Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(21): 3980-3991.e18, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36182704

RESUMEN

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.


Asunto(s)
Arterivirus , Fiebres Hemorrágicas Virales , Animales , Arterivirus/fisiología , Fiebres Hemorrágicas Virales/veterinaria , Fiebres Hemorrágicas Virales/virología , Humanos , Macaca , Primates , Zoonosis Virales , Internalización del Virus , Replicación Viral
2.
Cell ; 166(1): 5-8, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27368093

RESUMEN

Recent infectious disease epidemics illustrate how health systems failures anywhere can create disease vulnerabilities everywhere. We must therefore prioritize investments in health care infrastructure in outbreak-prone regions of the world. We describe how "rooted" research collaborations can establish capacity for pathogen surveillance and facilitate rapid outbreak responses.


Asunto(s)
Investigación Biomédica , Brotes de Enfermedades , Fiebres Hemorrágicas Virales/epidemiología , África Occidental/epidemiología , Monitoreo Epidemiológico , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/fisiopatología , Fiebre Hemorrágica Ebola/virología , Fiebres Hemorrágicas Virales/fisiopatología , Fiebres Hemorrágicas Virales/virología , Cooperación Internacional , Virología/educación
3.
N Engl J Med ; 386(24): 2283-2294, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35704480

RESUMEN

BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.).


Asunto(s)
Arenavirus del Nuevo Mundo , Fiebre Hemorrágica Americana , ARN Viral , Roedores , Animales , Arenavirus del Nuevo Mundo/genética , Arenavirus del Nuevo Mundo/aislamiento & purificación , Bolivia/epidemiología , Infección Hospitalaria/transmisión , Infección Hospitalaria/virología , Transmisión de Enfermedad Infecciosa , Fiebre Hemorrágica Americana/complicaciones , Fiebre Hemorrágica Americana/genética , Fiebre Hemorrágica Americana/transmisión , Fiebre Hemorrágica Americana/virología , Fiebres Hemorrágicas Virales/genética , Fiebres Hemorrágicas Virales/transmisión , Fiebres Hemorrágicas Virales/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena de la Polimerasa , ARN Viral/genética , ARN Viral/aislamiento & purificación , Ratas/virología , Roedores/virología , Zoonosis Virales/transmisión , Zoonosis Virales/virología
4.
J Virol ; 98(2): e0196423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289100

RESUMEN

Guanarito virus (GTOV) is the causative agent of Venezuelan hemorrhagic fever. GTOV belongs to the genus Mammarenavirus, family Arenaviridae and has been classified as a Category A bioterrorism agent by the United States Centers for Disease Control and Prevention. Despite being a high-priority agent, vaccines and drugs against Venezuelan hemorrhagic fever are not available. GTOV S-26764, isolated from a non-fatal human case, produces an unclear cytopathic effect (CPE) in Vero cells, posing a significant obstacle to research and countermeasure development efforts. Vero cell-adapted GTOV S-26764 generated in this study produced clear CPE and demonstrated rapid growth and high yield in Vero cells compared to the original GTOV S-26764. We developed a reverse genetics system for GTOV to study amino acid changes acquired through Vero cell adaptation and leading to virus phenotype changes. The results demonstrated that E1497K in the L protein was responsible for the production of clear plaques as well as enhanced viral RNA replication and transcription efficiency. Vero cell-adapted GTOV S-26764, capable of generating CPE, will allow researchers to easily perform neutralization assays and anti-drug screening against GTOV. Moreover, the developed reverse genetics system will accelerate vaccine and antiviral drug development.IMPORTANCEGuanarito virus (GTOV) is a rodent-borne virus. GTOV causes fever, prostration, headache, arthralgia, cough, sore throat, nausea, vomiting, diarrhea, epistaxis, bleeding gums, menorrhagia, and melena in humans. The lethality rate is 23.1% or higher. Vero cell-adapted GTOV S-26764 shows a clear cytopathic effect (CPE), whereas the parental virus shows unclear CPE in Vero cells. We generated a reverse genetics system to rescue recombinant GTOVs and found that E1497K in the L protein was responsible for the formation of clear plaques as well as enhanced viral RNA replication and transcription efficiency. This reverse genetic system will accelerate vaccine and antiviral drug developments, and the findings of this study contribute to the understanding of the function of GTOV L as an RNA polymerase.


Asunto(s)
Arenaviridae , Genética Inversa , Animales , Femenino , Humanos , Arenaviridae/genética , Infecciones por Arenaviridae/virología , Arenavirus del Nuevo Mundo/genética , Chlorocebus aethiops , Fiebres Hemorrágicas Virales/virología , Fenotipo , Genética Inversa/métodos , Vacunas , Células Vero
5.
PLoS Pathog ; 17(12): e1009678, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34855915

RESUMEN

Kyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses. However, current animal models of KFDV pathogenesis do not accurately reproduce viral tissue tropism or clinical outcomes observed in humans. Here, we show that pigtailed macaques (Macaca nemestrina) infected with KFDV or AHFV develop viremia that peaks 2 to 4 days following inoculation. Over the course of infection, animals developed lymphocytopenia, thrombocytopenia, and elevated liver enzymes. Infected animals exhibited hallmark signs of human disease characterized by a flushed appearance, piloerection, dehydration, loss of appetite, weakness, and hemorrhagic signs including epistaxis. Virus was commonly present in the gastrointestinal tract, consistent with human disease caused by KFDV and AHFV where gastrointestinal symptoms (hemorrhage, vomiting, diarrhea) are common. Importantly, RNAseq of whole blood revealed that KFDV downregulated gene expression of key clotting factors that was not observed during AHFV infection, consistent with increased severity of KFDV disease observed in this model. This work characterizes a nonhuman primate model for KFDV and AHFV that closely resembles human disease for further utilization in understanding host immunity and development of antiviral countermeasures.


Asunto(s)
Modelos Animales de Enfermedad , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Encefalitis Transmitida por Garrapatas/virología , Fiebres Hemorrágicas Virales/virología , Macaca nemestrina , Animales , Chlorocebus aethiops , Citocinas/sangre , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/patología , Femenino , Células HEK293 , Fiebres Hemorrágicas Virales/inmunología , Fiebres Hemorrágicas Virales/patología , Humanos , Ganglios Linfáticos/virología , Células Vero , Viremia
6.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32075923

RESUMEN

African swine fever virus (ASFV) causes hemorrhagic fever in domestic pigs, presenting the biggest global threat to animal farming in recorded history. Despite the importance of ASFV, little is known about the mechanisms and regulation of ASFV transcription. Using RNA sequencing methods, we have determined total RNA abundance, transcription start sites, and transcription termination sites at single-nucleotide resolution. This allowed us to characterize DNA consensus motifs of early and late ASFV core promoters, as well as a polythymidylate sequence determinant for transcription termination. Our results demonstrate that ASFV utilizes alternative transcription start sites between early and late stages of infection and that ASFV RNA polymerase (RNAP) undergoes promoter-proximal transcript slippage at 5' ends of transcription units, adding quasitemplated AU- and AUAU-5' extensions to mRNAs. Here, we present the first much-needed genome-wide transcriptome study that provides unique insight into ASFV transcription and serves as a resource to aid future functional analyses of ASFV genes which are essential to combat this devastating disease.IMPORTANCE African swine fever virus (ASFV) causes incurable and often lethal hemorrhagic fever in domestic pigs. In 2020, ASF presents an acute and global animal health emergency that has the potential to devastate entire national economies as effective vaccines or antiviral drugs are not currently available (according to the Food and Agriculture Organization of the United Nations). With major outbreaks ongoing in Eastern Europe and Asia, urgent action is needed to advance our knowledge about the fundamental biology of ASFV, including the mechanisms and temporal control of gene expression. A thorough understanding of RNAP and transcription factor function, and of the sequence context of their promoter motifs, as well as accurate knowledge of which genes are expressed when and the amino acid sequence of the encoded proteins, is direly needed for the development of antiviral drugs and vaccines.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/prevención & control , Transcripción Genética/genética , Secuencia de Aminoácidos , Animales , Genoma Viral , Fiebres Hemorrágicas Virales/virología , Sus scrofa/virología , Porcinos/virología , Terminación de la Transcripción Genética , Activación Transcripcional/genética , Transcriptoma/genética , Proteínas Virales/genética
7.
J Virol ; 94(4)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31748396

RESUMEN

Several clade B New World arenaviruses (NWAs) can cause severe and often fatal hemorrhagic fever, for which preventive and therapeutic measures are severely limited. These NWAs use human transferrin receptor 1 (hTfR1) as a host cell receptor for virus entry. The most prevalent of the pathogenic NWAs is Junín virus (JUNV), the etiological agent of Argentine hemorrhagic fever. Small animal models of JUNV infection are limited because most laboratory rodent species are refractory to disease. Only guinea pigs are known to develop disease following JUNV infection, but the underlying mechanisms are not well characterized. In the present study, we demonstrate marked susceptibility of Hartley guinea pigs to uniformly lethal disease when challenged with as few as 4 PFU of the Romero strain of JUNV. In vitro, we show that infection of primary guinea pig macrophages results in greater JUNV replication compared to infection of hamster or mouse macrophages. We provide evidence that the guinea pig TfR1 (gpTfR1) is the principal receptor for JUNV, while hamster and mouse orthologs fail to support viral entry/infection of pseudotyped murine leukemia viruses expressing pathogenic NWA glycoproteins or JUNV. Together, our results indicate that gpTfR1 serves as the primary receptor for pathogenic NWAs, enhancing viral infection in guinea pigs.IMPORTANCE JUNV is one of five known NWAs that cause viral hemorrhagic fever in humans. Countermeasures against JUNV infection are limited to immunization with the Candid#1 vaccine and immune plasma, which are available only in Argentina. The gold standard small animal model for JUNV infection is the guinea pig. Here, we demonstrate high sensitivity of this species to severe JUNV infection and identify gpTfR1 as the primary receptor. Use of hTfR1 for host cell entry is a feature shared by pathogenic NWAs. Our results show that expression of gpTfR1 or hTfR1 comparably enhances JUNV virus entry/infectivity. Our findings shed light on JUNV infection in guinea pigs as a model for human disease and suggest that similar pathophysiological mechanisms related to iron sequestration during infection and regulation of TfR1 expression may be shared between humans and guinea pigs. A better understanding of the underlying disease process will guide development of new therapeutic interventions.


Asunto(s)
Virus Junin/inmunología , Virus Junin/patogenicidad , Receptores de Transferrina/metabolismo , Animales , Arenavirus/inmunología , Arenavirus/patogenicidad , Células CHO , Chlorocebus aethiops , Cricetulus , Modelos Animales de Enfermedad , Femenino , Glicoproteínas/metabolismo , Cobayas/inmunología , Cobayas/metabolismo , Células HEK293 , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Fiebres Hemorrágicas Virales/inmunología , Fiebres Hemorrágicas Virales/virología , Humanos , Virus Junin/metabolismo , Macrófagos/virología , Masculino , Receptores de Transferrina/inmunología , Células Vero , Internalización del Virus , Replicación Viral
8.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626681

RESUMEN

Arenaviruses are a large family of emerging enveloped negative-strand RNA viruses that include several causative agents of viral hemorrhagic fevers. For cell entry, human-pathogenic arenaviruses use different cellular receptors and endocytic pathways that converge at the level of acidified late endosomes, where the viral envelope glycoprotein mediates membrane fusion. Inhibitors of arenavirus entry hold promise for therapeutic antiviral intervention and the identification of "druggable" targets is of high priority. Using a recombinant vesicular stomatitis virus pseudotype platform, we identified the clotrimazole-derivative TRAM-34, a highly selective antagonist of the calcium-activated potassium channel KCa3.1, as a specific entry inhibitor for arenaviruses. TRAM-34 specifically blocked entry of most arenaviruses, including hemorrhagic fever viruses, but not Lassa virus and other enveloped viruses. Anti-arenaviral activity was likewise observed with the parental compound clotrimazole and the derivative senicapoc, whereas structurally unrelated KCa3.1 inhibitors showed no antiviral effect. Deletion of KCa3.1 by CRISPR/Cas9 technology did not affect the antiarenaviral effect of TRAM-34, indicating that the observed antiviral effect of clotrimazoles was independent of the known pharmacological target. The drug affected neither virus-cell attachment, nor endocytosis, suggesting an effect on later entry steps. Employing a quantitative cell-cell fusion assay that bypasses endocytosis, we demonstrate that TRAM-34 specifically inhibits arenavirus-mediated membrane fusion. In sum, we uncover a novel antiarenaviral action of clotrimazoles that currently undergo in vivo evaluation in the context of other human diseases. Their favorable in vivo toxicity profiles and stability opens the possibility to repurpose clotrimazole derivatives for therapeutic intervention against human-pathogenic arenaviruses.IMPORTANCE Emerging human-pathogenic arenaviruses are causative agents of severe hemorrhagic fevers with high mortality and represent serious public health problems. The current lack of a licensed vaccine and the limited treatment options makes the development of novel antiarenaviral therapeutics an urgent need. Using a recombinant pseudotype platform, we uncovered that clotrimazole drugs, in particular TRAM-34, specifically inhibit cell entry of a range of arenaviruses, including important emerging human pathogens, with the exception of Lassa virus. The antiviral effect was independent of the known pharmacological drug target and involved inhibition of the unusual membrane fusion mechanism of arenaviruses. TRAM-34 and its derivatives currently undergo evaluation against a number of human diseases and show favorable toxicity profiles and high stability in vivo Our study provides the basis for further evaluation of clotrimazole derivatives as antiviral drug candidates. Their advanced stage of drug development will facilitate repurposing for therapeutic intervention against human-pathogenic arenaviruses.


Asunto(s)
Antivirales/farmacología , Arenavirus/efectos de los fármacos , Clotrimazol/farmacología , Fusión de Membrana/efectos de los fármacos , Células A549 , Animales , Infecciones por Arenaviridae/tratamiento farmacológico , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Endocitosis/efectos de los fármacos , Células HEK293 , Células HeLa , Fiebres Hemorrágicas Virales/tratamiento farmacológico , Fiebres Hemorrágicas Virales/virología , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Virus Lassa/efectos de los fármacos , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
9.
PLoS Pathog ; 14(11): e1007430, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30419076

RESUMEN

Lassa virus (LASV) is responsible for a viral hemorrhagic fever in humans and the death of 3,000 to 5,000 people every year. The immune response to LASV is poorly understood, but type I interferon (IFN-I) and T-cell responses appear to be critical for the host. We studied the response of myeloid dendritic cells (mDC) to LASV, as mDCs are involved in both IFN-I production and T-cell activation. We compared the response of primary human mDCs to LASV and Mopeia virus (MOPV), which is similar to LASV, but non-pathogenic. We showed that mDCs produced substantial amounts of IFN-I in response to both LASV and MOPV. However, only MOPV-infected mDCs were able to activate T cells. More surprisingly, coculture with T cells completely inhibited the activation of LASV-infected mDCs. These differences between LASV and MOPV were mostly due to the LASV nucleoprotein, which has major immunosuppressive properties, but the glycoprotein was also involved. Overall, these results suggest that mDCs may be important for the global response to LASV and play a role in the outcome of Lassa fever.


Asunto(s)
Células Dendríticas/inmunología , Virus Lassa/inmunología , Células Mieloides/inmunología , Antivirales , Arenaviridae/inmunología , Células Dendríticas/virología , Voluntarios Sanos , Fiebres Hemorrágicas Virales/virología , Humanos , Interferón Tipo I , Interferón-alfa/metabolismo , Interferón beta/metabolismo , Fiebre de Lassa/virología , Virus Lassa/patogenicidad , Activación de Linfocitos/inmunología , Activación de Linfocitos/fisiología , Células Mieloides/virología , Nucleoproteínas/metabolismo , Cultivo Primario de Células , Linfocitos T/inmunología
10.
Curr Opin Infect Dis ; 32(4): 337-347, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31145116

RESUMEN

PURPOSE OF REVIEW: Viral hemorrhagic fevers (VHF) encompass many organisms that have caused sporadic outbreaks with high case fatality rates. This article reviews VHF with reported human-to-human transmission and describes updates about personal protective equipment (PPE) for healthcare personnel (HCP) and others. We summarize existing information about appropriate PPE use, training, and compliance for care of VHF patients in endemic and nonendemic countries, as well as addresses the challenges HCP experience when using PPE. RECENT FINDINGS: PPE is essential in protecting HCP from exposure to disease-causing pathogens. Recent evidence shows that anyone involved in care, management, and transport of certain VHF patients must use elements of PPE as part of appropriate infection prevention and control (IPC) practices. Strict adherence to standard precautions has effectively interrupted human-to-human transmission of a number of VHF. However, unclear protocols, inconsistent training, climate challenges, and cultural sensitivities impede proper PPE use. Appropriate PPE use can drastically reduce the risk of HCP exposure to VHF. SUMMARY: Infections caused by certain VHFs can be highly pathogenic and associated with significant morbidity and mortality. Though it is well documented that use of PPE and good IPC practices are critical to reducing transmission, little conclusive evidence exists about the ideal PPE ensemble or components. Concerns with comfort, compliance, training, and usability may impede proper PPE use. Basic PPE elements, used appropriately as part of stringent IPC, must always form the foundation of care for HCP-treating patients with VHF. More research is required to identify the ideal PPE ensemble for caring for VHF patients in various settings.


Asunto(s)
Personal de Salud , Fiebres Hemorrágicas Virales/prevención & control , Equipo de Protección Personal , Infección Hospitalaria/prevención & control , Infección Hospitalaria/virología , Brotes de Enfermedades , Fiebres Hemorrágicas Virales/virología , Humanos
11.
J Virol ; 92(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29593043

RESUMEN

Several Old World and New World arenaviruses are responsible for severe endemic and epidemic hemorrhagic fevers, whereas other members of the Arenaviridae family are nonpathogenic. To date, no approved vaccines, antivirals, or specific treatments are available, except for Junín virus. However, protection of nonhuman primates against Lassa fever virus (LASV) is possible through the inoculation of the closely related but nonpathogenic Mopeia virus (MOPV) before challenge with LASV. We reasoned that this virus, modified by using reverse genetics, would represent the basis for the generation of a vaccine platform against LASV and other pathogenic arenaviruses. After showing evidence of exoribonuclease (ExoN) activity in NP of MOPV, we found that this activity was essential for multiplication in antigen-presenting cells. The introduction of multiple mutations in the ExoN site of MOPV NP generated a hyperattenuated strain (MOPVExoN6b) that is (i) genetically stable over passages, (ii) has increased immunogenic properties compared to those of MOPV, and (iii) still promotes a strong type I interferon (IFN) response. MOPVExoN6b was further modified to harbor the envelope glycoproteins of heterologous pathogenic arenaviruses, such as LASV or Lujo, Machupo, Guanarito, Chapare, or Sabia virus in order to broaden specific antigenicity while preserving the hyperattenuated characteristics of the parental strain. Our MOPV-based vaccine candidate for LASV, MOPEVACLASV, was used in a one-shot immunization assay in nonhuman primates and fully protected them from a lethal challenge with LASV. Thus, our hyperattenuated strain of MOPV constitutes a promising new live-attenuated vaccine platform to immunize against several, if not all, pathogenic arenaviruses.IMPORTANCE Arenaviruses are emerging pathogens transmitted to humans by rodents and responsible for endemic and epidemic hemorrhagic fevers of global concern. Nonspecific symptoms associated with the onset of infection make these viruses difficult to distinguish from other endemic pathogens. Moreover, the unavailability of rapid diagnosis in the field delays the identification of the virus and early care for treatment and favors spreading. The vaccination of exposed populations would be of great help to decrease morbidity and human-to-human transmission. Using reverse genetics, we generated a vaccine platform for pathogenic arenaviruses based on a modified and hyperattenuated strain of the nonpathogenic Mopeia virus and showed that the Lassa virus candidate fully protected nonhuman primates from a lethal challenge. These results showed that a rationally designed recombinant MOPV-based vaccine is safe, immunogenic, and efficacious in nonhuman primates.


Asunto(s)
Arenaviridae/inmunología , Fiebres Hemorrágicas Virales/inmunología , Fiebre de Lassa/inmunología , Virus Lassa/inmunología , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/prevención & control , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Animales , Arenaviridae/genética , Línea Celular , Chlorocebus aethiops , Cricetinae , Exorribonucleasas/metabolismo , Células HEK293 , Fiebres Hemorrágicas Virales/patología , Fiebres Hemorrágicas Virales/transmisión , Fiebres Hemorrágicas Virales/virología , Humanos , Interferón Tipo I/inmunología , Fiebre de Lassa/prevención & control , Fiebre de Lassa/virología , Macaca fascicularis , Enfermedades de los Monos/virología , Vacunación , Células Vero
12.
J Med Virol ; 91(10): 1737-1742, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31218696

RESUMEN

BACKGROUND: Hantaviruses are a group of emerging pathogens causing hemorrhagic fever with renal syndrome and Hantavirus cardiopulmonary syndrome in human. This study was conducted to investigate Hantavirus infection among Iranian viral hemorrhagic fever suspected patients. METHODS: From April 2014 to June 2016, 113 cases from 25 different provinces of Iran were analyzed for Hantavirus infection by IgM/IgG ELISA and pan-Hantavirus RT-PCR tests. RESULTS: Although, viral genome was detected in none of the subjects, IgM and IgG antibodies were detected in 19 and 4 cases, respectively. Differentiation of the anti-Hantavirus antibodies according to virus species by EUROLINE Anti-Hantavirus Profile Kit revealed three Puumala virus IgM positive, one Hantaan virus IgM positive, one Hantaan virus IgM borderline, and two Puumala virus IgG borderline cases. CONCLUSIONS: This study demonstrates the circulation of Hantaviruses in Iran and calls for further investigations of these life-threatening viruses in the country.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/virología , Fiebres Hemorrágicas Virales/epidemiología , Fiebres Hemorrágicas Virales/virología , Ensayo de Inmunoadsorción Enzimática , Infecciones por Hantavirus/sangre , Fiebres Hemorrágicas Virales/sangre , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Irán/epidemiología
13.
J Infect Chemother ; 24(8): 597-601, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29628386

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) causes tick-borne hemorrhagic fever in East Asia. The disease is characterized by high morbidity and mortality. Here, we evaluated the effects of caffeic acid (CA), a coffee-related organic acid with antiviral effects, against SFTSV infection. CA dose-dependently inhibited SFTSV infection in permissive human hepatoma Huh7.5.1-8 cells when SFTSV was added into the culture medium with CA. However, quinic acid (QA), another coffee-related organic acid, did not inhibit SFTSV infection. The 50% inhibitory concentration (IC50) of CA against SFTSV was 0.048 mM, whereas its 50% cytotoxic concentration was 7.6 mM. The selectivity index (SI) was 158. Pre-incubation of SFTSV with CA for 4 h resulted in a greater inhibition of SFTSV infection (IC50 = 0.019 mM; SI = 400). The pre-incubation substantially decreased viral attachment to the cells. CA treatment of the SFTSV-infected cells also inhibited the infection, albeit less effectively. CA activity after cell infection with SFTSV was more pronounced at a low multiplicity of infection (MOI) of 0.01 per cell (IC50 = 0.18 mM) than at a high MOI of 1 per cell (IC50 > 1 mM). Thus, CA inhibited virus spread by acting directly on the virus rather than on the infected cells. In conclusion, CA acted on SFTSV and inhibited viral infection and spread, mainly by inhibiting the binding of SFTSV to the cells. We therefore demonstrated CA to be a potential anti-SFTSV drug for preventing and treating SFTS.


Asunto(s)
Antivirales/farmacocinética , Infecciones por Bunyaviridae/tratamiento farmacológico , Ácidos Cafeicos/farmacología , Fiebres Hemorrágicas Virales/tratamiento farmacológico , Phlebovirus/efectos de los fármacos , Trombocitopenia/tratamiento farmacológico , Antivirales/uso terapéutico , Infecciones por Bunyaviridae/virología , Ácidos Cafeicos/uso terapéutico , Línea Celular Tumoral , Fiebres Hemorrágicas Virales/virología , Humanos , Concentración 50 Inhibidora , Trombocitopenia/virología , Acoplamiento Viral/efectos de los fármacos
14.
Artículo en Inglés | MEDLINE | ID: mdl-27736754

RESUMEN

Favipiravir is an RNA polymerase inhibitor that showed strong antiviral efficacy in vitro and in small-animal models of several viruses responsible for hemorrhagic fever (HF), including Ebola virus. The aim of this work was to characterize the complex pharmacokinetics of favipiravir in nonhuman primates (NHPs) in order to guide future efficacy studies of favipiravir in large-animal models. Four different studies were conducted in 30 uninfected cynomolgus macaques of Chinese (n = 17) or Mauritian (n = 13) origin treated with intravenous favipiravir for 7 to 14 days with maintenance doses of 60 to 180 mg/kg of body weight twice a day (BID). A pharmacokinetic model was developed to predict the plasma concentrations obtained with different dosing regimens, and the model predictions were compared to the 50% effective concentration (EC50) of favipiravir against several viruses. Favipiravir pharmacokinetics were described by a model accounting for concentration-dependent aldehyde oxidase inhibition. The enzyme-dependent elimination rate increased over time and was higher in NHPs of Mauritian origin than in those of Chinese origin. Maintenance doses of 100 and 120 mg/kg BID in Chinese and Mauritian NHPs, respectively, are predicted to achieve median trough plasma free concentrations above the EC50 for Lassa and Marburg viruses until day 7. For Ebola virus, higher doses are required. After day 7, a 20% dose increase is needed to compensate for the increase in drug clearance over time. These results will help rationalize the choice of dosing regimens in future studies evaluating the antiviral effect of favipiravir in NHPs and support its development against a variety of HF viruses.


Asunto(s)
Amidas/uso terapéutico , Antivirales/uso terapéutico , Fiebres Hemorrágicas Virales/tratamiento farmacológico , Pirazinas/uso terapéutico , Administración Intravenosa , Aldehído Oxidasa/metabolismo , Animales , Chlorocebus aethiops , Ebolavirus/efectos de los fármacos , Ebolavirus/patogenicidad , Fiebres Hemorrágicas Virales/virología , Primates , Células Vero
15.
J Virol ; 90(8): 3810-3818, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26865707

RESUMEN

Mammalian arenaviruses are zoonotic viruses that cause asymptomatic, persistent infections in their rodent hosts but can lead to severe and lethal hemorrhagic fever with bleeding and multiorgan failure in human patients. Lassa virus (LASV), for example, is endemic in several West African countries, where it is responsible for an estimated 500,000 infections and 5,000 deaths annually. There are currently no FDA-licensed therapeutics or vaccines available to combat arenavirus infection. A hallmark of arenavirus infection (e.g., LASV) is general immunosuppression that contributes to high viremia. Here, we discuss the early host immune responses to arenavirus infection and the recently discovered molecular mechanisms that enable pathogenic viruses to suppress host immune recognition and to contribute to the high degree of virulence. We also directly compare the innate immune evasion mechanisms between arenaviruses and other hemorrhagic fever-causing viruses, such as Ebola, Marburg, Dengue, and hantaviruses. A better understanding of the immunosuppression and immune evasion strategies of these deadly viruses may guide the development of novel preventative and therapeutic options.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Arenavirus/inmunología , Arenavirus/patogenicidad , Inmunidad Innata , Animales , Fiebres Hemorrágicas Virales/inmunología , Fiebres Hemorrágicas Virales/virología , Humanos , Evasión Inmune , Interferones/antagonistas & inhibidores , Dedos de Zinc
16.
Rev Med Virol ; 26(6): 446-454, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27593704

RESUMEN

Lujo virus is a novel Old World arenavirus identified in Southern Africa in 2008 as the cause of a viral hemorrhagic fever (VHF) characterized by nosocomial transmission with a high case fatality rate of 80% (4/5 cases). Whereas this outbreak was limited, the unprecedented Ebola virus disease outbreak in West Africa, and recent Zika virus disease epidemic in the Americas, has brought into acute focus the need for preparedness to respond to rare but potentially highly pathogenic outbreaks of zoonotic or arthropod-borne viral infections. A key determinant for effective control of a VHF outbreak is the time between primary infection and diagnosis of the index case. Here, we review the Lujo VHF outbreak of 2008 and discuss how preparatory measures with respect to developing diagnostic capacity might be effectively embedded into existing national disease control networks, such as those for human immunodeficiency virus, tuberculosis, and malaria.


Asunto(s)
Infecciones por Arenaviridae/epidemiología , Defensa Civil , Brotes de Enfermedades , Fiebres Hemorrágicas Virales/epidemiología , Lujo virus/aislamiento & purificación , África Austral/epidemiología , Infecciones por Arenaviridae/transmisión , Infecciones por Arenaviridae/virología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/transmisión , Infección Hospitalaria/virología , Transmisión de Enfermedad Infecciosa/prevención & control , Fiebres Hemorrágicas Virales/transmisión , Fiebres Hemorrágicas Virales/virología , Humanos , Control de Infecciones/métodos
17.
J Infect Dis ; 214(suppl 3): S122-S136, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27587635

RESUMEN

The Epi Info Viral Hemorrhagic Fever application (Epi Info VHF) was developed in response to challenges managing outbreak data during four 2012 filovirus outbreaks. Development goals included combining case and contact data in a relational database, facilitating data-driven contact tracing, and improving outbreak data consistency and use. The application was first deployed in Guinea, when the West Africa Ebola epidemic was detected, in March 2014, and has been used in 7 African countries and 2 US states. Epi Info VHF enabled reporting of compatible data from multiple countries, contributing to international Ebola knowledge. However, challenges were encountered in accommodating the epidemic's unexpectedly large magnitude, addressing country-specific needs within 1 software product, and using the application in settings with limited Internet access and information technology support. Use of Epi Info VHF in the West Africa Ebola epidemic highlighted the fundamental importance of good data management for effective outbreak response, regardless of the software used.


Asunto(s)
Trazado de Contacto , Brotes de Enfermedades/prevención & control , Epidemias/prevención & control , Sistemas de Información en Salud , Fiebre Hemorrágica Ebola/epidemiología , Fiebres Hemorrágicas Virales/epidemiología , África Occidental/epidemiología , Femenino , Recursos en Salud , Fiebre Hemorrágica Ebola/virología , Fiebres Hemorrágicas Virales/virología , Humanos , Masculino , Programas Informáticos
18.
J Infect Dis ; 214(suppl 3): S137-S141, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27651413

RESUMEN

The concept of containment care for patients with highly hazardous infectious diseases originated in conjunction with the development of sophisticated biosafety level 4 laboratories at the US Army Medical Research Institute of Infectious Diseases in the late 1960s. Over time, the original containment facility served as a model for the development of other facilities in the United States at government and academic centers. The Ebola outbreak of 2014-2015 brought the issue of containment care into the mainstream and led to the development of such capabilities at strategic points around the country. We describe the original concepts behind development of such facilities, how the concept and acceptance has evolved over time, and how the guidelines for managing patients infected with viral hemorrhagic fevers have evolved as new information has been learned about protecting medical care providers from highly hazardous infectious pathogens.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Contención de Riesgos Biológicos , Brotes de Enfermedades , Fiebre Hemorrágica Ebola/epidemiología , Fiebres Hemorrágicas Virales/epidemiología , Animales , Control de Enfermedades Transmisibles , Enfermedades Transmisibles/virología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Fiebres Hemorrágicas Virales/prevención & control , Fiebres Hemorrágicas Virales/virología , Humanos , Laboratorios , Cuarentena , Estados Unidos/epidemiología
19.
J Virol ; 89(5): 2543-52, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25520505

RESUMEN

UNLABELLED: To identify host factors associated with arenavirus virulence, we used a cynomolgus macaque model to evaluate the pathogenesis of Lujo virus (LUJV), a recently emerged arenavirus that caused an outbreak of severe viral hemorrhagic fever in southern Africa. In contrast to human cases, LUJV caused mild, nonlethal illness in macaques. We then compared this to contrasting clinical outcomes during arenavirus infection, specifically to samples obtained from macaques infected with three highly pathogenic lines of Lassa virus (LASV), the causative agent of Lassa fever (LF). We assessed gene expression in peripheral blood mononuclear cells (PBMC) and determined genes that significantly changed expression relative to that in uninfected animals over the course of infection. We detected a 72-h delay in the induction of host responses to infection during LUJV infection compared to that of the animals infected with LASV. This included genes associated with inflammatory and antiviral responses and was particularly apparent among groups of genes promoting cell death. We also observed early differential expression of a subset of genes specific to LUJV infection that accounts for the delayed inflammatory response. Cell type enrichment analysis suggested that host response induction delay and an LUJV-specific profile are due to a different proportion of natural killer cells responding in LUJV infection than that in the LASV-infected animals. Together, these data indicate that delayed proinflammatory and proapoptotic host responses to arenavirus infection could ameliorate disease severity. This conclusion provides insight into the cellular and molecular mechanisms of arenaviral hemorrhagic fever and suggests potential strategies for therapeutic development. IMPORTANCE: Old World arenaviruses are significant human pathogens that often are associated with high mortality. However, mechanisms underlying disease severity and virulence in arenavirus hemorrhagic fever are largely unknown, particularly regarding host responses that contribute to pathogenicity. This study describes a comparison between Lujo and Lassa virus infection in cynomolgus macaques. Lujo virus-infected macaques developed only mild illness, while Lassa virus-infected macaques developed severe illness consistent with Lassa fever. We determined that mild disease is associated with a delay in host expression of genes linked to virulence, such as those causing inflammation and cell death, and with distinct cell types that may mediate this delay. This is the first study to associate the timing and directionality of gene expression with arenaviral pathogenicity and disease outcome and evokes new potential approaches for developing effective therapeutics for treating these deadly emerging pathogens.


Asunto(s)
Infecciones por Arenaviridae/patología , Infecciones por Arenaviridae/virología , Fiebres Hemorrágicas Virales/patología , Fiebres Hemorrágicas Virales/virología , Lujo virus/patogenicidad , Animales , Infecciones por Arenaviridae/inmunología , Muerte Celular , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Fiebres Hemorrágicas Virales/inmunología , Inflamación/patología , Células Asesinas Naturales/inmunología , Fiebre de Lassa/patología , Fiebre de Lassa/virología , Virus Lassa/patogenicidad , Leucocitos Mononucleares/inmunología , Macaca fascicularis , Factores de Tiempo
20.
J Virol ; 89(15): 8082-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25972539

RESUMEN

Simian hemorrhagic fever (SHF) is lethal for macaques. Based on clinical presentation and serological diagnosis, all reported SHF outbreaks were thought to be caused by different strains of the same virus, simian hemorrhagic fever virus (SHFV; Arteriviridae). Here we show that the SHF outbreaks in Sukhumi in 1964 and in Alamogordo in 1989 were caused not by SHFV but by two novel divergent arteriviruses. Our results indicate that multiple divergent simian arteriviruses can cause SHF.


Asunto(s)
Infecciones por Arterivirus/veterinaria , Arterivirus/aislamiento & purificación , Fiebres Hemorrágicas Virales/veterinaria , Macaca/virología , Enfermedades de los Primates/virología , Secuencia de Aminoácidos , Animales , Arterivirus/clasificación , Arterivirus/genética , Arterivirus/fisiología , Infecciones por Arterivirus/historia , Infecciones por Arterivirus/virología , Evolución Molecular , Fiebres Hemorrágicas Virales/historia , Fiebres Hemorrágicas Virales/virología , Historia del Siglo XX , Humanos , Datos de Secuencia Molecular , Filogenia , Enfermedades de los Primates/historia , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA