Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Mol Biol ; 114(3): 60, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758412

RESUMEN

Pyruvate kinase (Pyk, EC 2.7.1.40) is a glycolytic enzyme that generates pyruvate and adenosine triphosphate (ATP) from phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP), respectively. Pyk couples pyruvate and tricarboxylic acid metabolisms. Synechocystis sp. PCC 6803 possesses two pyk genes (encoded pyk1, sll0587 and pyk2, sll1275). A previous study suggested that pyk2 and not pyk1 is essential for cell viability; however, its biochemical analysis is yet to be performed. Herein, we biochemically analyzed Synechocystis Pyk2 (hereafter, SyPyk2). The optimum pH and temperature of SyPyk2 were 7.0 and 55 °C, respectively, and the Km values for PEP and ADP under optimal conditions were 1.5 and 0.053 mM, respectively. SyPyk2 is activated in the presence of glucose-6-phosphate (G6P) and ribose-5-phosphate (R5P); however, it remains unaltered in the presence of adenosine monophosphate (AMP) or fructose-1,6-bisphosphate. These results indicate that SyPyk2 is classified as PykA type rather than PykF, stimulated by sugar monophosphates, such as G6P and R5P, but not by AMP. SyPyk2, considering substrate affinity and effectors, can play pivotal roles in sugar catabolism under nonphotosynthetic conditions.


Asunto(s)
Glucosa-6-Fosfato , Fosfoenolpiruvato , Piruvato Quinasa , Ribosamonofosfatos , Synechocystis , Synechocystis/metabolismo , Synechocystis/genética , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Fosfoenolpiruvato/metabolismo , Glucosa-6-Fosfato/metabolismo , Ribosamonofosfatos/metabolismo , Especificidad por Sustrato , Concentración de Iones de Hidrógeno , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cinética , Temperatura
2.
Nat Prod Rep ; 41(4): 604-648, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38170905

RESUMEN

Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.


Asunto(s)
Ácidos Ciclohexanocarboxílicos , Ciclohexenos , Ácido Shikímico , Ácido Shikímico/análogos & derivados , Ácido Shikímico/metabolismo , Estructura Molecular , Ácido Corísmico/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfatos de Azúcar/metabolismo , Bacterias/metabolismo , Hongos/metabolismo , Plantas/metabolismo
3.
Gen Comp Endocrinol ; 352: 114514, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582175

RESUMEN

Hormonal influence on hepatic function is a critical aspect of whole-body energy balance in vertebrates. Catecholamines and corticosteroids both influence hepatic energy balance via metabolite mobilization through glycogenolysis and gluconeogenesis. Elasmobranchs have a metabolic organization that appears to prioritize the mobilization of hepatic lipid as ketone bodies (e.g. 3-hydroxybutyrate [3-HB]), which adds complexity in determining the hormonal impact on hepatic energy balance in this taxon. Here, a liver perfusion was used to investigate catecholamine (epinephrine [E]) and corticosteroid (corticosterone [B] and 11-deoxycorticosterone [DOC]) effects on the regulation of hepatic glucose and 3-HB balance in the North Pacific Spiny dogfish, Squalus suckleyi. Further, hepatic enzyme activity involved in ketogenesis (3-hydroxybutyrate dehydrogenase), glycogenolysis (glycogen phosphorylase), and gluconeogenesis (phosphoenolpyruvate carboxykinase) were assessed in perfused liver tissue following hormonal application to discern effects on hepatic energy flux. mRNA transcript abundance key transporters of glucose (glut1 and glut4) and ketones (mct1 and mct2) and glucocorticoid function (gr, pepck, fkbp5, and 11ßhsd2) were also measured to investigate putative cellular components involved in hepatic responses. There were no changes in the arterial-venous difference of either metabolite in all hormone perfusions. However, perfusion with DOC increased gr transcript abundance and decreased flow rate of perfusions, suggesting a regulatory role for this corticosteroid. Phosphoenolpyruvate carboxykinase activity increased following all hormone treatments, which may suggest gluconeogenic function; E also increased 3-hydroxybutyrate dehydrogenase activity, suggesting a function in ketogenesis, and decreased pepck and fkbp5 transcript abundance, potentially showing some metabolic regulation. Overall, we demonstrate hormonal control of hepatic energy balance using liver perfusions at various levels of biological organization in an elasmobranch.


Asunto(s)
Squalus acanthias , Squalus , Animales , Glucosa/metabolismo , Squalus/metabolismo , Squalus acanthias/metabolismo , Hidroxibutirato Deshidrogenasa/metabolismo , Fosfoenolpiruvato/metabolismo , Hígado/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Cuerpos Cetónicos/metabolismo , Gluconeogénesis , Hormonas/metabolismo , Corticoesteroides/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38285614

RESUMEN

As a key molecular scaffold for various flavonoids, naringenin is a value-added chemical with broad pharmaceutical applicability. For efficient production of naringenin from acetate, it is crucial to precisely regulate the carbon flux of the oxaloacetate-phosphoenolpyruvate (OAA-PEP) regulatory node through appropriate pckA expression control, as excessive overexpression of pckA can cause extensive loss of OAA and metabolic imbalance. However, considering the critical impact of pckA on naringenin biosynthesis, the conventional strategy of transcriptional regulation of gene expression is limited in its ability to cover the large and balanced solution space. To overcome this hurdle, in this study, pckA expression was fine-tuned at both the transcriptional and translational levels in a combinatorial expression library for the precise exploration of optimal naringenin production from acetate. Additionally, we identified the effects of regulating pckA expression by validating the correlation between phosphoenolpyruvate kinase (PCK) activity and naringenin production. As a result, the flux-optimized strain exhibited a 49.8-fold increase compared with the unoptimized strain, producing 122.12 mg/L of naringenin. Collectively, this study demonstrated the significance of transcriptional and translational flux rebalancing at the key regulatory node, proposing a pivotal metabolic engineering strategy for the biosynthesis of various flavonoids derived from naringenin using acetate. ONE-SENTENCE SUMMARY: In this study, transcriptional and translational regulation of pckA expression at the crucial regulatory node was conducted to optimize naringenin biosynthesis using acetate in E. coli.


Asunto(s)
Escherichia coli , Flavanonas , Flavonoides , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfoenolpiruvato/metabolismo , Flavonoides/metabolismo , Acetatos/metabolismo
5.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930958

RESUMEN

The phosphoenol pyruvate-oxaloacetate-pyruvate-derived amino acids (POP-AAs) comprise native intermediates in cellular metabolism, within which the phosphoenol pyruvate-oxaloacetate-pyruvate (POP) node is the switch point among the major metabolic pathways existing in most living organisms. POP-AAs have widespread applications in the nutrition, food, and pharmaceutical industries. These amino acids have been predominantly produced in Escherichia coli and Corynebacterium glutamicum through microbial fermentation. With the rapid increase in market requirements, along with the global food shortage situation, the industrial production capacity of these two bacteria has encountered two bottlenecks: low product conversion efficiency and high cost of raw materials. Aiming to push forward the update and upgrade of engineered strains with higher yield and productivity, this paper presents a comprehensive summarization of the fundamental strategy of metabolic engineering techniques around phosphoenol pyruvate-oxaloacetate-pyruvate node for POP-AA production, including L-tryptophan, L-tyrosine, L-phenylalanine, L-valine, L-lysine, L-threonine, and L-isoleucine. Novel heterologous routes and regulation methods regarding the carbon flux redistribution in the POP node and the formation of amino acids should be taken into consideration to improve POP-AA production to approach maximum theoretical values. Furthermore, an outlook for future strategies of low-cost feedstock and energy utilization for developing amino acid overproducers is proposed.


Asunto(s)
Aminoácidos , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Aminoácidos/metabolismo , Ácido Oxaloacético/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Fosfoenolpiruvato/metabolismo , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Ácido Pirúvico/metabolismo , Redes y Vías Metabólicas , Fermentación
6.
J Mol Biol ; 436(9): 168553, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548260

RESUMEN

The catalytic cycle of Enzyme I (EI), a phosphotransferase enzyme responsible for converting phosphoenolpyruvate (PEP) into pyruvate, is characterized by a series of local and global conformational rearrangements. This multistep process includes a monomer-to-dimer transition, followed by an open-to-closed rearrangement of the dimeric complex upon PEP binding. In the present study, we investigate the thermodynamics of EI dimerization using a range of high-pressure solution NMR techniques complemented by SAXS experiments. 1H-15N TROSY and 1H-13C methyl TROSY NMR spectra combined with 15N relaxation measurements revealed that a native-like engineered variant of full-length EI fully dissociates into stable monomeric state above 1.5 kbar. Conformational ensembles of EI monomeric state were generated via a recently developed protocol combining coarse-grained molecular simulations with experimental backbone residual dipolar coupling measurements. Analysis of the structural ensembles provided detailed insights into the molecular mechanisms driving formation of the catalytically competent dimeric state, and reveals that each step of EI catalytical cycle is associated with a significant reduction in either inter- or intra-domain conformational entropy. Altogether, this study completes a large body work conducted by our group on EI and establishes a comprehensive structural and dynamical description of the catalytic cycle of this prototypical multidomain, oligomeric enzyme.


Asunto(s)
Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato , Fosfotransferasas (Aceptor del Grupo Nitrogenado) , Multimerización de Proteína , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Conformación Proteica , Dispersión del Ángulo Pequeño , Termodinámica , Difracción de Rayos X
7.
Cell Rep Methods ; 4(5): 100764, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38714198

RESUMEN

Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (kflux) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in kflux is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs. Cluster formation was characterized with gel electrophoresis and transmission electron microscopy (TEM) imaging. The generalizability of this mixed-NP approach to improving flux is confirmed by application to a seven-enzyme system. This represents a powerful approach for accessing channeling with almost any choice of enzymes constituting a multienzyme cascade.


Asunto(s)
L-Lactato Deshidrogenasa , Ácido Láctico , Nanopartículas , Fosfoenolpiruvato , Piruvato Quinasa , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Ácido Láctico/metabolismo , Ácido Láctico/química , Piruvato Quinasa/metabolismo , Piruvato Quinasa/química , Nanopartículas/química , Fosfoenolpiruvato/metabolismo , Puntos Cuánticos/química , Cinética
8.
Talanta ; 275: 126134, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692044

RESUMEN

Phosphoenolpyruvate (PEP) is an essential intermediate metabolite that is involved in various vital biochemical reactions. However, achieving the direct and accurate quantification of PEP in plasma or serum poses a significant challenge owing to its strong polarity and metal affinity. In this study, a sensitive method for the direct determination of PEP in plasma and serum based on ethylenediaminetetraacetic acid (EDTA)-facilitated hydrophilic interaction liquid chromatography-tandem mass spectrometry was developed. Superior chromatographic retention and peak shapes were achieved using a zwitterionic stationary-phase HILIC column with a metal-inert inner surface. Efficient dechelation of PEP-metal complexes in serum/plasma samples was achieved through the introduction of EDTA, resulting in a significant enhancement of the PEP signal. A PEP isotopically labelled standard was employed as a surrogate analyte for the determination of endogenous PEP, and validation assessments proved the sensitivity, selectivity, and reproducibility of this method. The method was applied to the comparative quantification of PEP in plasma and serum samples from mice and rats, as well as in HepG2 cells, HEK293T cells, and erythrocytes; the results confirmed its applicability in PEP-related biomedical research. The developed method can quantify PEP in diverse biological matrices, providing a feasible opportunity to investigate the role of PEP in relevant biomedical research.


Asunto(s)
Ácido Edético , Interacciones Hidrofóbicas e Hidrofílicas , Fosfoenolpiruvato , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Animales , Humanos , Ácido Edético/química , Ratones , Cromatografía Liquida/métodos , Ratas , Fosfoenolpiruvato/química , Fosfoenolpiruvato/sangre , Fosfoenolpiruvato/metabolismo , Células HEK293 , Células Hep G2 , Ratas Sprague-Dawley , Masculino
9.
Protein Sci ; 33(7): e5075, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38895978

RESUMEN

Rheostat positions, which can be substituted with various amino acids to tune protein function across a range of outcomes, are a developing area for advancing personalized medicine and bioengineering. Current methods cannot accurately predict which proteins contain rheostat positions or their substitution outcomes. To compare the prevalence of rheostat positions in homologs, we previously investigated their occurrence in two pyruvate kinase (PYK) isozymes. Human liver PYK contained numerous rheostat positions that tuned the apparent affinity for the substrate phosphoenolpyruvate (Kapp-PEP) across a wide range. In contrast, no functional rheostat positions were identified in Zymomonas mobilis PYK (ZmPYK). Further, the set of ZmPYK substitutions included an unusually large number that lacked measurable activity. We hypothesized that the inactive substitution variants had reduced protein stability, precluding detection of Kapp-PEP tuning. Using modified buffers, robust enzymatic activity was obtained for 19 previously-inactive ZmPYK substitution variants at three positions. Surprisingly, both previously-inactive and previously-active substitution variants all had Kapp-PEP values close to wild-type. Thus, none of the three positions were functional rheostat positions, and, unlike human liver PYK, ZmPYK's Kapp-PEP remained poorly tunable by single substitutions. To directly assess effects on stability, we performed thermal denaturation experiments for all ZmPYK substitution variants. Many diminished stability, two enhanced stability, and the three positions showed different thermal sensitivity to substitution, with one position acting as a "stability rheostat." The differences between the two PYK homologs raises interesting questions about the underlying mechanism(s) that permit functional tuning by single substitutions in some proteins but not in others.


Asunto(s)
Piruvato Quinasa , Zymomonas , Humanos , Zymomonas/enzimología , Zymomonas/genética , Zymomonas/química , Zymomonas/metabolismo , Piruvato Quinasa/química , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Sustitución de Aminoácidos , Estabilidad Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Estabilidad de Enzimas , Hígado/enzimología , Hígado/metabolismo , Hígado/química , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/química
10.
Biol. Res ; 26(1/2): 81-8, 1993. tab, graf
Artículo en Inglés | LILACS | ID: lil-228628

RESUMEN

We review the development of our knowledge and interpretations of the intermediary metabolism of Trypanosoma (Schizotrypanum) cruzi. Already in the 1950's it was clearly established that when this organism was exposed to large external concentrations of carbohydrates it was unable to catabolize them completely, even in the presence of oxygen, producing a mixture of CO2, dicarboxylic acids (succinic, malic) and alanine as end products. However, subsequent work tended to emphasize such paradigmatic features as a full complement of glycolytic enzymes in all stages of the life cycle of the parasite, a functional Kreb's cycle, a cytochrome-dependent electron transport chain and phosphorylative oxidation which suggested that T. cruzi had the basic metabolic properties of classical glucose-utilizing cells, in contrast with the degenerate glycolytic metabolism of bloodstream African trypanosomes. Only in the 1980's interest revived on the how and why of the incomplete carbohydrate catabolism by this parasite. The primary reason for this anomaly was found to be the presence of a constitutive phospho-enol-pyruvate carboxykinase (PEPCK, ATP-dependent, E.C.4.1.1.49), present in all stages of the parasite's life cycle, and the lack of regulation of the glycolytic route at its classical control points, hexokinase and phosphofructokinase. On the other hand, the presence of two distinct glutamate dehydrogenases (NAD+ and NADP(+)-dependent), the former being strictly regulated by the energy charge of the cell and the Krebs' cycle activity, indicated that amino acids can be a primary source of energy for this organism.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Animales , Trypanosoma cruzi/metabolismo , Aminoácidos/metabolismo , Carbohidratos/metabolismo , Glucosa/metabolismo , Oxidación-Reducción , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Fosfoenolpiruvato/metabolismo , Trypanosoma cruzi/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA