Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 690
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell ; 36(5): 1622-1636, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113879

RESUMEN

Cultivated strawberry (Fragaria × ananassa) has a brief history of less than 300 yr, beginning with the hybridization of octoploids Fragaria chiloensis and Fragaria virginiana. Here we explored the genomic signatures of early domestication and subsequent diversification for different climates using whole-genome sequences of 289 wild, heirloom, and modern varieties from two major breeding programs in the United States. Four nonadmixed wild octoploid populations were identified, with recurrent introgression among the sympatric populations. The proportion of F. virginiana ancestry increased by 20% in modern varieties over initial hybrids, and the proportion of F. chiloensis subsp. pacifica rose from 0% to 3.4%. Effective population size rapidly declined during early breeding. Meanwhile, divergent selection for distinct environments reshaped wild allelic origins in 21 out of 28 chromosomes. Overlapping divergent selective sweeps in natural and domesticated populations revealed 16 convergent genomic signatures that may be important for climatic adaptation. Despite 20 breeding cycles since initial hybridization, more than half of loci underlying yield and fruit size are still not under artificial selection. These insights add clarity to the domestication and breeding history of what is now the most widely cultivated fruit in the world.


Asunto(s)
Domesticación , Fragaria , Genoma de Planta , Fragaria/genética , Genoma de Planta/genética , Fitomejoramiento/métodos , Hibridación Genética , Variación Genética , Genómica/métodos , Selección Genética
2.
Plant Cell ; 36(6): 2427-2446, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547429

RESUMEN

Shoot branching affects plant architecture. In strawberry (Fragaria L.), short branches (crowns) develop from dormant axillary buds to form inflorescences and flowers. While this developmental transition contributes greatly to perenniality and yield in strawberry, its regulatory mechanism remains unclear and understudied. In the woodland strawberry (Fragaria vesca), we identified and characterized 2 independent mutants showing more crowns. Both mutant alleles reside in FveMYB117a, a R2R3-MYB transcription factor gene highly expressed in shoot apical meristems, axillary buds, and young leaves. Transcriptome analysis revealed that the expression of several cytokinin pathway genes was altered in the fvemyb117a mutant. Consistently, active cytokinins were significantly increased in the axillary buds of the fvemyb117a mutant. Exogenous application of cytokinin enhanced crown outgrowth in the wild type, whereas the cytokinin inhibitors suppressed crown outgrowth in the fvemyb117a mutant. FveMYB117a binds directly to the promoters of the cytokinin homeostasis genes FveIPT2 encoding an isopentenyltransferase and FveCKX1 encoding a cytokinin oxidase to regulate their expression. Conversely, the type-B Arabidopsis response regulators FveARR1 and FveARR2b can directly inhibit the expression of FveMYB117a, indicative of a negative feedback regulation. In conclusion, we identified FveMYB117a as a key repressor of crown outgrowth by inhibiting cytokinin accumulation and provide a mechanistic basis for bud fate transition in an herbaceous perennial plant.


Asunto(s)
Citocininas , Fragaria , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Citocininas/metabolismo , Fragaria/genética , Fragaria/crecimiento & desarrollo , Fragaria/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Homeostasis , Mutación , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
3.
Plant Cell ; 35(11): 4020-4045, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37506031

RESUMEN

The NAC transcription factor ripening inducing factor (RIF) was previously reported to be necessary for the ripening of octoploid strawberry (Fragaria × ananassa) fruit, but the mechanistic basis of RIF-mediated transcriptional regulation and how RIF activity is modulated remains elusive. Here, we show that FvRIF in diploid strawberry, Fragaria vesca, is a key regulator in the control of fruit ripening and that knockout mutations of FvRIF result in a complete block of fruit ripening. DNA affinity purification sequencing coupled with transcriptome deep sequencing suggests that 2,080 genes are direct targets of FvRIF-mediated regulation, including those related to various aspects of fruit ripening. We provide evidence that FvRIF modulates anthocyanin biosynthesis and fruit softening by directly regulating the related core genes. Moreover, we demonstrate that FvRIF interacts with and serves as a substrate of MAP kinase 6 (FvMAPK6), which regulates the transcriptional activation function of FvRIF by phosphorylating FvRIF at Thr-310. Our findings uncover the FvRIF-mediated transcriptional regulatory network in controlling strawberry fruit ripening and highlight the physiological significance of phosphorylation modification on FvRIF activity in ripening.


Asunto(s)
Fragaria , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant J ; 117(4): 1130-1147, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37967025

RESUMEN

Flowering is an indicator of plant transformation from vegetative to reproductive growth. miR160 has been shown to have a significant effect on the growth and development of fruits, leaves, and roots of plants or their stress response to environment, but the participation of miR160 in regulating flowering time in plants is unclear. In this study, we found that two FvemiR160s (FvemiR160a/FvemiR160b) mature sequences in strawberry (Fragaria vesca) were consistent. It was displayed that the miR160 mature sequence is highly conserved in various species, and the miR160 mature sequence formed by the 5' arm of the MIR160 precursor was more conserved. Three FveARFs in woodland strawberry were negatively regulated by FvemiR160a, among which FveARF18A was the most significant. Phylogenetic analysis indicated that FvemiR160 is closely related to apple (Malus domestica), grape (Vitis vinifera), and Arabidopsis thaliana, while FveARF18A is closely related to RcARF18. Subsequently, we demonstrated that FvemiR160a can target cutting FveARF18A to negatively regulate its expression by RLM-5' RACE, cleavage site mutation, and GFP fluorescence assay. Moreover, we observed that FveMIR160a overexpressed plants have advanced flowering, while mFveARF18A overexpressed plants have delayed flowering. We also verified that FveARF18A negatively regulates the expression of FveAP1 and FveFUL by binding their promoters by yeast one-hybrid, LUC, and GUS assay, and FveAP1 and FveFUL transgenic Arabidopsis showed early flowering phenotype. In addition, the expression level of FvemiR160a was decreased obviously while that of FveARF18A was increased obviously by MeJA, GA and IAA. In conclusion, our study reveals the important role of the FvemiR160-FveARF18A-FveAP1/FveFUL module in the flowering process of woodland strawberry and provides a new pathway for studying flowering.


Asunto(s)
Fragaria , Fragaria/genética , Fragaria/metabolismo , Filogenia , Hojas de la Planta/genética , Fenotipo , Regiones Promotoras Genéticas , Regulación de la Expresión Génica de las Plantas/genética
5.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38189536

RESUMEN

Accurate subgenome phasing is crucial for understanding the origin, evolution and adaptive potential of polyploid genomes. SubPhaser and WGDI software are two common methodologies for subgenome phasing in allopolyploids, particularly in scenarios lacking known diploid progenitors. Triggered by a recent debate over the subgenomic origins of the cultivated octoploid strawberry, we examined four well-documented complex allopolyploidy cases as benchmarks, to evaluate and compare the accuracy of the two software. Our analysis demonstrates that the subgenomic structure phased by both software is in line with prior research, effectively tracing complex allopolyploid evolutionary trajectories despite the limitations of each software. Furthermore, using these validated methodologies, we revisited the controversial issue regarding the progenitors of the octoploid strawberry. The results of both methodologies reaffirm Fragaria vesca and Fragaria iinumae as progenitors of the octoploid strawberry. Finally, we propose recommendations for enhancing the accuracy of subgenome phasing in future studies, recognizing the potential of integrated tools for advanced complex allopolyploidy research and offering a new roadmap for robust subgenome-based phylogenetic analysis.


Asunto(s)
Benchmarking , Fragaria , Filogenia , Fragaria/genética , Poliploidía , Programas Informáticos
6.
Plant Cell ; 34(4): 1226-1249, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35018459

RESUMEN

Low temperature causes poor coloration of strawberry (Fragaria sp.) fruits, thus greatly reducing their commercial value. Strawberry fruits accumulate anthocyanins during ripening, but how low temperature modulates anthocyanin accumulation in plants remains largely unknown. We identified MITOGEN-ACTIVATED PROTEIN KINASE3 (FvMAPK3) as an important negative regulator of anthocyanin accumulation that mediates the poor coloration of strawberry fruits in response to low temperature. FvMAPK3 activity was itself induced by low temperature, leading to the repression of anthocyanin accumulation via two mechanisms. Activated FvMAPK3 acted as the downstream target of MAPK KINASE4 (FvMKK4) and SUCROSE NONFERMENTING1-RELATED KINASE2.6 (FvSnRK2.6) to phosphorylate the transcription factor FvMYB10 and reduce its transcriptional activity. In parallel, FvMAPK3 phosphorylated CHALCONE SYNTHASE1 (FvCHS1) to enhance its proteasome-mediated degradation. These results not only provide an important reference to elucidate the molecular mechanisms underlying low-temperature-mediated repression of anthocyanin accumulation in plants, but also offer valuable candidate genes for generating strawberry varieties with high tolerance to low temperature and good fruit quality.


Asunto(s)
Chalcona , Fragaria , Aciltransferasas , Antocianinas/metabolismo , Chalcona/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
7.
Plant J ; 116(5): 1201-1217, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37597203

RESUMEN

Woodland strawberry (Fragaria vesca subsp. vesca) is a wild relative of cultivated strawberry (F. × ananassa) producing small and typically conical fruits with an intense flavor and aroma. The wild strawberry species, F. vesca, is a rich resource of genetic and metabolic variability, but its diversity remains largely unexplored and unexploited. In this study, we aim for an in-depth characterization of the fruit complex volatilome by GC-MS as well as the fruit size and shape using a European germplasm collection that represents the continental diversity of the species. We report characteristic volatilome footprints and fruit phenotypes of specific geographical areas. Thus, this study uncovers phenotypic variation linked to geographical distribution that will be valuable for further genetic studies to identify candidate genes or develop markers linked to volatile compounds or fruit shape and size traits.


Asunto(s)
Fragaria , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Fenotipo , Cromatografía de Gases y Espectrometría de Masas
8.
Plant J ; 114(3): 683-698, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36840368

RESUMEN

In this work, we identified and functionally characterized the strawberry (Fragaria × ananassa) R2R3 MYB transcription factor FaMYB123. As in most genes associated with organoleptic properties of ripe fruit, FaMYB123 expression is ripening-related, receptacle-specific, and antagonistically regulated by ABA and auxin. Knockdown of FaMYB123 expression by RNAi in ripe strawberry fruit receptacles downregulated the expression of enzymes involved in the late steps of anthocyanin/flavonoid biosynthesis. Transgenic fruits showed a parallel decrease in the contents of total anthocyanin and flavonoid, especially malonyl derivatives of pelargonidin and cyanidins. The decrease was concomitant with accumulation of proanthocyanin, propelargonidins, and other condensed tannins associated mainly with green receptacles. Potential coregulation between FaMYB123 and FaMYB10, which may act on different sets of genes for the enzymes involved in anthocyanin production, was explored. FaMYB123 and FabHLH3 were found to interact and to be involved in the transcriptional activation of FaMT1, a gene responsible for the malonylation of anthocyanin components during ripening. Taken together, these results demonstrate that FaMYB123 regulates the late steps of the flavonoid pathway in a specific manner. In this study, a new function for an R2R3 MYB transcription factor, regulating the expression of a gene that encodes a malonyltransferase, has been elucidated.


Asunto(s)
Fragaria , Proantocianidinas , Antocianinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Flavonoides/metabolismo , Proantocianidinas/metabolismo , Flavonoles/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fragaria/genética , Fragaria/metabolismo
9.
Plant Mol Biol ; 114(2): 32, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512490

RESUMEN

Salinity is a pivotal abiotic stress factor with far-reaching consequences on global crop growth, yield, and quality and which includes strawberries. R2R3-MYB transcription factors encompass a range of roles in plant development and responses to abiotic stress. In this study, we identified that strawberry transcription factor FaMYB63 exhibited a significant upregulation in its expression under salt stress conditions. An analysis using yeast assay demonstrated that FaMYB63 exhibited the ability to activate transcriptional activity. Compared with those in the wild-type (WT) plants, the seed germination rate, root length, contents of chlorophyll and proline, and antioxidant activities (SOD, CAT, and POD) were significantly higher in FaMYB63-overexpressing Arabidopsis plants exposed to salt stress. Conversely, the levels of malondialdehyde (MDA) were considerably lower. Additionally, the FaMYB63-overexpressed Arabidopsis plants displayed a substantially improved capacity to scavenge active oxygen. Furthermore, the activation of stress-related genes by FaMYB63 bolstered the tolerance of transgenic Arabidopsis to salt stress. It was also established that FaMYB63 binds directly to the promoter of the salt overly sensitive gene SOS1, thereby activating its expression. These findings identified FaMYB63 as a possible and important regulator of salt stress tolerance in strawberries.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Intercambiadores de Sodio-Hidrógeno , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Tolerancia a la Sal/genética , Intercambiadores de Sodio-Hidrógeno/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fragaria/genética
10.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36864629

RESUMEN

Introgressive hybridization is widespread in wild plants and has important consequences. However, frequent hybridization between species makes the estimation of the species' phylogeny challenging, and little is known about the genomic landscape of introgression as it results from complex interactions of multiple evolutionary processes. Here, we reconstructed the phylogeny of ten wild diploid strawberries with whole genome resequencing data and then investigated the influence of recombination rate variation on phylogeny and introgression. We found that genomic regions with low recombination showed reduced levels of incomplete lineage sorting and introgression, and concentrated phylogenetic signals, thus contributing to the most likely species tree of wild diploid strawberries. We revealed complex and widespread introgression across the genus Fragaria, with an average proportion of approximately 4.1% of the extant genome. Introgression tends to be retained in the regions with high recombination rates and low gene density. Furthermore, we identified four SLF genes under selective sweeps that may play potential roles in the possible regain of self-incompatibility by ancient introgression. Altogether, our study yielded novel insights into the evolutionary history and genomic characteristics of introgression in wild diploid strawberries and provides evidence for the role of introgression in plant mating system transitions.


Asunto(s)
Fragaria , Filogenia , Fragaria/genética , Diploidia , Genoma , Hibridación Genética , Recombinación Genética
11.
BMC Plant Biol ; 24(1): 405, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750420

RESUMEN

BACKGROUND: In plants, epigenetic stress memory has so far been found to be largely transient. Here, we wanted to assess the heritability of heat stress-induced epigenetic and transcriptomic changes following woodland strawberry (Fragaria vesca) reproduction. Strawberry is an ideal model to study epigenetic inheritance because it presents two modes of reproduction: sexual (self-pollinated plants) and asexual (clonally propagated plants named daughter plants). Taking advantage of this model, we investigated whether heat stress-induced DNA methylation changes can be transmitted via asexual reproduction. RESULTS: Our genome-wide study provides evidence for stress memory acquisition and maintenance in F. vesca. We found that specific DNA methylation marks or epimutations are stably transmitted over at least three asexual generations. Some of the epimutations were associated with transcriptional changes after heat stress. CONCLUSION: Our findings show that the strawberry methylome and transcriptome respond with a high level of flexibility to heat stress. Notably, independent plants acquired the same epimutations and those were inherited by their asexual progenies. Overall, the asexual progenies can retain some information in the genome of past stresses encountered by their progenitors. This molecular memory, also documented at the transcriptional level, might be involved in functional plasticity and stress adaptation. Finally, these findings may contribute to novel breeding approaches for climate-ready plants.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Fragaria , Respuesta al Choque Térmico , Transcriptoma , Fragaria/genética , Fragaria/fisiología , Respuesta al Choque Térmico/genética , Epigenómica , Regulación de la Expresión Génica de las Plantas , Reproducción Asexuada/genética
12.
Plant Biotechnol J ; 22(6): 1552-1565, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38184782

RESUMEN

The strawberry genus, Fragaria, exhibits a wide range of sexual systems and natural ploidy variation. Nearly, all polyploid strawberry species exhibit separate sexes (dioecy). Research has identified the sex-determining sequences as roughly conserved but with repeatedly changed genomic locations across octoploid strawberries. However, it remains unclear whether tetraploid wild strawberries evolved dioecy independently or shared a common origin with octoploid strawberries. In this study, we investigated the sex determinants of F. moupinensis, a dioecious plant with heterogametic females (ZW). Utilizing a combination of haplotype-resolved genome sequencing of the female F. moupinensis, k-mer-based and coverage-based genome-wide association studies (GWAS), and transcriptomic analysis, we discovered a non-recombining, approximately 33.6 kb W-specific region on chromosome 2a. Within this region, only one candidate sex-determining gene (FmoAFT) was identified. Furthermore, an extensive resequencing of the entire Fragaria genus indicated that the W-specific region displays conservative female specificity across all tetraploid species. This observation suggests that dioecy evolved independently in tetraploid and octoploid strawberries. Moreover, employing virus-induced gene silencing (VIGS), we knocked down the expression of the FmoAFT homologue transcript in cultivated strawberries, revealing its potential role in promoting female functions during early carpel development. We also applied DNA affinity purification sequencing (DAP-seq) and yeast one-hybrid assays to identify potential direct targets of FmoAFT. These insights shed new light on the genetic basis and evolutionary history of sex determination in strawberries, thereby facilitating the formulation of strategies to manipulate sex determination in breeding programs.


Asunto(s)
Fragaria , Genoma de Planta , Estudio de Asociación del Genoma Completo , Tetraploidía , Fragaria/genética , Fragaria/crecimiento & desarrollo , Genoma de Planta/genética , Cromosomas de las Plantas/genética
13.
New Phytol ; 241(4): 1621-1635, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38058250

RESUMEN

Due to the accelerating climate change, it is crucial to understand how plants adapt to rapid environmental changes. Such adaptation may be mediated by epigenetic mechanisms like DNA methylation, which could heritably alter phenotypes without changing the DNA sequence, especially across clonal generations. However, we are still missing robust evidence of the adaptive potential of DNA methylation in wild clonal populations. Here, we studied genetic, epigenetic and transcriptomic variation of Fragaria vesca, a predominantly clonally reproducing herb. We examined samples from 21 natural populations across three climatically distinct geographic regions, as well as clones of the same individuals grown in a common garden. We found that epigenetic variation was partly associated with climate of origin, particularly in non-CG contexts. Importantly, a large proportion of this variation was heritable across clonal generations. Additionally, a subset of these epigenetic changes affected the expression of genes mainly involved in plant growth and responses to pathogen and abiotic stress. These findings highlight the potential influence of epigenetic changes on phenotypic traits. Our findings indicate that variation in DNA methylation, which can be environmentally inducible and heritable, may enable clonal plant populations to adjust to their environmental conditions even in the absence of genetic adaptation.


Asunto(s)
Metilación de ADN , Fragaria , Humanos , Metilación de ADN/genética , Fragaria/genética , Epigénesis Genética , Fenotipo , Plantas/genética , Células Clonales
14.
Plant Physiol ; 191(1): 335-351, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36200851

RESUMEN

RNA-directed DNA methylation (RdDM) is an epigenetic process that directs silencing to specific genomic regions and loci. The biological functions of RdDM are not well studied in horticultural plants. Here, we isolated the ethyl methane-sulfonate-induced mutant reduced organ size (ros) producing small leaves, flowers, and fruits in woodland strawberry (Fragaria vesca) due to reduced cell numbers compared with that in the wild-type (WT). The candidate mutation causes a premature stop codon in FvH4_6g28780, which shares high similarity to Arabidopsis (Arabidopsis thaliana) Factor of DNA Methylation1 (FDM1) encoding an RdDM pathway component and was named FveFDM1. Consistently, the fvefdm1CR mutants generated by CRISPR/Cas9 also produced smaller organs. Overexpressing FveFDM1 in an Arabidopsis fdm1-1 fdm2-1 double mutant restored DNA methylation at the RdDM target loci. FveFDM1 acts in a protein complex with its homolog Involved in De Novo 2 (FveIDN2). Furthermore, whole-genome bisulfite sequencing revealed that DNA methylation, especially in the CHH context, was remarkably reduced throughout the genome in fvefdm1. Common and specific differentially expressed genes were identified in different tissues of fvefdm1 compared to in WT tissues. DNA methylation and expression levels of several gibberellic acid (GA) biosynthesis and cell cycle genes were validated. Moreover, the contents of GA and auxin were substantially reduced in the young leaves of fvefdm1 compared to in the WT. However, exogenous application of GA and auxin could not recover the organ size of fvefdm1. In addition, expression levels of FveFDM1, FveIDN2, Nuclear RNA Polymerase D1 (FveNRPD1), Domains Rearranged Methylase 2 (FveDRM2), and cell cycle genes were greatly induced by GA treatment. Overall, our work demonstrated the critical roles of FveFDM1 in plant growth and development via RdDM-mediated DNA methylation in horticultural crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fragaria , Metilación de ADN/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Fragaria/genética , Fragaria/metabolismo , Proteínas de Arabidopsis/metabolismo , Tamaño de los Órganos/genética , Regulación de la Expresión Génica de las Plantas , ARN Interferente Pequeño/genética , ADN de Plantas/metabolismo
15.
Plant Physiol ; 192(4): 2737-2755, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37086480

RESUMEN

Magnesium chelatase (MgCh) catalyzes the insertion of magnesium into protoporphyrin IX, a vital step in chlorophyll (Chl) biogenesis. The enzyme consists of 3 subunits, MgCh I subunit (CHLI), MgCh D subunit (CHLD), and MgCh H subunit (CHLH). The CHLI subunit is an ATPase that mediates catalysis. Previous studies on CHLI have mainly focused on model plant species, and its functions in other species have not been well described, especially with regard to leaf coloration and metabolism. In this study, we identified and characterized a CHLI mutant in strawberry species Fragaria pentaphylla. The mutant, noted as p240, exhibits yellow-green leaves and a low Chl level. RNA-Seq identified a mutation in the 186th amino acid of the CHLI subunit, a base conserved in most photosynthetic organisms. Transient transformation of wild-type CHLI into p240 leaves complemented the mutant phenotype. Further mutants generated from RNA-interference (RNAi) and CRISPR/Cas9 gene editing recapitulated the mutant phenotype. Notably, heterozygous chli mutants accumulated more Chl under low light conditions compared with high light conditions. Metabolite analysis of null mutants under high light conditions revealed substantial changes in both nitrogen and carbon metabolism. Further analysis indicated that mutation in Glu186 of CHLI does not affect its subcellular localization nor the interaction between CHLI and CHLD. However, intramolecular interactions were impaired, leading to reduced ATPase and MgCh activity. These findings demonstrate that Glu186 plays a key role in enzyme function, affecting leaf coloration via the formation of the hexameric ring itself, and that manipulation of CHLI may be a means to improve strawberry plant fitness and photosynthetic efficiency under low light conditions.


Asunto(s)
Fragaria , Liasas , Mutación Puntual , Fragaria/genética , Fragaria/metabolismo , Liasas/genética , Liasas/metabolismo , Mutación/genética , Adenosina Trifosfatasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Clorofila/metabolismo
16.
Plant Physiol ; 193(2): 900-914, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37399254

RESUMEN

The strawberry is one of the world's most popular fruits, providing humans with vitamins, fibers, and antioxidants. Cultivated strawberry (Fragaria × ananassa) is an allo-octoploid and highly heterozygous, making it a challenge for breeding, quantitative trait locus (QTL) mapping, and gene discovery. Some wild strawberry relatives, such as Fragaria vesca, have diploid genomes and are becoming laboratory models for the cultivated strawberry. Recent advances in genome sequencing and CRISPR-mediated genome editing have greatly improved the understanding of various aspects of strawberry growth and development in both cultivated and wild strawberries. This review focuses on fruit quality traits that are most relevant to the consumers, including fruit aroma, sweetness, color, firmness, and shape. Recently available phased-haplotype genomes, single nucleotide polymorphism (SNP) arrays, extensive fruit transcriptomes, and other big data have made it possible to locate key genomic regions or pinpoint specific genes that underlie volatile synthesis, anthocyanin accumulation for fruit color, and sweetness intensity or perception. These new advances will greatly facilitate marker-assisted breeding, the introgression of missing genes into modern varieties, and precise genome editing of selected genes and pathways. Strawberries are poised to benefit from these recent advances, providing consumers with fruit that is tastier, longer-lasting, healthier, and more beautiful.


Asunto(s)
Fragaria , Humanos , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Fitomejoramiento , Mapeo Cromosómico , Antocianinas/genética , Antocianinas/metabolismo
17.
Plant Physiol ; 192(1): 240-255, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732676

RESUMEN

The plant-specific transcription factor LEAFY (LFY), generally maintained as a single-copy gene in most angiosperm species, plays critical roles in flower development. The woodland strawberry (Fragaria vesca) possesses four LFY homologs in the genome; however, their respective functions and evolution remain unknown. Here, we identified and validated that mutations in one of the four LFY homologs, FveLFYa, cause homeotic conversion of floral organs and reiterative outgrowth of ectopic flowers. In contrast to FveLFYa, FveLFYb/c/d appear dispensable under normal growth conditions, as fvelfyc mutants are indistinguishable from wild type and FveLFYb and FveLFYd are barely expressed. Transgenic analysis and yeast one-hybrid assay showed that FveLFYa and FveLFYb, but not FveLFYc and FveLFYd, are functionally conserved with AtLFY in Arabidopsis (Arabidopsis thaliana). Unexpectedly, LFY-binding site prediction and yeast one-hybrid assay revealed that the transcriptional links between LFY and the APETALA1 (AP1) promoter/the large AGAMOUS (AG) intron are missing in F. vesca, which is due to the loss of LFY-binding sites. The data indicate that mutations in cis-regulatory elements could contribute to LFY evolution. Moreover, we showed that FveLFYa is involved in leaf development, as approximately 30% of mature leaves have smaller or fewer leaflets in fvelfya. Phylogenetic analysis indicated that LFY homologs in Fragaria species may arise from recent duplication events in their common ancestor and are undergoing convergent gene loss. Together, these results provide insight into the role of LFY in flower and leaf development in strawberry and have important implications for the evolution of LFY.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fragaria , Fragaria/genética , Fragaria/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Filogenia , Saccharomyces cerevisiae/metabolismo , Arabidopsis/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Flores , Regulación de la Expresión Génica de las Plantas
18.
Plant Physiol ; 193(3): 1849-1865, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37477940

RESUMEN

Fruit color is a very important external commodity factor for consumers. Compared to the most typical red octoploid strawberry (Fragaria × ananassa), the pink strawberry often sells for a more expensive price and has a higher economic benefit due to its outstanding color. However, few studies have examined the molecular basis of pink-colored strawberry fruit. Through an EMS mutagenesis of woodland strawberry (Fragaria vesca), we identified a mutant with pink fruits and green petioles. Bulked-segregant analysis sequencing analysis and gene function verification confirmed that the responsible mutation resides in a gene encoding flavanone-3-hydroxylase (F3H) in the anthocyanin synthesis pathway. This nonsynonymous mutation results in an arginine-to-histidine change at position 130 of F3H. Molecular docking experiments showed that the arginine-to-histidine mutation results in a reduction of intermolecular force-hydrogen bonding between the F3H protein and its substrates. Enzymatic experiments showed a greatly reduced ability of the mutated F3H protein to catalyze the conversion of the substrates and hence a blockage of the anthocyanin synthesis pathway. The discovery of a key residue in the F3H gene controlling anthocyanin synthesis provides a clear target of modification for the molecular breeding of strawberry varieties with pink-colored fruits, which may be of great commercial value.


Asunto(s)
Flavanonas , Fragaria , Antocianinas/genética , Antocianinas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Histidina/genética , Histidina/metabolismo , Simulación del Acoplamiento Molecular , Oxigenasas de Función Mixta/metabolismo , Mutación/genética , Flavanonas/metabolismo
19.
Plant Cell Environ ; 47(6): 2258-2273, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38482979

RESUMEN

Sirtuins (SRTs) are a group of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that target both histone and nonhistone proteins. The biological function of SRT in horticultural plants has been rarely studied. In this study, FaSRT1-2 was identified as a key member of the 8 FaSRTs encoded in cultivated strawberry genome. Transient overexpression of FaSRT1-2 in strawberry fruit accelerated ripening, increased the content of anthocyanins and sugars, enhanced ripening-related gene expression. Moreover, stable transformation of FaSRT1-2 in strawberry plants resulted in enhanced vegetative growth, increased sensitivity to heat stress and increased susceptibility to Botrytis cinerea infection. Interestingly, knocking out the homologous gene in woodland strawberry had the opposite effects. Additionally, we found the content of stress-related hormone abscisic acid (ABA) was decreased, while the growth-related gibberellin (GA) concentration was increased in FaSRT1-2 overexpression lines. Gene expression analysis revealed induction of heat shock proteins, transcription factors, stress-related and antioxidant genes in the FaSRT1-2-overexpressed plants while knocked-out of the gene had the opposite impact. In conclusion, our findings demonstrated that FaSRT1-2 could positively promote strawberry plant vegetative growth and fruit ripening by affecting ABA and GA pathways. However, it negatively regulates the resistance to heat stress and B. cinerea infection by influencing the related gene expression.


Asunto(s)
Botrytis , Fragaria , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Fragaria/genética , Fragaria/crecimiento & desarrollo , Fragaria/fisiología , Fragaria/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Botrytis/fisiología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/metabolismo , Plantas Modificadas Genéticamente , Resistencia a la Enfermedad/genética
20.
Plant Cell ; 33(5): 1574-1593, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33624824

RESUMEN

In contrast to climacteric fruits such as tomato, the knowledge on key regulatory genes controlling the ripening of strawberry, a nonclimacteric fruit, is still limited. NAC transcription factors (TFs) mediate different developmental processes in plants. Here, we identified and characterized Ripening Inducing Factor (FaRIF), a NAC TF that is highly expressed and induced in strawberry receptacles during ripening. Functional analyses based on stable transgenic lines aimed at silencing FaRIF by RNA interference, either from a constitutive promoter or the ripe receptacle-specific EXP2 promoter, as well as overexpression lines showed that FaRIF controls critical ripening-related processes such as fruit softening and pigment and sugar accumulation. Physiological, metabolome, and transcriptome analyses of receptacles of FaRIF-silenced and overexpression lines point to FaRIF as a key regulator of strawberry fruit ripening from early developmental stages, controlling abscisic acid biosynthesis and signaling, cell-wall degradation, and modification, the phenylpropanoid pathway, volatiles production, and the balance of the aerobic/anaerobic metabolism. FaRIF is therefore a target to be modified/edited to control the quality of strawberry fruits.


Asunto(s)
Fragaria/crecimiento & desarrollo , Fragaria/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Pared Celular/metabolismo , Metabolismo Energético , Fermentación , Fragaria/genética , Regulación de la Expresión Génica de las Plantas , Glucólisis , Lignina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Propanoles/metabolismo , Interferencia de ARN , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA