian clock in cementogenesis is unclear. This study examines the role of REV-ERBs, one of circadian clock proteins, in proliferation, migration and mineralization of cementoblasts to fill the gap in knowledge. METHODS: Expression pattern of REV-ERBα in cementoblasts was investigated in vivo and in vitro. CCK-8 assay, scratch wound healing assay, alkaline phosphatase (ALP) and alizarin red S (ARS) staining were performed to evaluate the effects of REV-ERBs activation by SR9009 on proliferation, migration and mineralization of OCCM-30, an immortalized cementoblast cell line. Furthermore, mineralization related markers including osterix (OSX), ALP, bone sialoprotein (BSP) and osteocalcin (OCN) were evaluated. RESULTS: Strong expression of REV-ERBα was found in cellular cementum around tooth apex. Rev-erbα mRNA oscillated periodically in OCCM-30 and declined after mineralization induction. REV-ERBs activation by SR9009 inhibited proliferation but promoted migration of OCCM-30 in vitro. Results of ALP and ARS staining suggested that REV-ERBs activation negatively regulated mineralization of OCCM-30. Mechanically, REV-ERBs activation attenuated the expression of OSX and its downstream targets including ALP, BSP and OCN. CONCLUSIONS: REV-ERBs are involved in cementogenesis and negatively regulate mineralization of cementoblasts via inhibiting OSX expression. Our study provides a potential target regarding periodontal and cementum regeneration.


Asunto(s)
Relojes Biológicos/genética , Calcificación Fisiológica/genética , Cemento Dental/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Transformada , Proliferación Celular/efectos de los fármacos , Cementogénesis/efectos de los fármacos , Cementogénesis/genética , Cemento Dental/citología , Cemento Dental/efectos de los fármacos , Femenino , Regulación de la Expresión Génica , Humanos , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Ratones , Ratones Endogámicos C57BL , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Pirrolidinas/farmacología , Transducción de Señal , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Tiofenos/farmacología
12.
Stem Cells ; 39(8): 1049-1066, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33684230

RESUMEN

Bone regeneration and remodeling are complex physiological processes that are regulated by key transcription factors. Understanding the regulatory mechanism of key transcription factors on the osteogenic differentiation of mesenchymal stem cells (MSCs) is a key issue for successful bone regeneration and remodeling. In the present study, we investigated the regulatory mechanism of the histone deacetylase Sirtuin 7 (SIRT7) on the key transcription factor OSX and osteogenesis of MSCs. In this study, we found that SIRT7 knockdown increased ALP activity and in vitro mineralization and promoted the expression of the osteogenic differentiation markers DSPP, DMP1, BSP, OCN, and the key transcription factor OSX in MSCs. In addition, SIRT7 could associate with RNA binding motif protein 6 (RBM6) to form a protein complex. Moreover, RBM6 inhibited ALP activity, the expression of DSPP, DMP1, BSP, OCN, and OSX in MSCs, and the osteogenesis of MSCs in vivo. Then, the SIRT7/RBM6 protein complex was shown to downregulate the level of H3K18Ac in the OSX promoter by recruiting SIRT7 to the OSX promoter and inhibiting the expression of OSX isoforms 1 and 2. Furthermore, lncRNA PLXDC2-OT could associate with the SIRT7/RBM6 protein complex to diminish its binding and deacetylation function in the OSX promoter and its inhibitory function on OSX isoforms 1 and 2 and to promote the osteogenic potential of MSCs.


Asunto(s)
Células Madre Mesenquimatosas , ARN Largo no Codificante , Proteínas de Unión al ARN , Sirtuinas , Factor de Transcripción Sp7 , Diferenciación Celular/genética , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Isoformas de Proteínas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Sirtuinas/metabolismo , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo
13.
Calcif Tissue Int ; 111(5): 519-534, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35731246

RESUMEN

Indian hedgehog (Ihh) is an indispensable paracrine factor for proper tissue patterning, skeletogenesis, and cellular proliferation. Recent genetic studies have revealed critical roles of chondrocyte-derived Ihh in regulating chondrocyte proliferation, hypertrophy and cartilage ossification. However, the functions of Sp7-expressing cell-derived Ihh in osteoblast differentiation and bone formation remain unclear. Sp7 is an essential transcription factor for osteoblast differentiation. In the current study, we generated Sp7-iCre; Ihhfl/fl mice, in which the Ihh gene was specifically deleted in Sp7-expressing cells to investigate the roles of Ihh. Ihh ablation in Sp7-expressing cells resulted in a dwarfism phenotype with severe skeletal dysplasia and lethality at birth, but with normal joint segmentation. Sp7-iCre; Ihhfl/fl mice had fewer osteoblasts, almost no cortical and trabecular bones, smaller skulls, and wider cranial sutures. Additionally, the levels of osteogenesis- and angiogenesis-related genes, and of major bone matrix protein genes were significantly reduced. These results demonstrated that Ihh regulates bone formation in Sp7-expressing cells. Ihh deficiency in primary osteoblasts cultured in vitro inhibited their proliferation, differentiation, and mineralization ability, and reduced the expression of osteogenesis-related genes. Moreover, the deletion of Ihh also attenuated the Bmp2/Smad/Runx2 pathway in E18.5 tibial and primary osteoblasts. The activity of primary osteoblasts in mutant mice was rescued after treatment with rhBMP2. In summary, our data revealed that Ihh in Sp7-expressing cells plays an indispensable role in osteoblast differentiation, mineralization, and embryonic osteogenesis, further implicated that its pro-osteogenic role may be mediated through the canonical Bmp2/Smad/Runx2 pathway.


Asunto(s)
Enanismo , Osteogénesis , Animales , Diferenciación Celular , Proliferación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Enanismo/genética , Enanismo/metabolismo , Proteínas Hedgehog/metabolismo , Ratones , Osteoblastos/metabolismo , Osteogénesis/fisiología , Fenotipo , Factor de Transcripción Sp7/metabolismo , Factores de Transcripción/genética
14.
FASEB J ; 35(1): e21106, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33165997

RESUMEN

The protein tyrosine phosphatase SHP2, encoded by PTPN11, is ubiquitously expressed and essential for the development and/or maintenance of multiple tissues and organs. SHP2 is involved in gastrointestinal (GI) epithelium development and homeostasis, but the underlying mechanisms remain elusive. While studying SHP2's role in skeletal development, we made osteoblast-specific SHP2 deficient mice using Osterix (Osx)-Cre as a driver to excise Ptpn11 floxed alleles. Phenotypic characterization of these SHP2 mutants unexpectedly revealed a critical role of SHP2 in GI biology. Mice lacking SHP2 in Osx+ cells developed a fatal GI pathology with dramatic villus hypoplasia. OSTERIX, an OB-specific zinc finger-containing transcription factor is for the first time found to be expressed in GI crypt cells, and SHP2 expression in the crypt Osx+ cells is critical for self-renewal and proliferation. Further, immunostaining revealed the colocalization of OSTERIX with OLFM4 and LGR5, two bona fide GI stem cell markers, at the crypt cells. Furthermore, OSTERIX expression is found to be associated with GI malignancies. Knockdown of SHP2 expression had no apparent influence on the relative numbers of enterocytes, goblet cells or Paneth cells. Given SHP2's key regulatory role in OB differentiation, our studies suggest that OSTERIX and SHP2 are indispensable for gut homeostasis, analogous to SOX9's dual role as a master regulator of cartilage and an important regulator of crypt stem cell biology. Our findings also provide a foundation for new avenues of inquiry into GI stem cell biology and of OSTERIX's therapeutic and diagnostic potential.


Asunto(s)
Proliferación Celular , Mucosa Intestinal/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Factor de Transcripción Sp7/metabolismo , Células Madre , Animales , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/genética , Ratones , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 11/deficiencia , Factor de Transcripción Sp7/genética
15.
J Craniofac Surg ; 33(3): 956-961, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34456284

RESUMEN

OBJECTIVES: To investigate whether and how the long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) sponges microRNA-96 (miR-96) to achieve the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). METHODS: Protein levels were detected by Western blot. Mineralized bone matrix formation was studied by alizarin red staining. Metastasis-associated lung adenocarcinoma transcript 1, miR-96, and osteogenesis-related Messenger RNA expression was assessed by Quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The interactions between miR-96 and osterix (Osx), MALAT1, and miR-96 were determined by luciferase reporter assay. RESULTS: The expression of MALAT1 was upregulated whereas that of miR-96 was downregulated in osteogenic hBMSCs. In addition, the expression of MALAT1 significantly decreased whereas that of miR-96 increased in the hBMSCs of osteoporosis (OP) patients. qRT-PCR and alizarin red staining assays showed that MALAT1 silencing or miR-96 overexpression inhibits hBMSC osteogenic differentiation and vice versa. overexpression of miR-96 reversed the promotive effect of MALAT1 on the osteogenic differentiation of hBMSCs. Dual luciferase report assay verified that miR-96 is a regulatory target of MALAT1 and that Osx is a gene target of miR-96. CONCLUSIONS: Taken together, the results demonstrate that MALAT1 promotes the osteogenic differentiation of hBMSCs by regulating the miR-96/Osx axis. Our study provides novel mechanistic insights into the critical role of lncRNA MALAT1 as a microRNA sponge in OP patients and sheds new light on lncRNA-directed diagnostics and therapeutics in OP.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteoblastos , Osteoporosis , ARN Largo no Codificante , Factor de Transcripción Sp7 , Médula Ósea , Diferenciación Celular/genética , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Osteoblastos/citología , Osteogénesis/genética , ARN Largo no Codificante/genética , Factor de Transcripción Sp7/genética
16.
Int J Mol Sci ; 23(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35628456

RESUMEN

Osteoblast differentiation is a tightly regulated process in which key transcription factors (TFs) and their target genes constitute gene regulatory networks (GRNs) under the control of osteogenic signaling pathways. Among these TFs, Sp7 works as an osteoblast determinant critical for osteoblast differentiation. Following the identification of Sp7 and a large number of its functional studies, recent genome-scale analyses have made a major contribution to the identification of a "non-canonical" mode of Sp7 action as well as "canonical" ones. The analyses have not only confirmed known Sp7 targets but have also uncovered its additional targets and upstream factors. In addition, biochemical analyses have demonstrated that Sp7 actions are regulated by chemical modifications and protein-protein interaction with other transcriptional regulators. Sp7 is also involved in chondrocyte differentiation and osteocyte biology as well as postnatal bone metabolism. The critical role of SP7 in the skeleton is supported by its relevance to human skeletal diseases. This review aims to overview the Sp7 actions in skeletal development and maintenance, particularly focusing on recent advances in our understanding of how Sp7 functions in the skeleton under physiological and pathological conditions.


Asunto(s)
Enfermedades Óseas , Sistema Musculoesquelético , Osteoblastos , Factor de Transcripción Sp7 , Enfermedades Óseas/genética , Humanos , Sistema Musculoesquelético/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética , Esqueleto/metabolismo , Factor de Transcripción Sp7/genética
17.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457117

RESUMEN

Yin Yang 2 (YY2) is a paralog of YY1, a well-known multifunctional transcription factor containing a C-terminal zinc finger domain. Although the role of YY1 in various biological processes, such as the cell cycle, cell differentiation and tissue development, is well established, the function of YY2 has not been fully determined. In this study, we investigated the functional role of YY2 during osteoblast differentiation. YY2 overexpression and knockdown increased and decreased osteoblast differentiation, respectively, in BMP4-induced C2C12 cells. Mechanistically, YY2 overexpression increased the mRNA and protein levels of Osterix (Osx), whereas YY2 knockdown had the opposite effect. To investigate whether YY2 regulates Osx transcription, the effect of YY2 overexpression and knockdown on Osx promoter activity was evaluated. YY2 overexpression significantly increased Osx promoter activity in a dose-dependent manner, whereas YY2 knockdown had the opposite effect. Furthermore, vectors containing deletion and point mutations were constructed to specify the regulation site. Both the Y1 and Y2 sites were responsible for YY2-mediated Osx promoter activation. These results indicate that YY2 is a positive regulator of osteoblast differentiation that functions by upregulating the promoter activity of Osx, a representative osteogenic transcription factor in C2C12 cells.


Asunto(s)
Osteogénesis , Yin-Yang , Diferenciación Celular/genética , Osteoblastos/metabolismo , Osteogénesis/genética , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328592

RESUMEN

The relationship of lacunocanalicular network structure and mechanoresponse has not been well studied. The lacunocanalicular structures differed in the compression and tension sides, in the regions, and in genders in wild-type femoral cortical bone. The overexpression of Sp7 in osteoblasts resulted in thin and porous cortical bone with increased osteoclasts and apoptotic osteocytes, and the number of canaliculi was half of that in the wild-type mice, leading to a markedly impaired lacunocanalicular network. To investigate the response to unloading, we performed tail suspension. Unloading reduced trabecular and cortical bone in the Sp7 transgenic mice due to reduced bone formation. Sost-positive osteocytes increased by unloading on the compression side, but not on the tension side of cortical bone in the wild-type femurs. However, these differential responses were lost in the Sp7 transgenic femurs. Serum Sost increased in the Sp7 transgenic mice, but not in the wild-type mice. Unloading reduced the Col1a1 and Bglap/Bglap2 expression in the Sp7 transgenic mice but not the wild-type mice. Thus, Sp7 transgenic mice with the impaired lacunocanalicular network induced Sost expression by unloading but lost the differential regulation in the compression and tension sides, and the mice failed to restore bone formation during unloading, implicating the relationship of lacunocanalicular network structure and the regulation of bone formation in mechanoresponse.


Asunto(s)
Resorción Ósea , Osteocitos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Densidad Ósea , Resorción Ósea/metabolismo , Huesos/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Osteoblastos/metabolismo , Osteocitos/metabolismo , Factor de Transcripción Sp7/metabolismo
19.
J Cell Mol Med ; 25(11): 5025-5037, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33942497

RESUMEN

Osteoporosis is a metabolic disorder characterized by low bone mass and deteriorated microarchitecture, with an increased risk of fracture. Some miRNAs have been confirmed as potential modulators of osteoblast differentiation to maintain bone mass. Our miRNA sequencing results showed that miR-664-3p was significantly down-regulated during the osteogenic differentiation of the preosteoblast MC3T3-E1 cells. However, whether miR-664-3p has an impact on bone homeostasis remains unknown. In this study, we identified overexpression of miR-664-3p inhibited the osteoblast activity and matrix mineralization in vitro. Osteoblastic miR-664-3p transgenic mice exhibited reduced bone mass due to suppressed osteoblast function. Target prediction analysis and experimental validation confirmed Smad4 and Osterix (Osx) are the direct targets of miR-664-3p. Furthermore, specific inhibition of miR-664-3p by subperiosteal injection with miR-664-3p antagomir protected against ovariectomy-induced bone loss. In addition, miR-664-3p expression was markedly higher in the serum from patients with osteoporosis compared to that from normal subjects. Taken together, this study revealed that miR-664-3p suppressed osteogenesis and bone formation via targeting Smad4 and Osx. It also highlights the potential of miR-664-3p as a novel diagnostic and therapeutic target for osteoporotic patients.


Asunto(s)
Diferenciación Celular , MicroARNs/genética , Osteoblastos/patología , Osteogénesis , Osteoporosis/patología , Proteína Smad4/antagonistas & inhibidores , Factor de Transcripción Sp7/antagonistas & inhibidores , Animales , Densidad Ósea , Proliferación Celular , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteoporosis/etiología , Osteoporosis/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo
20.
Biochem Biophys Res Commun ; 581: 89-95, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34662808

RESUMEN

Tooth development involves the coordinated transcriptional regulation of extracellular matrix proteins produced by ameloblasts and odontoblasts. In this study, whole-genome ChIP-seq analysis was applied to identify the transcriptional regulatory gene targets of Sp6 in mesenchymal cells of the developing tooth. Bioinformatic analysis of a pool of Sp6 target peaks identified the consensus nine nucleotide binding DNA motif CTg/aTAATTA. Consistent with these findings, a number of enamel and dentin matrix genes including amelogenin (Amelx), ameloblastin (Ambn), enamelin (Enam) and dental sialophosphoprotein (Dspp), were identified to contain Sp6 target sequences. Sp6 peaks were also found in other important tooth genes including transcription factors (Dlx2, Dlx3, Dlx4, Dlx5, Sp6, Sp7, Pitx2, and Msx2) and extracellular matrix-related proteins (Col1a2, Col11a2, Halpn1). Unsupervised UMAP clustering of tooth single cell RNA-seq data confirmed the presence of Sp6 transcripts co-expressed with many of the identified target genes within ameloblasts and odontoblasts. Lastly, transcriptional reporter assays using promoter fragments from the Hapln1 and Sp6 gene itself revealed that Sp6 co-expression enhanced gene transcriptional activity. Taken together these results highlight that Sp6 is a major regulator of multiple extracellular matrix genes in the developing tooth.


Asunto(s)
Ameloblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Factores de Transcripción de Tipo Kruppel/genética , Diente Molar/metabolismo , Odontoblastos/metabolismo , Odontogénesis/genética , Ameloblastos/citología , Amelogenina/genética , Amelogenina/metabolismo , Animales , Animales Recién Nacidos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos C57BL , Diente Molar/citología , Diente Molar/crecimiento & desarrollo , Odontoblastos/citología , Regiones Promotoras Genéticas , Proteoglicanos/genética , Proteoglicanos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA