Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
Más filtros

Intervalo de año de publicación
1.
Arch Toxicol ; 96(2): 559-570, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35048155

RESUMEN

Prothioconazole (PTC) is a new broad-spectrum triazole antibacterial agent that is being widely used in agriculture. PTC has been linked to a number of reproductive outcomes including embryo implantation disorder; however, the exact mechanism underlying this relationship has yet to be determined. Proper trophoblast proliferation and migration is a prerequisite for successful embryo implantation. To elucidate the underlying molecular perturbations, we detect the effect of PTC on extravillous trophoblast cells proliferation and migration, and investigate its potential mechanisms. Exposure to different concentrations of PTC (0-500 µM) significantly inhibited the cell viability and migration ability (5 µM PTC exposure), and also caused the cell cycle arrest at the lowest dose (1 µM PTC exposure). Transcriptome analysis revealed that PTC exposure disturbed multiple biological processes including cell cycle and apoptosis, consistent with cell phenotype. Specifically, eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1, 4E-BP1) was identified as up-regulated in PTC exposure group and knockdown of EIF4EBP1, and attenuated the G1 phase arrest induced by PTC exposure. In summary, our data demonstrated that 4E-BP1 participated in PTC-induced cell cycle arrest in extravillous trophoblast cells by regulating cyclin D1. These findings shed light on the potential adverse effect of PTC exposure on the embryo implantation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Triazoles/toxicidad , Trofoblastos/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina D1/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/toxicidad , Técnicas de Silenciamiento del Gen , Humanos , Triazoles/administración & dosificación , Trofoblastos/citología , Regulación hacia Arriba/efectos de los fármacos
2.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163447

RESUMEN

Botrytis cinerea is considered an important plant pathogen and is responsible for significant crop yield losses. With the frequent application of commercial fungicides, B. cinerea has developed resistance to many frequently used fungicides. Therefore, it is necessary to develop new kinds of fungicides with high activity and new modes of action to solve the increasingly serious problem of resistance. During our screening of fungicide candidates, one novel sulfonamide compound, N-(2-trifluoromethyl-4-chlorphenyl)-2-oxocyclohexyl sulfonamide (L13), has been found to exhibit good fungicidal activity against B. cinerea. In this work, the mode of action of L13 against B. cinerea and the field control effect on tomato gray mold was studied. L13 had good control against B. cinerea resistant to carbendazim, diethofencarb, and iprodione commercial fungicides in the pot culture experiments. SEM and TEM observations revealed that L13 could cause obvious morphological and cytological changes to B. cinerea, including excessive branching, irregular ramification or abnormal configuration, and the decomposition of cell wall and vacuole. L13 induced more significant electrolyte leakage from hyphae than procymidone as a positive control. L13 had only a minor effect on the oxygen consumption of intact mycelia, with 2.15% inhibition at 50 µg/mL. In two locations over 2 years, the field control effect of L13 against tomato gray mold reached 83% at a rate of 450 g ai ha-1, better than the commercial fungicide of iprodione. Moreover, toxicological tests demonstrated the low toxicological effect of L13. This research seeks to provide technical support and theoretical guidance for L13 to become a real commercial fungicide.


Asunto(s)
Botrytis/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control , Solanum lycopersicum/crecimiento & desarrollo , Sulfonamidas/farmacología , Administración Cutánea , Administración Oral , Animales , Botrytis/efectos de los fármacos , Botrytis/metabolismo , Pared Celular/efectos de los fármacos , Farmacorresistencia Fúngica , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/efectos adversos , Solanum lycopersicum/microbiología , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Estructura Molecular , Conejos , Ratas , Piel/efectos de los fármacos , Sulfonamidas/administración & dosificación , Sulfonamidas/efectos adversos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
3.
Chem Res Toxicol ; 34(12): 2441-2449, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34793142

RESUMEN

Triazole fungicides are widely used in agriculture that leads to pollution of freshwater ecosystems. The mechanisms of toxicity to fish by the triazole fungicide Topas that contains penconazole (1-[2-(2,4-dichlorophenyl)pentyl]-1H-1,2,4-triazole) have not been studied. The present study aimed to evaluate the effect of goldfish exposure for 96 h to the fungicide Topas at concentrations of 1.5, 15, or 25 mg/L on the plasma and liver biochemical parameters and blood hematological profile. Goldfish exposure to Topas decreased alanine and aspartate transaminase activity and increased lactate dehydrogenase activity in the liver. Plasma lactate dehydrogenase and alanine transaminase activities were elevated in fungicide-treated fish. Topas exposure also enhanced plasma glucose and triacylglycerol concentrations. In the liver, fungicide treatment decreased levels of glucose but elevated triacylglycerols, glycogen, and protein. The results indicate that acute exposure of goldfish to Topas induced strong metabolic perturbations and disruptions of metabolic parameters, suggesting that these could be used to assess sublethal or acute toxic effects of pesticides on aquatic species.


Asunto(s)
Fungicidas Industriales/toxicidad , Glucosa/antagonistas & inhibidores , Hígado/efectos de los fármacos , Triazoles/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/química , Glucosa/metabolismo , Carpa Dorada , Hígado/metabolismo , Estructura Molecular , Triazoles/administración & dosificación , Triazoles/química
4.
Arch Toxicol ; 95(3): 1071-1079, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33245377

RESUMEN

The fungicide Iprodione is widely applied in vegetables and raises concern for human health. The A549 human lung carcinoma cell line is a suitable model for assessing the toxicological effects of drugs. The goal of this work was to evaluate the genotoxicity and oxidative stress in the A549 cell line exposed to sublethal concentrations from 3 to 100 µg/mL Iprodione considering LC50 = 243.4 µg/mL Iprodione, as determined by the MTT assay. Generalized Linear Mixed Models (GLMM) were performed to determine the association between the responses NDI, MNim and MNib and the explanatory variables. Iprodione and solvent were relativized to the control whereas the concentration was included as numeric variable. ANOVA was used for the comparison of treatments. The coefficients of linear association between the explanatory variables and NDI, and the coefficients of logistic association between explanatory variables and MNim were not significant. However, these coefficients showed significant association with MNib only for Iprodione treatment but not for Iprodione concentration, indicating lack of dose-response relationship. Genotoxicity risk assessment indicated that the increase in Iprodione concentrations increased slightly the probability of belonging to the genotoxic category. ANOVA showed significant differences in MNib, and non-significant differences in NDI and MNim among treatments. The oxidative stress analysis performed at 3, 12, and 25 µg/mL Iprodione showed a significant and linear increase in SOD, and a significant and linear decrease in GSH and GST. The Dunnett test was significant for GSH at 12 and SOD at 25 µg/mL.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Fungicidas Industriales/toxicidad , Hidantoínas/toxicidad , Mutágenos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Células A549 , Aminoimidazol Carboxamida/administración & dosificación , Aminoimidazol Carboxamida/toxicidad , Relación Dosis-Respuesta a Droga , Fungicidas Industriales/administración & dosificación , Humanos , Hidantoínas/administración & dosificación , Dosificación Letal Mediana , Neoplasias Pulmonares/metabolismo , Pruebas de Mutagenicidad , Mutágenos/administración & dosificación , Medición de Riesgo , Superóxido Dismutasa/metabolismo
5.
Arch Toxicol ; 95(12): 3777-3786, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34635929

RESUMEN

Thifluzamide is widely used fungicide and frequently detected in aquatic system. In this study, the toxicity of fungicide thifluzamide to non-targeted aquatic organisms was investigated for neuroendocrine disruption potentials. Here, zebrafish embryos were exposed to a series of concentrations of thifluzamide for 6 days. The results showed that both the development of embryos/larvae and the behavior of hatched larvae were significantly affected by thifluzamide. Importantly, the decreased activity of acetylcholinesterase (AchE) and the increased contents of neurotransmitters such as serotonin (5-HT) and norepinephrine (NE), along with transcriptional changes of nervous system related genes were observed following 4 days exposure to thifluzamide. Besides, the decreased contents of triiodothyronine (T3) and thyroxine (T4) in whole body, as well as significant expression alteration in hypothalamic-pituitary-thyroid (HPT) axis associated genes were discovered in zebrafish embryos after 4 days of exposure to thifluzamide. Our results clearly demonstrated that zebrafish embryos exposed to thifluzamide could disrupt neuroendocrine, compromise behavior and induce developmental abnormality, suggesting impact of this fungicide on developmental programming in zebrafish.


Asunto(s)
Anilidas/toxicidad , Disruptores Endocrinos/toxicidad , Fungicidas Industriales/toxicidad , Tiazoles/toxicidad , Acetilcolinesterasa/metabolismo , Anilidas/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/efectos de los fármacos , Disruptores Endocrinos/administración & dosificación , Fungicidas Industriales/administración & dosificación , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Larva/efectos de los fármacos , Norepinefrina/metabolismo , Serotonina/metabolismo , Tiazoles/administración & dosificación , Hormonas Tiroideas/metabolismo , Pez Cebra
6.
Drug Chem Toxicol ; 44(5): 550-557, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32498565

RESUMEN

Azoxystrobin is a broad-spectrum fungicide used worldwide. Since azoxystrobin spreads to large areas, its toxic effects on non-target organisms have aroused interest. In this study, the acute toxicity (96 h) of azoxystrobin on the crayfish (Astacus leptodactylus) was examined by using various biomarkers. The 96 h-LC50 dose (1656 mg L-) and its three sub-doses (828, 414, 207 mg L-1) were applied to crayfish. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were increased significantly compared to the control in hepatopancreas, gill and muscle tissues. The activities of acetylcholinesterase (AChE) and glutathione S-transferase (GST) increased, and glutathione reductase (GR) activity decreased significantly in hepatopancreas. Level of reduced glutathione (GSH) decreased significantly. The content of malondialdehyde (MDA) increased in a dose-dependent manner in all azoxystrobin treatments with the exception of the lowest dose (207 mg L-1)treatment. ATPases (Na+/K+ -ATPase, Mg2+ -ATPase, Ca2+ -ATPase, total ATPase) were significantly inhibited in gill and muscle tissues. The results of the present study indicate that azoxystrobin induces oxidative stress, and has adverse effects on activities of AChE and ATPases in crayfish.


Asunto(s)
Astacoidea/efectos de los fármacos , Fungicidas Industriales/toxicidad , Estrés Oxidativo/efectos de los fármacos , Pirimidinas/toxicidad , Estrobilurinas/toxicidad , Acetilcolinesterasa/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Adenosina Trifosfatasas/efectos de los fármacos , Adenosina Trifosfatasas/metabolismo , Animales , Biomarcadores/metabolismo , Relación Dosis-Respuesta a Droga , Fungicidas Industriales/administración & dosificación , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Dosificación Letal Mediana , Pirimidinas/administración & dosificación , Estrobilurinas/administración & dosificación , Superóxido Dismutasa/metabolismo , Pruebas de Toxicidad Aguda
7.
Biochem Biophys Res Commun ; 527(1): 42-48, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32446389

RESUMEN

The fungicide Mancozeb is an endocrine-disrupting chemical and the mode of action of Mancozeb on embryo implantation is largely unknown. Mancozeb (1 and 3 µg/ml) significantly reduced Jeg-3 trophoblastic spheroids attachment to endometrial epithelial Ishikawa cells. Mancozeb treatment from gestation day (GD) 1 to GD8 or from GD4 to GD8 significantly lowered the number of implantation sites with higher incidence of morphological abnormalities in the reproductive tissues. However, these were not seen in the treatment from GD1 to GD4. Mancozeb at 30 mg/kg BW/d did not alter the expression of p53, COX-2, or PGFS transcripts in the uterus, but down-regulated the PGES transcript and protein. Mancozeb treatment in human endometrial stromal cells did not alter the decidualization response, but the morphological transformation was impaired. Taken together, exposure to Mancozeb affected embryo implantation probably through the modulation of decidualization and to delineate the exact mode of action needs further investigations.


Asunto(s)
Implantación del Embrión/efectos de los fármacos , Fungicidas Industriales/efectos adversos , Maneb/efectos adversos , Zineb/efectos adversos , Animales , Línea Celular , Femenino , Fungicidas Industriales/administración & dosificación , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Maneb/administración & dosificación , Ratones Endogámicos ICR , Zineb/administración & dosificación
8.
Regul Toxicol Pharmacol ; 113: 104655, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32268158

RESUMEN

The derivation of an apical endpoint point of departure (POD) from animal-intensive testing programs has been the traditional cornerstone of human health risk assessment. Replacement of in vivo chronic studies with novel approaches, such as toxicogenomics, holds promise for future alternative testing paradigms that significantly reduce animal testing. We hypothesized that a toxicogenomic POD following a 14 day exposure in the rat would approximate the most sensitive apical endpoint POD derived from a battery of chronic, carcinogenicity, reproduction and endocrine guideline toxicity studies. To test this hypothesis, we utilized myclobutanil, a triazole fungicide, as a model compound. In the 14 day study, male rats were administered 0 (vehicle), 30, 150, or 400 mg/kg/day myclobutanil via oral gavage. Endpoints evaluated included traditional apical, hormone, and liver and testis transcriptomic (whole genome RNA sequencing) data. From the transcriptomic data, liver and testis biological effect POD (BEPOD) values were derived. Myclobutanil exposure for 14 days resulted in increased liver weight, altered serum hormones, liver histopathology, and differential gene expression in liver and testis. The liver and testis BEPODs from the short-term study were 22.2 and 25.4 mg/kg/day, respectively. These BEPODs were approximately an order of magnitude higher than the most sensitive apical POD identified from the two year cancer bioassay based on testis atrophy (1.4 mg/kg/day). This study demonstrates the promise of using a short-term study BEPOD to derive a POD for human health risk assessment while substantially reducing animal testing.


Asunto(s)
Modelos Animales de Enfermedad , Fungicidas Industriales/toxicidad , Hígado/efectos de los fármacos , Nitrilos/toxicidad , Testículo/efectos de los fármacos , Toxicogenética , Triazoles/toxicidad , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Fungicidas Industriales/administración & dosificación , Hígado/metabolismo , Hígado/patología , Masculino , Nitrilos/administración & dosificación , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Testículo/metabolismo , Testículo/patología , Factores de Tiempo , Pruebas de Toxicidad Subaguda , Triazoles/administración & dosificación
9.
Phytopathology ; 109(1): 74-83, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30019996

RESUMEN

The hop powdery mildew fungus Podosphaera macularis persists from season to season in the Pacific Northwestern United States through infection of crown buds because only one of the mating types needed to produce the ascigerous stage is presently found in this region. Bud infection and successful overwintering of the fungus leads to the emergence of heavily infected shoots in early spring (termed flag shoots). Historical data of flag shoot occurrence and incidence in Oregon and Washington State during 2000 to 2017 were analyzed to identify their association with the incidence of powdery mildew, growers' use of fungicides, autumn and winter temperature, and other production factors. During this period, flag shoots were found on 0.05% of plants evaluated in Oregon and 0.57% in Washington. In Oregon, the incidence of powdery mildew on leaves was most severe and the number of fungicide applications made by growers greatest in yards where flag shoots were found in spring. Similarly, the incidence of plants with powdery mildew in Washington was significantly associated with the number of flag shoots present in early spring, although the number of fungicide applications made was independent of flag shoot occurrence. The occurrence of flag shoots was associated with prior occurrence of flag shoots in a yard, the incidence of foliar powdery mildew in the previous year, grower pruning method, and, in Washington, winter temperature. A census of hop yards in the eastern extent of the Oregon production region during 2014 to 2017 found flag shoots in 27 of 489 yards evaluated. In yards without flag shoots, 338 yards (73.2%) were chemically pruning or not pruned, whereas the remaining 124 (26.8%) were mechanically pruned. Of the 27 yards with flag shoots, 22 were either chemically pruned or not pruned and 4 were mechanically pruned in mid-April, well after the initial emergence of flag shoots. The prevalence of yards with flag shoots also was related to thoroughness of pruning in spring (8.1% of yards with incomplete pruning versus 1.9% of yards with thorough pruning). A Bayesian logistic regression model was fit to the data from the intensively assessed yards in Oregon, with binary risk factors for occurrence of a flag shoot in the previous year, occurrence of foliar mildew in the previous year, and thoroughness of pruning in spring. The model indicated that the median and 95% highest posterior density interval of the probability of flag shoot occurrence was 0.0008 (0.0000 to 0.0053) when a yard had no risk factors but risk increased to 0.0065 (0.0000 to 0.0283) to 0.43 (0.175 to 0.709) when one to all three of the risk factors were present. The entirety of this research indicates that P. macularis appears to persist in a subset of chronically affected hop yards, particularly yards where spring pruning is conducted poorly. Targeted management of the disease in a subset of fields most at risk for producing flag shoots could potentially influence powdery mildew development regionwide.


Asunto(s)
Ascomicetos/patogenicidad , Humulus/microbiología , Enfermedades de las Plantas/microbiología , Teorema de Bayes , Fungicidas Industriales/administración & dosificación , Oregon , Factores de Riesgo , Washingtón
10.
Arch Toxicol ; 93(9): 2545-2553, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31359083

RESUMEN

Tebuconazole (TEB) is a widely used triazole fungicide, but the toxicokinetics of its human metabolites are not fully described. For proper interpretation of biological monitoring data, knowledge on the metabolism and elimination of the compound is required. A human volunteer study was performed with the aim to describe the time courses of urinary excretion after controlled oral and dermal administration of TEB. Six healthy volunteers (three males and three females) received on separate occasions a single oral dose of 1.5 mg of TEB and a single dermal dose of 2.5 mg during 1 h. In addition to a pre-exposure urine sample, complete urine voids were collected over 48 h post-administration. The main metabolite hydroxy-tebuconazole (TEB-OH) was quantified in each urine sample. Peak excretion rates after oral and dermal administration were reached after 1.4 and 21 h, mean elimination half-lives were 7.8 and 16 h, and recoveries within 48 h were 38% and 1%, respectively. The time courses of excretion were compared to simulations with an established physiologically based toxicokinetic model for TEB that was extended with a parallel model for TEB-OH. Overall, TEB-OH was rapidly excreted into urine after oral exposure, and renal elimination was considerably slower after dermal exposure. Urinary time courses between individuals were similar. The model predictions were in good agreement with the observed time courses of excretion.


Asunto(s)
Fungicidas Industriales , Modelos Biológicos , Triazoles , Administración Cutánea , Administración Oral , Adulto , Femenino , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/toxicidad , Fungicidas Industriales/orina , Voluntarios Sanos , Humanos , Masculino , Toxicocinética , Triazoles/administración & dosificación , Triazoles/toxicidad , Triazoles/orina , Adulto Joven
11.
Phytopathology ; 108(7): 803-817, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29377769

RESUMEN

Whether fungicide resistance management is optimized by spraying chemicals with different modes of action as a mixture (i.e., simultaneously) or in alternation (i.e., sequentially) has been studied by experimenters and modelers for decades. However, results have been inconclusive. We use previously parameterized and validated mathematical models of wheat Septoria leaf blotch and grapevine powdery mildew to test which tactic provides better resistance management, using the total yield before resistance causes disease control to become economically ineffective ("lifetime yield") to measure effectiveness. We focus on tactics involving the combination of a low-risk and a high-risk fungicide, and the case in which resistance to the high-risk chemical is complete (i.e., in which there is no partial resistance). Lifetime yield is then optimized by spraying as much low-risk fungicide as is permitted, combined with slightly more high-risk fungicide than needed for acceptable initial disease control, applying these fungicides as a mixture. That mixture rather than alternation gives better performance is invariant to model parameterization and structure, as well as the pathosystem in question. However, if comparison focuses on other metrics, e.g., lifetime yield at full label dose, either mixture or alternation can be optimal. Our work shows how epidemiological principles can explain the evolution of fungicide resistance, and also highlights a theoretical framework to address the question of whether mixture or alternation provides better resistance management. It also demonstrates that precisely how spray tactics are compared must be given careful consideration. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


Asunto(s)
Ascomicetos/efectos de los fármacos , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Relación Dosis-Respuesta a Droga , Farmacorresistencia Fúngica , Modelos Biológicos , Triticum/microbiología
12.
Phytopathology ; 108(9): 1078-1088, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29658843

RESUMEN

Foliar fungicide use in hybrid maize in the United States was rare before 2000. The decade from 2000 to 2010 saw foliar fungicides increasingly applied to maize in the absence of appreciable disease pressure, a practice seemingly at odds with integrated pest management philosophy. Yet, it is commonly believed that growers do not employ management strategies unless there are perceived benefits. Maize (corn) growers (CGs) and certified crop advisors (CCAs) across four Midwestern states (Iowa, Illinois, Ohio, and Wisconsin) were surveyed to better understand their practices, values and perceptions concerning the use of foliar fungicides during 2005 to 2009. The survey results demonstrated the rapid rise in maize foliar fungicide applications from 2000 through 2008, with 84% of CGs who sprayed having used a foliar fungicide in maize production for the very first time during 2005 to 2009. During 2005 to 2009, 73% of CCAs had recommended using a foliar fungicide, but only 35% of CGs sprayed. Perceived yield gains, conditional on having sprayed, were above the break-even point on average. However, negative yield responses were also observed by almost half of CCAs and a quarter of CGs. Hybrid disease resistance was a more important factor to economically successful maize production than foliar fungicides. Diseases as a yield-limiting factor were more important to CGs than CCAs. As a group, CGs were not as embracing of foliar fungicide as were CCAs, and remained more conservative about the perceived benefits to yield.


Asunto(s)
Resistencia a la Enfermedad , Fungicidas Industriales/administración & dosificación , Enfermedades de las Plantas/prevención & control , Zea mays/efectos de los fármacos , Consultores , Agricultores , Illinois , Iowa , Ohio , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Encuestas y Cuestionarios , Wisconsin , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/microbiología
13.
Arch Toxicol ; 92(12): 3471-3486, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30293151

RESUMEN

Consumers are exposed to pesticide residues and other food contaminants via the diet. Both can exert adverse effects on different target organs via the activation of nuclear receptor pathways. Hepatotoxic effects of the widely used triazole fungicide propiconazole (Pi) are generally attributed to the activation of the constitutive androstane receptor (CAR) or the pregnane X receptor (PXR). We now investigated the effects of Pi on the aryl hydrocarbon receptor (AHR) and possible mixture toxicity when Pi is present in combination with BbF, an AHR ligand. In silico docking simulations indicate that Pi can bind to human AHR. Subsequent dual luciferase reporter gene assays in human HepG2 cells showed that Pi activates the AHR in vitro. This concentration-dependent activation was confirmed by real-time RT-PCR analyses of the model AHR target genes CYP1A1 and CYP1A2 in human HepaRG and HepG2 cells. In addition, induction of CYP1A1 protein levels and enzyme activity were recorded. Similarly, increased mRNA expression and enzyme activity of Cyp1a1 and Cyp1a2 was observed in livers of rats treated with Pi for 28 days via the diet. Gene expression analysis in AHR-knockout HepaRG cells showed no induction of CYP1A1 and CYP1A2, whereas gene expression in CAR-, and PXR-knockout cells was induced. Finally, mixture effects of Pi and BbF were analyzed in human cell lines: modeling of concentration-response curves revealed concentration additivity. In conclusion, our results demonstrate that the triazole Pi is an activator of AHR in silico, in vitro and in vivo and causes additive effects with an established AHR ligand.


Asunto(s)
Fluorenos/toxicidad , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Triazoles/toxicidad , Animales , Línea Celular , Simulación por Computador , Receptor de Androstano Constitutivo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Relación Dosis-Respuesta a Droga , Fluorenos/administración & dosificación , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/toxicidad , Perfilación de la Expresión Génica/métodos , Técnicas de Inactivación de Genes , Genes Reporteros , Células Hep G2 , Humanos , Ligandos , Hígado/efectos de los fármacos , Simulación del Acoplamiento Molecular , Ratas , Ratas Wistar , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Triazoles/administración & dosificación
14.
J Appl Toxicol ; 38(9): 1244-1250, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29766525

RESUMEN

Compounds and products in the biocide and plant protection sector can only be registered after formal risk assessment to ensure safety for users and the environment. In bird and mammal risk assessment, this is routinely done using generic focal species as models, which are of particular exposure risk. Such a species is the common vole (Microtus arvalis) due to its high food intake relative to the low body weight. For wild species, biological samples, data and hence realistic exposure estimations are particularly difficult to obtain. In recent years, advances have been made in the techniques related to serial microsampling of laboratory mice and rats that allow for a reduction in sampling volumes. Similar progress in wild species sampling is missing. This study presents a proof of concept to dose wild rodents with relevant compounds and to draw serial, low volume blood samples suitable for state-of-the art toxicokinetic analyses. For the first time, the jugular vein of common voles was used to administer compounds (two frequently used fungicidal components). This procedure and the following microsampling of blood (2 × 10 µl six times within 24 hours) from the lateral tail vein did not affect body weight and mortality of voles. Samples were sufficient to detect dissipation patterns of the compounds from blood in toxicokinetic analysis. These results suggest that microsampling can be well translated from laboratory mice to wild rodent species and help to obtain realistic exposure estimates in wild rodents for ecotoxicological studies as well as to promote the 3R concept in studies with wild rodent species.


Asunto(s)
Arvicolinae/sangre , Recolección de Muestras de Sangre/métodos , Dioxoles/toxicidad , Ecotoxicología/métodos , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo del Ambiente/métodos , Fungicidas Industriales/toxicidad , Pirimidinas/toxicidad , Pirroles/toxicidad , Administración Intravenosa , Animales , Dioxoles/administración & dosificación , Dioxoles/sangre , Dioxoles/farmacocinética , Femenino , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/sangre , Fungicidas Industriales/farmacocinética , Masculino , Pirimidinas/administración & dosificación , Pirimidinas/sangre , Pirimidinas/farmacocinética , Pirroles/administración & dosificación , Pirroles/sangre , Pirroles/farmacocinética , Reproducibilidad de los Resultados , Medición de Riesgo , Toxicocinética
15.
J Enzyme Inhib Med Chem ; 33(1): 184-189, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29231762

RESUMEN

For the medical practice, our manuscript acts as a signal, despite only presenting three cases which feature the association between hepatocytolysis, haemolysis and hypermagnesaemia. This clinical-biologic triad was highlighted with the workers who through the nature of their profession were exposing themselves periodically to vapours which contained copper sulphate neutralised with calcium hydroxide, a fungicide used for fruit trees. We are exclusively assessing the haematological perturbation. In this aetiological context, the generating mechanism for haemolysis is very probable biochemical, where hypercupraemia interferes with cellular antioxidant defence mechanisms. Hypothetically, the role of the redox homeostasis disorder in the intravascular destruction of erythrocytes is sustained, and particularly the coexistence of cell cytolysis in the medullary erythroid compartment, which can be assimilated with a possible ineffective erythropoiesis.


Asunto(s)
Anemia Hemolítica/inducido químicamente , Hidróxido de Calcio/efectos adversos , Sulfato de Cobre/efectos adversos , Fungicidas Industriales/efectos adversos , Hipocalcemia/inducido químicamente , Hígado/efectos de los fármacos , Adulto , Anemia Hemolítica/complicaciones , Hidróxido de Calcio/administración & dosificación , Hidróxido de Calcio/química , Sulfato de Cobre/administración & dosificación , Sulfato de Cobre/química , Eritropoyesis/efectos de los fármacos , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/química , Humanos , Hipocalcemia/complicaciones , Hígado/metabolismo , Masculino , Persona de Mediana Edad
16.
Ecotoxicol Environ Saf ; 160: 127-133, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-29793201

RESUMEN

Methylated vegetable oil adjuvants can enhance initial deposition and decrease the required dosages of pesticides sprayed on plants, so an oil adjuvant mixed with fungicides were used to prevent and control gray mold in greenhouse strawberry. As the persistence and dietary exposure risks from fungicides on strawberries after using adjuvants have not been assessed, the efficacy, dissipation and safety of pyrimethanil and boscalid in the presence and absence of a methylated vegetable oil adjuvant were evaluated. To better describe the actual use of fungicides in greenhouse strawberry, twice repeated application of fungicides were conducted follower by an optimized QuEChERS pre-treatment method. When applied at 60% of their recommended dosages with the adjuvant, the efficacy of pyrimethanil and boscalid for gray mold was similar to that shown by the treatment of 100% fungicides in absence of the adjuvant based on Duncan's Multiple-Range test, and their average residues increased to 89.0% and 89.3%, respectively. The adjuvant enhanced the accumulation effect of pyrimethanil residue by 31.7% after repeated applications, and the half-lives were similar (5.2 and 4.2 d). The adjuvant had comparable accumulation effects (1.75 and 1.83) and similar half-lives (5.4 and 5.5 d) for boscalid. In absence of adjuvant, the risk quotients (RQs) of pyrimethanil (0.41 and 0.33) and boscalid (0.49 and 0.63) after twice applications at pre-harvest interval were lower than 1. Adding the methylated vegetable oil adjuvant to fungicides would result in unprolonging half-life and acceptably low dietary exposure risk on strawberries, but lower dosage of fungicides were used.


Asunto(s)
Compuestos de Bifenilo/administración & dosificación , Fragaria , Fungicidas Industriales/administración & dosificación , Niacinamida/análogos & derivados , Residuos de Plaguicidas/análisis , Aceites de Plantas/administración & dosificación , Pirimidinas/administración & dosificación , Compuestos de Bifenilo/análisis , Botrytis/efectos de los fármacos , Fragaria/química , Fragaria/microbiología , Fungicidas Industriales/análisis , Niacinamida/administración & dosificación , Niacinamida/análisis , Enfermedades de las Plantas/prevención & control , Aceites de Plantas/análisis , Pirimidinas/análisis
17.
Plant Dis ; 102(2): 334-340, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30673526

RESUMEN

The period of citrus black spot (CBS) control used in South Africa (SA) and Australia, from October to January or February, has not been as effective in São Paulo (SP), Brazil. This study aimed to evaluate different periods of protection and determine the critical period for CBS control in SP. A field trial was carried out for two seasons in a mature Valencia sweet orange orchard located in Mogi Guaçu, SP. Spray programs with a total of 60, 100, 140, 180, and 220 days of fruit protection (DFP) were evaluated. CBS symptoms and fruit drop decreased exponentially as the length of the period of protection increased. The reductions in CBS intensity and crop loss with these programs ranged from 34 to 96 and 50 to 77%, respectively. The programs with 180 and 220 DFP, which protected the fruit from September to March and May, showed the highest cost benefit. The critical period needed for CBS control in SP is longer than that in SA and Australia. The results obtained with the present study are helpful for scheduling a more efficient and rational program for CBS control not only in SP but also in other tropical and subtropical regions with similar weather conditions.


Asunto(s)
Ascomicetos/fisiología , Citrus sinensis/microbiología , Fungicidas Industriales/administración & dosificación , Enfermedades de las Plantas/prevención & control , Brasil , Citrus sinensis/crecimiento & desarrollo , Estaciones del Año
18.
Plant Dis ; 102(4): 708-714, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30673399

RESUMEN

The effective control to 50% growth inhibition (EC50) is a standard statistic for evaluating dose-response relationships. Many statistical software packages are available to estimate dose-response relationships but, recently, an open source package ("drc") in R has been utilized. This package is highly adaptable, having many models to describe dose-response relationships and flexibility to describe both hormetic relationships and absolute and relative EC50. These models and definitions are generally left out of phytopathology literature. Here, we demonstrate that model choice and type of EC50 (relative versus absolute) can matter for EC50 estimation using data from Pythium oopapillum and Fusarium virguliforme. For some P. oopapillum isolates, the difference between absolute and relative EC50 was significant. Hormetic effects changed F. virguliforme EC50 distributions, leading to higher estimates than when using four- or three-parameter log-logistic models. Future studies should pay careful attention to model selection and interpretation in EC50 estimation and clearly indicate which model and EC50 measure (relative versus absolute) was used. We provide guidelines for model choice and interpretation for those wishing to set up experiments for accurate EC50 estimation.


Asunto(s)
Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Modelos Biológicos , Pythium/efectos de los fármacos , Relación Dosis-Respuesta a Droga
19.
Plant Dis ; 102(12): 2586-2591, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30307835

RESUMEN

The protectant fungicide quinoxyfen has been used against grape powdery mildew (Erysiphe necator) in the United States since 2003. In 2013, isolates of grape powdery mildew with reduced quinoxyfen sensitivity (here designated as quinoxyfen lab resistance or QLR) were detected in a single vineyard in western Virginia, USA. Field trials were conducted in 2014, 2015, and 2016 at the affected vineyard to determine to what extent quinoxyfen might still contribute to disease control. Powdery mildew control by quinoxyfen was similar to, or only slightly less than, that provided by myclobutanil and boscalid in all three years. In 2016, early- versus late-season applications of quinoxyfen were compared to test the hypothesis that early-season applications were more effective, but differences were small. A treatment with two early quinoxyfen applications, at bloom and 2 weeks later, followed by a myclobutanil-boscalid plus a low dose of sulfur rotation provided slightly better control of foliar disease incidence than treatments containing four quinoxyfen applications or two midseason or two late quinoxyfen applications supplemented by myclobutanil and boscalid applications; severity differences were small and nonsignificant. Metrafenone and benzovindiflupyr generally provided excellent powdery mildew control. The frequency of QLR in vines not treated with quinoxyfen slowly declined from 65% in 2014 to 46% in 2016. Further research is needed to explain how, despite this QLR frequency, quinoxyfen applied to grapes in the field was still able to effectively control powdery mildew.


Asunto(s)
Ascomicetos/efectos de los fármacos , Farmacorresistencia Fúngica , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Quinolinas/farmacología , Vitis/microbiología , Granjas , Fungicidas Industriales/administración & dosificación , Enfermedades de las Plantas/prevención & control , Quinolinas/administración & dosificación , Virginia
20.
Plant Dis ; 102(5): 863-868, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30673383

RESUMEN

Tetramycin is a new biopesticide that combines high-level and broad-spectrum fungicidal activity, low toxicity, and environmental safety. In this study, 90 Phytophthora capsici isolates obtained from various regions in southern China were characterized for their baseline sensitivity to tetramycin. The protective and curative activities of tetramycin against P. capsici were determined on leaves of pepper, and the control efficacy of tetramycin in greenhouse experiments was also determined. Compared with mycelial growth, the formation of sporangia and the discharge of zoospores were inhibited by lower concentrations of tetramycin, approximately 5 µg ml-1 on V8 media. The frequency distribution curves for the tetramycin sensitivity were unimodal, with mean values for the fungicide concentration that reduced mycelial growth, sporangia formation, and zoospore discharge by 50% compared with the control of 1.18 ± 0.91, 0.64 ± 0.42, and 0.63 ± 0.30 µg ml-1, respectively. In addition, no correlation was observed between tetramycin and other fungicides tested, including mandipropamid, azoxystrobin, mefenoxam, fluazinam, fluopicolide, and famoxadone. Tetramycin exhibited both protective and curative effects against P. capsici in vitro, and its protective activity was better than its curative activity. In greenhouse experiments, tetramycin concentration of 60 and 90 µg ml-1 provided a protective control efficacy of 47.1 to 56.4% and curative efficacy of 43.3 to 52.7%. These results demonstrated that tetramycin could serve as an excellent alternative fungicide to control Phytophthora blight of pepper.


Asunto(s)
Farmacorresistencia Fúngica , Fungicidas Industriales/farmacología , Macrólidos/farmacología , Phytophthora/efectos de los fármacos , Capsicum/microbiología , China , Relación Dosis-Respuesta a Droga , Fungicidas Industriales/administración & dosificación , Macrólidos/administración & dosificación , Hojas de la Planta/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA