Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687787

RESUMEN

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Asunto(s)
Ciervos , Flavivirus , Metagenómica , Garrapatas , Animales , Metagenómica/métodos , Japón/epidemiología , Ciervos/virología , Flavivirus/genética , Flavivirus/aislamiento & purificación , Flavivirus/clasificación , Garrapatas/virología , Filogenia , Viroma/genética , Virión/genética , Sus scrofa/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estudios Seroepidemiológicos , Genoma Viral
2.
J Gen Virol ; 105(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38809251

RESUMEN

Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.


Asunto(s)
Flavivirus , Ixodidae , Filogenia , Animales , Flavivirus/genética , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , China , Ixodidae/virología , Femenino
3.
Virol J ; 21(1): 163, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044231

RESUMEN

Usutu virus (USUV), an arbovirus from the Flaviviridae family, genus Flavivirus, has recently gained increasing attention because of its potential for emergence. After his discovery in South Africa, USUV spread to other African countries, then emerged in Europe where it was responsible for epizootics. The virus has recently been found in Asia. USUV infection in humans is considered to be most often asymptomatic or to cause mild clinical signs. However, a few cases of neurological complications such as encephalitis or meningo-encephalitis have been reported in both immunocompromised and immunocompetent patients. USUV natural life cycle involves Culex mosquitoes as its main vector, and multiple bird species as natural viral reservoirs or amplifying hosts, humans and horses can be incidental hosts. Phylogenetic studies carried out showed eight lineages, showing an increasing genetic diversity for USUV. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to Usutu virus. This study was carried out on different strains from Senegal and Italy. The new approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for Usutu virus genomic surveillance to better understand the dynamics of evolution and transmission of the virus.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Genoma Viral , Filogenia , Flavivirus/genética , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , Animales , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/veterinaria , Humanos , Senegal , Italia , Aves/virología , ARN Viral/genética , Variación Genética , Culex/virología , Secuenciación Completa del Genoma , Caballos/virología
4.
Parasitol Res ; 123(8): 304, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162844

RESUMEN

The family Cimicidae comprises ectoparasites feeding exclusively on the blood of endothermic animals. Cimicid swallow bugs specifically target swallow birds (Hirundinidae) and their nestlings in infested nests. Bugs of the genus Oeciacus are commonly found in mud nests of swallows and martins, while they rarely visit the homes of humans. Although-unlike other cimicid species-the house martin bug Oeciacus hirundinis has never been reported as a vector of zoonotic pathogens, its possible role in arbovirus circulation in continental Europe is unclear. Samples of O. hirundinis were therefore collected from abandoned house martin (Delichon urbicum) nests in southern Moravia (Czech Republic) during the 2021/2022 winter season and checked for alpha-, flavi- and bunyaviruses by RT-PCR. Of a total of 96 pools consisting of three adult bugs each, one pool tested positive for Usutu virus (USUV)-RNA. Phylogenetic analysis showed that the virus strain was closely related to Italian and some Central European strains and corresponded to USUV lineage 5. The detection of USUV in O. hirundinis during wintertime in the absence of swallows raises the question for a possible role of this avian ectoparasite in virus overwintering in Europe.


Asunto(s)
Cimicidae , Flavivirus , Filogenia , Estaciones del Año , Animales , Cimicidae/virología , Flavivirus/aislamiento & purificación , Flavivirus/genética , Flavivirus/clasificación , República Checa , ARN Viral/genética , Enfermedades de las Aves/parasitología , Enfermedades de las Aves/virología
5.
An Acad Bras Cienc ; 96(2): e20230452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38922274

RESUMEN

The genus Flavivirus comprises approximately 80 different viruses. Phylogenetic relationships among its members indicate a clear ecological separation between those viruses transmitted by mosquitoes, ticks, with no known vector, and insect-specific Flaviviruses. The diversity and phylogenetic relationships among insect-specific flaviviruses circulating in the central and northern regions of Argentina were studied by performing molecular detection and characterization of the NS5 protein gene in mosquitoes collected in Córdoba, Chaco and Tucumán provinces. Overall, 68 out of 1776 pools were positive. CxFV, KRV and CFAV circulate in the 3 studied provinces. Several mosquito species (Aedes aegypti, Culex bidens, Cx. dolosus, Cx. interfor, Cx. quinquefasciatus, Cx. saltanensis, Haemagogus spegazzini) were found infected. A wide circulation of CxFV was observed in the central-northern region of Argentina. CxFV strains detected in our study clustered with strains circulating in Santa Fe and Buenos Aires provinces (Argentina), and other countries such as Indonesia, Mexico, Uganda and Taiwan. The presence of these viruses in mosquitoes could play an important role from the public health perspective, because it has been shown that previous CxFV infection can increase or block the infection of the mosquito by other pathogenic flaviviruses.


Asunto(s)
Culicidae , Flavivirus , Mosquitos Vectores , Filogenia , Animales , Argentina , Flavivirus/clasificación , Flavivirus/genética , Flavivirus/aislamiento & purificación , Culicidae/virología , Culicidae/clasificación , Mosquitos Vectores/virología , Mosquitos Vectores/clasificación
6.
Semin Cell Dev Biol ; 111: 148-155, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32665176

RESUMEN

Alphaviruses such as chikungunya and western equine encephalitis viruses are important human pathogens transmitted by mosquitoes that have recently caused large epidemic and epizootic outbreaks. The epidemic potential of alphaviruses is often related to enhanced mosquito transmission. Tissue barriers and antiviral responses impose bottlenecks to viral populations in mosquitoes. Substitutions in the envelope proteins and the presence of repeated sequence elements (RSEs) in the 3'UTR of epidemic viruses were proposed to be specifically associated to efficient replication in mosquito vectors. Here, we discuss the molecular mechanisms that originated RSEs, the evolutionary forces that shape the 3'UTR of alphaviruses, and the significance of RSEs for mosquito transmission. Finally, the presence of RSEs in the 3'UTR of viral genomes appears as evolutionary trait associated to mosquito adaptation and emerges as a common feature among viruses from the alphavirus and flavivirus genera.


Asunto(s)
Infecciones por Alphavirus/transmisión , Virus Chikungunya/genética , Virus de la Encefalitis Equina del Oeste/genética , Infecciones por Flavivirus/transmisión , Flavivirus/genética , Genoma Viral , Proteínas del Envoltorio Viral/genética , Regiones no Traducidas 3' , Infecciones por Alphavirus/virología , Animales , Virus Chikungunya/clasificación , Virus Chikungunya/patogenicidad , Culicidae/virología , Virus de la Encefalitis Equina del Oeste/clasificación , Virus de la Encefalitis Equina del Oeste/patogenicidad , Flavivirus/clasificación , Flavivirus/patogenicidad , Infecciones por Flavivirus/virología , Regulación de la Expresión Génica , Humanos , Repeticiones de Microsatélite , Mosquitos Vectores/virología , Filogenia , Transducción de Señal , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral
7.
J Virol ; 96(4): e0177821, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34908449

RESUMEN

RNA interference (RNAi) functions as the major host antiviral defense in insects, while less is understood about how to utilize antiviral RNAi in controlling viral infection in insects. Enoxacin belongs to the family of synthetic antibacterial compounds based on a fluoroquinolone skeleton that has been previously found to enhance RNAi in mammalian cells. In this study, we show that enoxacin efficiently inhibited viral replication of Drosophila C virus (DCV) and cricket paralysis virus (CrPV) in cultured Drosophila cells. Enoxacin promoted the loading of Dicer-2-processed virus-derived small interfering RNA (siRNA) into the RNA-induced silencing complex, thereby enhancing the antiviral RNAi response in infected cells. Moreover, enoxacin treatment elicited RNAi-dependent in vivo protective efficacy against DCV or CrPV challenge in adult fruit flies. In addition, enoxacin also inhibited the replication of flaviviruses, including dengue virus and Zika virus, in Aedes mosquito cells in an RNAi-dependent manner. Together, our findings demonstrate that enoxacin can enhance RNAi in insects, and enhancing RNAi by enoxacin is an effective antiviral strategy against diverse viruses in insects, which may be exploited as a broad-spectrum antiviral agent to control the vector transmission of arboviruses or viral diseases in insect farming. IMPORTANCE RNAi has been widely recognized as one of the most broadly acting and robust antiviral mechanisms in insects. However, the application of antiviral RNAi in controlling viral infections in insects is less understood. Enoxacin is a fluoroquinolone compound that was previously found to enhance RNAi in mammalian cells, while its RNAi-enhancing activity has not been assessed in insects. Here, we show that enoxacin treatment inhibited viral replication of DCV and CrPV in Drosophila cells and adult fruit flies. Enoxacin promoted the loading of Dicer-generated virus-derived siRNA into the Ago2-incorporated RNA-induced silencing complex and in turn strengthened the antiviral RNAi response in the infected cells. Moreover, enoxacin displayed effective RNAi-dependent antiviral effects against flaviviruses, such as dengue virus and Zika virus, in mosquito cells. This study is the first to demonstrate that enhancing RNAi by enoxacin elicits potent antiviral effects against diverse viruses in insects.


Asunto(s)
Antivirales/farmacología , Enoxacino/farmacología , Virus de Insectos/efectos de los fármacos , Interferencia de ARN/efectos de los fármacos , Aedes , Animales , Línea Celular , Drosophila , Flavivirus/clasificación , Flavivirus/efectos de los fármacos , Virus de Insectos/clasificación , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Replicación Viral/efectos de los fármacos
8.
Emerg Infect Dis ; 28(7): 1504-1506, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35731200

RESUMEN

Bagaza virus emerged in Spain in 2010 and was not reported in other countries in Europe until 2021, when the virus was detected by molecular methods in a corn bunting and several red-legged partridges in Portugal. Sequencing revealed high similarity between the 2021 strains from Portugal and the 2010 strains from Spain.


Asunto(s)
Enfermedades de las Aves , Infecciones por Flavivirus , Galliformes , Animales , Animales Salvajes/virología , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/virología , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/veterinaria , Galliformes/virología , Portugal/epidemiología , España
9.
J Gen Virol ; 102(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33830905

RESUMEN

Mosquito-borne arboviruses, including a diverse array of alphaviruses and flaviviruses, lead to hundreds of millions of human infections each year. Current methods for species-level classification of arboviruses adhere to guidelines prescribed by the International Committee on Taxonomy of Viruses (ICTV), and generally apply a polyphasic approach that might include information about viral vectors, hosts, geographical distribution, antigenicity, levels of DNA similarity, disease association and/or ecological characteristics. However, there is substantial variation in the criteria used to define viral species, which can lead to the establishment of artificial boundaries between species and inconsistencies when inferring their relatedness, variation and evolutionary history. In this study, we apply a single, uniform principle - that underlying the Biological Species Concept (BSC) - to define biological species of arboviruses based on recombination between genomes. Given that few recombination events have been documented in arboviruses, we investigate the incidence of recombination within and among major arboviral groups using an approach based on the ratio of homoplastic sites (recombinant alleles) to non-homoplastic sites (vertically transmitted alleles). This approach supports many ICTV-designations but also recognizes several cases in which a named species comprises multiple biological species. These findings demonstrate that this metric may be applied to all lifeforms, including viruses, and lead to more consistent and accurate delineation of viral species.


Asunto(s)
Infecciones por Arbovirus/virología , Arbovirus , Culicidae/virología , Flavivirus , Mosquitos Vectores/virología , Animales , Arbovirus/clasificación , Arbovirus/genética , Bases de Datos Genéticas , Flavivirus/clasificación , Flavivirus/genética
10.
J Gen Virol ; 102(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33416463

RESUMEN

The genus Flavivirus includes a range of mosquito-specific viruses in addition to well-known medically important arboviruses. Isolation and comprehensive genomic analyses of viruses in mosquitoes collected in Bolivia resulted in the identification of three novel flavivirus species. Psorophora flavivirus (PSFV) was isolated from Psorophora albigenu. The coding sequence of the PSFV polyprotein shares 60 % identity with that of the Aedes-associated lineage II insect-specific flavivirus (ISF), Marisma virus. Isolated PSFV replicates in both Aedes albopictus- and Aedes aegypti-derived cells, but not in mammalian Vero or BHK-21 cell lines. Two other flaviviruses, Ochlerotatus scapularis flavivirus (OSFV) and Mansonia flavivirus (MAFV), which were identified from Ochlerotatus scapularis and Mansonia titillans, respectively, group with the classical lineage I ISFs. The protein coding sequences of these viruses share only 60 and 40 % identity with the most closely related of known lineage I ISFs, including Xishuangbanna aedes flavivirus and Sabethes flavivirus, respectively. Phylogenetic analysis suggests that MAFV is clearly distinct from the groups of the current known Culicinae-associated lineage I ISFs. Interestingly, the predicted amino acid sequence of the MAFV capsid protein is approximately two times longer than that of any of the other known flaviviruses. Our results indicate that flaviviruses with distinct features can be found at the edge of the Bolivian Amazon basin at sites that are also home to dense populations of human-biting mosquitoes.


Asunto(s)
Culicidae/virología , Flavivirus/genética , Flavivirus/aislamiento & purificación , Aedes/virología , Animales , Bolivia , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Línea Celular , Flavivirus/clasificación , Flavivirus/fisiología , Genoma Viral , Mosquitos Vectores/virología , Filogenia , Poliproteínas/química , Poliproteínas/genética , ARN Viral/genética , Análisis de Secuencia de ARN , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética , Replicación Viral , Secuenciación Completa del Genoma
11.
Arch Virol ; 166(5): 1433-1438, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33683474

RESUMEN

The recent introduction of Zika virus (ZIKV), the recurrence of dengue virus (DENV), and the lethality of yellow fever virus (YFV) have had a significant impact on Brazilian society and public health. Here, we targeted two cellular kinases implicated in cell proliferation and cancer that are also important for viral replication: mitogen-activated protein kinase kinase (MEK) and Src. We used two MEK inhibitors - trametinib and selumetinib - and two Src inhibitors - saracatinib and bosutinib - to inhibit ZIKV, DENV, and YFV replication in cell culture. The cytotoxicity of the four inhibitors was determined by the observation of abnormal morphology and quantification of adherent cells by crystal violet staining. The antiviral activity of these drugs was assessed based on the reduction of plaque-forming units in cell culture as evidence of the inhibition of the replication of the selected flaviviruses. All four inhibitors showed antiviral activity, but among them, trametinib was the safest and most efficacious against all of the viruses, inhibiting the replication of ZIKV and YFV by 1000-fold, and DENV2/3 by nearly 100-fold. This pan-antiviral effect shows that trametinib could be repurposed for the treatment of flaviviral infections.


Asunto(s)
Antivirales/farmacología , Flavivirus/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cricetinae , Flavivirus/clasificación , Flavivirus/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Células Vero , Replicación Viral/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores
12.
RNA Biol ; 18(5): 709-717, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33064973

RESUMEN

Subgenomic RNAs are produced by several RNA viruses through incomplete degradation of their genomic RNA by the exoribonuclease Xrn1, and have been shown to be essential for viral growth and pathogenicity. Within the flavivirus genus of the Flaviviridae family, two distinct classes of Xrn1-resistant RNA motifs have been proposed; one for mosquito-borne and insect-specific flaviviruses, and one for tick-borne flaviviruses and no-known-vector flaviviruses. We investigated tick-borne and no-known-vector flavivirus Xrn1-resistant RNA motifs through systematic in vitro mutational analysis and showed that both classes actually possess very similar structural configurations, including a double pseudoknot and a base-triple at identical, conserved locations. For the no-known-vector flavivirus Modoc virus, we show that in vivo generation of subgenomic flaviviral RNA was affected by mutations targeted at nucleotides involved in the structural features of flaviviral Xrn1-resistant RNA motifs that were defined in this work. Our results suggest that throughout the genus flavivirus Xrn1-resistant RNA motifs adopt the same topologically conserved structure.


Asunto(s)
Flavivirus , Estabilidad del ARN/genética , ARN Viral/química , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Células Cultivadas , Secuencia Conservada , Cricetinae , Culicidae/virología , Exorribonucleasas/metabolismo , Flavivirus/clasificación , Flavivirus/genética , Genoma Viral , Conformación de Ácido Nucleico , ARN Viral/metabolismo , Análisis de Secuencia de ARN
13.
Rev Med Virol ; 30(1): e2092, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31777997

RESUMEN

The genus Flavivirus is a group of single-stranded, positive-sense RNA viruses that includes numerous human pathogens with global impact, such as dengue virus (DENV), yellow fever virus (YFV), West Nile virus (WNV), and Zika virus (ZIKV). The approximately 11-kilobase genome is flanked by highly structured untranslated regions (UTRs), which contain various cis-acting RNA elements with unique structures and functions. Moreover, local RNA elements circularize the genome non-covalently through long-range interactions. Interestingly, many flavivirus cis-acting RNA elements contain group-specific motifs or are specific for the given phylogenetic groups, suggesting their potential association with flavivirus evolution and diversification. In this review, we summarize recent advances about the structure and function of cis-acting RNA elements in flavivirus genomes and highlight the potential implications for flavivirus evolution. Finally, the scientific questions remained to be answered in the field are also discussed.


Asunto(s)
Infecciones por Flavivirus/virología , Flavivirus/genética , Regulación Viral de la Expresión Génica , Conformación de Ácido Nucleico , ARN Viral/genética , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Flavivirus/clasificación , Genoma Viral , Humanos , Motivos de Nucleótidos , Filogenia , ARN Viral/química , Relación Estructura-Actividad , Replicación Viral
14.
J Virol ; 93(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31068424

RESUMEN

Most described flaviviruses (family Flaviviridae) are disease-causing pathogens of vertebrates maintained in zoonotic cycles between mosquitoes or ticks and vertebrate hosts. Poor sampling of flaviviruses outside vector-borne flaviviruses such as Zika virus and dengue virus has presented a narrow understanding of flavivirus diversity and evolution. In this study, we discovered three crustacean flaviviruses (Gammarus chevreuxi flavivirus, Gammarus pulex flavivirus, and Crangon crangon flavivirus) and two cephalopod flaviviruses (Southern Pygmy squid flavivirus and Firefly squid flavivirus). Bayesian and maximum likelihood phylogenetic methods demonstrate that crustacean flaviviruses form a well-supported clade and share a more closely related ancestor with terrestrial vector-borne flaviviruses than with classical insect-specific flaviviruses. In addition, we identify variants of Wenzhou shark flavivirus in multiple gazami crab (Portunus trituberculatus) populations, with active replication supported by evidence of an active RNA interference response. This suggests that Wenzhou shark flavivirus moves horizontally between sharks and gazami crabs in ocean ecosystems. Analyses of the mono- and dinucleotide composition of marine flaviviruses compared to that of flaviviruses with known host status suggest that some marine flaviviruses share a nucleotide bias similar to that of vector-borne flaviviruses. Furthermore, we identify crustacean flavivirus endogenous viral elements that are closely related to elements of terrestrial vector-borne flaviviruses. Taken together, these data provide evidence of flaviviruses circulating between marine vertebrates and invertebrates, expand our understanding of flavivirus host range, and offer potential insights into the evolution and emergence of terrestrial vector-borne flaviviruses.IMPORTANCE Some flaviviruses are known to cause disease in vertebrates and are typically transmitted by blood-feeding arthropods such as ticks and mosquitoes. While an ever-increasing number of insect-specific flaviviruses have been described, we have a narrow understanding of flavivirus incidence and evolution. To expand this understanding, we discovered a number of novel flaviviruses that infect a range of crustaceans and cephalopod hosts. Phylogenetic analyses of these novel marine flaviviruses suggest that crustacean flaviviruses share a close ancestor to all terrestrial vector-borne flaviviruses, and squid flaviviruses are the most divergent of all known flaviviruses to date. Additionally, our results indicate horizontal transmission of a marine flavivirus between crabs and sharks. Taken together, these data suggest that flaviviruses move horizontally between invertebrates and vertebrates in ocean ecosystems. This study demonstrates that flavivirus invertebrate-vertebrate host associations have arisen in flaviviruses at least twice and may potentially provide insights into the emergence or origin of terrestrial vector-borne flaviviruses.


Asunto(s)
Organismos Acuáticos/virología , Evolución Biológica , Braquiuros/virología , Cefalópodos/virología , Enfermedades de los Peces , Infecciones por Flavivirus , Flavivirus , Tiburones/virología , Animales , Transmisión de Enfermedad Infecciosa , Enfermedades de los Peces/transmisión , Enfermedades de los Peces/virología , Flavivirus/clasificación , Flavivirus/fisiología , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/virología
15.
BMC Microbiol ; 20(1): 225, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32723369

RESUMEN

BACKGROUND: Mosquito-borne diseases involving arboviruses represent expanding threats to sub-Saharan Africa imposing as considerable burden to human and veterinary public health. In Mozambique over one hundred species of potential arbovirus mosquito vectors have been identified, although their precise role in maintaining such viruses in circulation in the country remains to be elucidated. The aim of this study was to screen for the presence of flaviviruses, alphaviruses and bunyaviruses in mosquitoes from different regions of Mozambique. RESULTS: Our survey analyzed 14,519 mosquitoes, and the results obtained revealed genetically distinct insect-specific flaviviruses, detected in multiple species of mosquitoes from different genera. In addition, smaller flavivirus-like NS5 sequences, frequently detected in Mansonia seemed to correspond to defective viral sequences, present as viral DNA forms. Furthermore, three lineages of putative members of the Phenuiviridae family were also detected, two of which apparently corresponding to novel viral genetic lineages. CONCLUSION: This study reports for the first-time novel insect-specific flaviviruses and novel phenuiviruses, as well as frequent flavivirus-like viral DNA forms in several widely known vector species. This unique work represents recent investigation of virus screening conducted in mosquitoes from Mozambique and an important contribution to inform the establishment of a vector control program for arbovirus in the country and in the region.


Asunto(s)
Culicidae/virología , Mosquitos Vectores/virología , Virus ARN/genética , Alphavirus/clasificación , Alphavirus/genética , Alphavirus/aislamiento & purificación , Animales , Arbovirus/clasificación , Arbovirus/genética , Arbovirus/aislamiento & purificación , Bunyaviridae/clasificación , Bunyaviridae/genética , Bunyaviridae/aislamiento & purificación , Línea Celular , Culicidae/clasificación , ADN Viral/genética , Flavivirus/clasificación , Flavivirus/genética , Flavivirus/aislamiento & purificación , Mosquitos Vectores/clasificación , Mozambique , Filogenia , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Viral/genética , Proteínas Virales/genética
16.
Chem Rev ; 118(8): 4448-4482, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29652486

RESUMEN

Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.


Asunto(s)
Flavivirus/fisiología , Flavivirus/clasificación , Flavivirus/genética , Flavivirus/metabolismo , Genes Virales , Interacciones Huésped-Patógeno , Humanos , Proteínas de Unión al ARN/metabolismo , Replicación Viral
17.
Emerg Infect Dis ; 25(12): 2299-2302, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31742517

RESUMEN

Bagaza virus (BAGV) has not been reported in birds in South Africa since 1978. We used phylogenetic analysis and electron microscopy to identify BAGV as the likely etiology in neurologic disease and death in Himalayan monal pheasants in Pretoria, South Africa. Our results suggest circulation of BAGV in South Africa.


Asunto(s)
Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/virología , Flavivirus , Flavivirus/clasificación , Flavivirus/genética , Flavivirus/ultraestructura , Infecciones por Flavivirus/historia , Historia del Siglo XXI , Humanos , Filogenia , Vigilancia en Salud Pública , Sudáfrica/epidemiología , Proteínas no Estructurales Virales/genética
18.
J Gen Virol ; 100(2): 119-132, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30628886

RESUMEN

West Nile Virus, Usutu virus, Bagaza virus, Israel turkey encephalitis virus and Tembusu virus currently constitute the five flaviviruses transmitted by mosquito bites with a marked pathogenicity for birds. They have been identified as the causative agents of severe neurological symptoms, drop in egg production and/or mortalities among avian hosts. They have also recently shown an expansion of their geographic distribution and/or a rise in cases of human infection. This paper is the first up-to-date review of the pathology of these flaviviruses in birds, with a special emphasis on the difference in susceptibility among avian species, in order to understand the specificity of the host spectrum of each of these viruses. Furthermore, given the lack of a clear prophylactic approach against these viruses in birds, a meta-analysis of vaccination trials conducted to date on these animals is given to constitute a solid platform from which designing future studies.


Asunto(s)
Enfermedades de las Aves/transmisión , Enfermedades de las Aves/virología , Infecciones por Flavivirus/veterinaria , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , Mosquitos Vectores/virología , Animales , Enfermedades de las Aves/patología , Aves , Transmisión de Enfermedad Infecciosa , Infecciones por Flavivirus/patología , Infecciones por Flavivirus/transmisión
19.
J Gen Virol ; 100(8): 1234-1240, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31282853

RESUMEN

Using random amplification and reverse transcription-PCR, a novel RNA virus was detected in sera of domestic ducks. The full genome of the virus was determined for three strains, identifying the first hepacivirus-like flavivirus in birds. The virus, that we tentatively named duck hepacivirus-like virus (DuHV), possesses several unique molecular features, such as possession of the largest hepacivirus-like polyprotein gene and a Pegivirus A-like internal ribosome entry site. Sequence comparisons and phylogenetic and sliding-window analyses indicated that DuHV is most closely related to, but highly divergent from, the known hepaciviruses. DuHV was detected in 69.7 % of 185 serum samples from four duck species and in 31 of 33 flocks from five provinces of China, reflecting a high prevalence in duck populations and a wide geographical distribution. The detection of DuHV in the same flock in November 2018 and April 2019 suggested that persistent infection can be established in the infected ducks.


Asunto(s)
Patos , Infecciones por Flavivirus/veterinaria , Flavivirus/aislamiento & purificación , Hepacivirus/aislamiento & purificación , Enfermedades de las Aves de Corral/virología , Animales , China , Flavivirus/clasificación , Flavivirus/genética , Infecciones por Flavivirus/virología , Genoma Viral , Hepacivirus/química , Hepacivirus/clasificación , Hepacivirus/genética , Conformación de Ácido Nucleico , Filogenia , ARN Viral/química , ARN Viral/genética
20.
J Med Virol ; 91(1): 38-44, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30133782

RESUMEN

Human pegivirus (HPgV, formerly GBV-C) is a member of the genus Pegivirus, family Flaviviridae. Despite its identification more than 20 years ago, both natural history and distribution of this viral group in human hosts remain under exploration. Analysis of HPgV genomes characterized up to now points out the scarcity of French pegivirus sequences in databases. To bring new data regarding HPgV genomic diversity, we investigated 16 French isolates obtained from hepatitis C virus-RNA and human immunodeficiency virus-RNA-positive blood donations following deep sequencing and coupled molecular protocols. Initial phylogenetic analysis of 5'-untranslated region (5'-UTR)/E2 partial sequences permitted to assign HPgV isolates to genotypes 2 (n = 15) and 1 (n = 1), with up to 16% genetic diversity observed for both regions considered. Seven nearly full-length representative genomes were characterized subsequently, with complete polyprotein coding sequences exhibiting up to 13% genetic diversity; closest nucleotide (nt) divergence with available HPgV sequences was in the range 7% to 11%. A 36 nts deletion located on the NS4B coding region (N-terminal part, 12 amino acids) of the genotype 1 HPgV genome characterized was identified, along with single nucleotide deletions in two genotype 2, 5'-UTR sequences.


Asunto(s)
Donantes de Sangre , Infecciones por Flaviviridae/virología , Flavivirus/genética , Infecciones por VIH/complicaciones , Hepatitis C/complicaciones , Secuenciación de Nucleótidos de Alto Rendimiento , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , Francia , Variación Genética , Genotipo , Humanos , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA