Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.326
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 583(7817): 615-619, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32494007

RESUMEN

Pneumonia resulting from infection is one of the leading causes of death worldwide. Pulmonary infection by the respiratory syncytial virus (RSV) is a large burden on human health, for which there are few therapeutic options1. RSV targets ciliated epithelial cells in the airways, but how viruses such as RSV interact with receptors on these cells is not understood. Nucleolin is an entry coreceptor for RSV2 and also mediates the cellular entry of influenza, the parainfluenza virus, some enteroviruses and the bacterium that causes tularaemia3,4. Here we show a mechanism of RSV entry into cells in which outside-in signalling, involving binding of the prefusion RSV-F glycoprotein with the insulin-like growth factor-1 receptor, triggers the activation of protein kinase C zeta (PKCζ). This cellular signalling cascade recruits nucleolin from the nuclei of cells to the plasma membrane, where it also binds to RSV-F on virions. We find that inhibiting PKCζ activation prevents the trafficking of nucleolin to RSV particles on airway organoid cultures, and reduces viral replication and pathology in RSV-infected mice. These findings reveal a mechanism of virus entry in which receptor engagement and signal transduction bring the coreceptor to viral particles at the cell surface, and could form the basis of new therapeutics to treat RSV infection.


Asunto(s)
Receptor IGF Tipo 1/metabolismo , Receptores Virales/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Internalización del Virus , Línea Celular , Núcleo Celular/metabolismo , Activación Enzimática , Humanos , Fusión de Membrana/efectos de los fármacos , Fosfoproteínas/metabolismo , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptor IGF Tipo 1/antagonistas & inhibidores , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/patogenicidad , Virus Sincitiales Respiratorios/fisiología , Carga Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Nucleolina
2.
Mol Biol Rep ; 50(3): 2033-2039, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36538173

RESUMEN

BACKGROUND: Based on our previous research conducted on cinnamaldehyde (CA) exhibiting its ability to improve the growth performance of fattening pigs and the adipogenesis induction model of C2C12 cells constructed in our laboratory, we explored the effects of CA on the generation and development of lipid droplets (LDs) in adipogenic differentiated C2C12 cells. METHODS AND RESULTS: C2C12 cells were treated with either 0.4 mM or 0.8 mM CA. BODIPY staining and triglyceride measurements were conducted to observe the morphology of LDs, and Western blotting was used to measure the expression of their metabolism-related proteins. The results showed that the average number of LDs in the CA treatment groups was more than the control group (P < 0.05), whereas the average LD size and triglyceride content decreased (P < 0.05). Compared with the control group, the expression levels of fusion-related genes in the LDs of the CA treatment group significantly decreased, while decomposition-related genes and autophagy-related genes in the LDs in C2C12 cells significantly increased (P < 0.01). CONCLUSION: Cinnamaldehyde promoted the decomposition and autophagy of lipid droplets in C2C12 cells and inhibited the fusion of lipid droplets.


Asunto(s)
Acroleína , Adipocitos , Diferenciación Celular , Gotas Lipídicas , Metabolismo de los Lípidos , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Autofagia/efectos de los fármacos , Autofagia/genética , Fusión de Membrana/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Carne/normas , Calidad de los Alimentos , Animales , Ratones , Línea Celular , Acroleína/análogos & derivados , Triglicéridos
3.
Proc Natl Acad Sci U S A ; 117(50): 32105-32113, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33239446

RESUMEN

Cholesterol 25-hydroxylase (CH25H) is an interferon (IFN)-stimulated gene that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an IFN-stimulated gene screen against vesicular stomatitis virus (VSV)-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of SARS-CoV-2 replication. Internalized 25HC accumulates in the late endosomes and potentially restricts SARS-CoV-2 spike protein catalyzed membrane fusion via blockade of cholesterol export. Our results highlight one of the possible antiviral mechanisms of 25HC and provide the molecular basis for its therapeutic development.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Endosomas/genética , Hidroxicolesteroles/farmacología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Antivirales/farmacología , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Endosomas/metabolismo , Humanos , Interferones/metabolismo , Fusión de Membrana/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
4.
Immunity ; 38(1): 92-105, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23273844

RESUMEN

Interferons (IFN) are essential antiviral cytokines that establish the cellular antiviral state through upregulation of hundreds of interferon-stimulated genes (ISGs), most of which have uncharacterized functions and mechanisms. We identified cholesterol-25-hydroxylase (CH25H) as a broadly antiviral ISG. CH25H converts cholesterol to a soluble antiviral factor, 25-hydroxycholesterol (25HC). 25HC treatment in cultured cells broadly inhibited growth of enveloped viruses including VSV, HSV, HIV, and MHV68 and acutely pathogenic EBOV, RVFV, RSSEV, and Nipah viruses under BSL4 conditions. It suppressed viral growth by blocking membrane fusion between virus and cell. In animal models, Ch25h-deficient mice were more susceptible to MHV68 lytic infection. Moreover, administration of 25HC in humanized mice suppressed HIV replication and reversed T cell depletion. Thus, our studies demonstrate a unique mechanism by which IFN achieves its antiviral state through the production of a natural oxysterol to inhibit viral entry and implicate membrane-modifying oxysterols as potential antiviral therapeutics.


Asunto(s)
Antivirales/farmacología , Hidroxicolesteroles/metabolismo , Interferones/farmacología , Esteroide Hidroxilasas/metabolismo , Internalización del Virus/efectos de los fármacos , Animales , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/virología , Virus ADN/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidroxicolesteroles/farmacología , Fusión de Membrana/efectos de los fármacos , Ratones , Ratones Noqueados , Virus ARN/efectos de los fármacos , Esteroide Hidroxilasas/genética , Proteínas Virales/metabolismo
5.
Nature ; 535(7610): 169-172, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27362232

RESUMEN

Ebola viruses (EBOVs) are responsible for repeated outbreaks of fatal infections, including the recent deadly epidemic in West Africa. There are currently no approved therapeutic drugs or vaccines for the disease. EBOV has a membrane envelope decorated by trimers of a glycoprotein (GP, cleaved by furin to form GP1 and GP2 subunits), which is solely responsible for host cell attachment, endosomal entry and membrane fusion. GP is thus a primary target for the development of antiviral drugs. Here we report the first, to our knowledge, unliganded structure of EBOV GP, and high-resolution complexes of GP with the anticancer drug toremifene and the painkiller ibuprofen. The high-resolution apo structure gives a more complete and accurate picture of the molecule, and allows conformational changes introduced by antibody and receptor binding to be deciphered. Unexpectedly, both toremifene and ibuprofen bind in a cavity between the attachment (GP1) and fusion (GP2) subunits at the entrance to a large tunnel that links with equivalent tunnels from the other monomers of the trimer at the three-fold axis. Protein­drug interactions with both GP1 and GP2 are predominately hydrophobic. Residues lining the binding site are highly conserved among filoviruses except Marburg virus (MARV), suggesting that MARV may not bind these drugs. Thermal shift assays show up to a 14 °C decrease in the protein melting temperature after toremifene binding, while ibuprofen has only a marginal effect and is a less potent inhibitor. These results suggest that inhibitor binding destabilizes GP and triggers premature release of GP2, thereby preventing fusion between the viral and endosome membranes. Thus, these complex structures reveal the mechanism of inhibition and may guide the development of more powerful anti-EBOV drugs.


Asunto(s)
Antivirales/química , Antivirales/metabolismo , Ebolavirus/química , Toremifeno/química , Toremifeno/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antivirales/farmacología , Sitios de Unión , Línea Celular , Secuencia Conservada , Ebolavirus/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ibuprofeno/química , Ibuprofeno/metabolismo , Ibuprofeno/farmacología , Ligandos , Marburgvirus/química , Fusión de Membrana/efectos de los fármacos , Modelos Moleculares , Unión Proteica , Estabilidad Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Temperatura , Toremifeno/farmacología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Acoplamiento Viral/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 116(2): 512-521, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30610181

RESUMEN

Protein therapeutics represent a significant and growing component of the modern pharmacopeia, but their potential to treat human disease is limited because most proteins fail to traffic across biological membranes. Recently, we discovered a class of cell-permeant miniature proteins (CPMPs) containing a precisely defined, penta-arginine (penta-Arg) motif that traffics readily to the cytosol and nucleus of mammalian cells with efficiencies that rival those of hydrocarbon-stapled peptides active in animals and man. Like many cell-penetrating peptides (CPPs), CPMPs enter the endocytic pathway; the difference is that CPMPs containing a penta-Arg motif are released efficiently from endosomes, while other CPPs are not. Here, we seek to understand how CPMPs traffic from endosomes into the cytosol and what factors contribute to the efficiency of endosomal release. First, using two complementary cell-based assays, we exclude endosomal rupture as the primary means of endosomal escape. Next, using an RNA interference screen, fluorescence correlation spectroscopy, and confocal imaging, we identify VPS39-a gene encoding a subunit of the homotypic fusion and protein-sorting (HOPS) complex-as a critical determinant in the trafficking of CPMPs and hydrocarbon-stapled peptides to the cytosol. Although CPMPs neither inhibit nor activate HOPS function, HOPS activity is essential to efficiently deliver CPMPs to the cytosol. CPMPs localize within the lumen of Rab7+ and Lamp1+ endosomes and their transport requires HOPS activity. Overall, our results identify Lamp1+ late endosomes and lysosomes as portals for passing proteins into the cytosol and suggest that this environment is prerequisite for endosomal escape.


Asunto(s)
Proteínas Portadoras/genética , Péptidos de Penetración Celular , Endosomas/metabolismo , Fusión de Membrana/efectos de los fármacos , Secuencias de Aminoácidos , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Péptidos de Penetración Celular/farmacocinética , Péptidos de Penetración Celular/farmacología , Citosol/metabolismo , Endosomas/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
7.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32321803

RESUMEN

Chikungunya virus (CHIKV) is an important reemerging human pathogen transmitted by mosquitoes. The virus causes an acute febrile illness, chikungunya fever, which is characterized by headache, rash, and debilitating (poly)arthralgia that can reside for months to years after infection. Currently, effective antiviral therapies and vaccines are lacking. Due to the high morbidity and economic burden in the countries affected by CHIKV, there is a strong need for new strategies to inhibit CHIKV replication. The serotonergic drug 5-nonyloxytryptamine (5-NT) was previously identified as a potential host-directed inhibitor for CHIKV infection. In this study, we determined the mechanism of action by which the serotonin receptor agonist 5-NT controls CHIKV infection. Using time-of-addition and entry bypass assays, we found that 5-NT predominantly inhibits CHIKV in the early phases of the replication cycle, at a step prior to RNA translation and genome replication. Intriguingly, however, no effect was seen during virus-cell binding, internalization, membrane fusion and genomic RNA (gRNA) release into the cell cytosol. In addition, we show that the serotonin receptor antagonist methiothepin mesylate (MM) also has antiviral properties toward CHIKV and specifically interferes with the cell entry process and/or membrane fusion. Taken together, pharmacological targeting of 5-HT receptors may represent a potent way to limit viral spread and disease severity.IMPORTANCE The rapid spread of mosquito-borne viral diseases in humans puts a huge economic burden on developing countries. For many of these infections, including those caused by chikungunya virus (CHIKV), there are no specific treatment possibilities to alleviate disease symptoms. Understanding the virus-host interactions that are involved in the viral replication cycle is imperative for the rational design of therapeutic strategies. In this study, we discovered an antiviral compound, elucidated its mechanism of action, and propose serotonergic drugs as potential host-directed antivirals for CHIKV.


Asunto(s)
Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/virología , Virus Chikungunya/efectos de los fármacos , Agonistas de Receptores de Serotonina/farmacología , Triptaminas/farmacología , Animales , Antivirales/farmacología , Línea Celular , Virus Chikungunya/fisiología , Chlorocebus aethiops , Humanos , Fusión de Membrana/efectos de los fármacos , ARN Viral/genética , Serotonina/análogos & derivados , Serotonina/farmacología , Serotoninérgicos/metabolismo , Serotoninérgicos/farmacología , Células Vero , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
8.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32376627

RESUMEN

The 2019 coronavirus disease (COVID-19), caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed serious threats to global public health and economic and social stabilities, calling for the prompt development of therapeutics and prophylactics. In this study, we first verified that SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as a cell receptor and that its spike (S) protein mediates high membrane fusion activity. The heptad repeat 1 (HR1) sequence in the S2 fusion protein of SARS-CoV-2 possesses markedly increased α-helicity and thermostability, as well as a higher binding affinity with its corresponding heptad repeat 2 (HR2) site, than the HR1 sequence in S2 of severe acute respiratory syndrome coronavirus (SARS-CoV). Then, we designed an HR2 sequence-based lipopeptide fusion inhibitor, termed IPB02, which showed highly potent activities in inhibiting SARS-CoV-2 S protein-mediated cell-cell fusion and pseudovirus transduction. IPB02 also inhibited the SARS-CoV pseudovirus efficiently. Moreover, the structure-activity relationship (SAR) of IPB02 was characterized with a panel of truncated lipopeptides, revealing the amino acid motifs critical for its binding and antiviral capacities. Therefore, the results presented here provide important information for understanding the entry pathway of SARS-CoV-2 and the design of antivirals that target the membrane fusion step.IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, presents a serious global public health emergency in urgent need of prophylactic and therapeutic interventions. The S protein of coronaviruses mediates viral receptor binding and membrane fusion, thus being considered a critical target for antivirals. Herein, we report that the SARS-CoV-2 S protein has evolved a high level of activity to mediate cell-cell fusion, significantly differing from the S protein of SARS-CoV that emerged previously. The HR1 sequence in the fusion protein of SARS-CoV-2 adopts a much higher helical stability than the HR1 sequence in the fusion protein of SARS-CoV and can interact with the HR2 site to form a six-helical bundle structure more efficiently, underlying the mechanism of the enhanced fusion capacity. Also, importantly, the design of membrane fusion inhibitors with high potencies against both SARS-CoV-2 and SARS-CoV has provided potential arsenals to combat the pandemic and tools to exploit the fusion mechanism.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Lipopéptidos/farmacología , Fusión de Membrana/efectos de los fármacos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/fisiología , COVID-19 , Diseño de Fármacos , Células HEK293 , Humanos , Lipopéptidos/química , Glicoproteínas de Membrana/metabolismo , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas del Envoltorio Viral/metabolismo
9.
Photochem Photobiol Sci ; 20(2): 321-326, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33721250

RESUMEN

Charge recombination kinetics of bacterial photosynthetic protein Reaction Center displays an exquisite sensitivity to the actual occupancy of ubiquinone-10 in its QB-binding site. Here, we have exploited such phenomenon for assessing the growth and the aggregation/fusion of phosphocholine vesicles embedding RC in their membrane, when treated with sodium oleate.


Asunto(s)
Proteínas Bacterianas/química , Liposomas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/metabolismo , Proteínas Bacterianas/metabolismo , Dispersión Dinámica de Luz , Fusión de Membrana/efectos de los fármacos , Ácido Oléico/química , Ácido Oléico/farmacología , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo
10.
Exp Cell Res ; 386(2): 111735, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31751554

RESUMEN

Activation of coagulation occurs in sepsis and contributes to the development of thrombosis. Platelet α-granule exocytosis plays an important role in septic coagulation abnormalities. The present study aimed to investigate the effects and the underlying mechanisms of exogenous carbon monoxide, carbon monoxide-releasing molecules II (CORM-2)-liberated CO, on suppressing platelet α-granule exocytosis in sepsis. It was shown that CORM-2 weakened α-granule membrane fusion with platelet plasma membrane and attenuated α-granule contents exocytosis in LPS-Induced platelet. Further studies revealed that CORM-2 suppressed the expression of integrin αIIbß3 in platelets stimulated by LPS. This was accompanied by a decrease in production and phosphorylation of PKCθ and Munc18a, SNARE complex assembly and subsequently platelet α-granule exocytosis. Taken together, we suggested that the potential mechanism of suppressive effect of CORM-2 on LPS-induced platelet SNAREs complex assembly and α-Granule Exocytosis might involve integrin αIIbß3-mediated PKCθ/Munc18a pathway activation.


Asunto(s)
Plaquetas/efectos de los fármacos , Monóxido de Carbono/farmacología , Proteínas Munc18/genética , Compuestos Organometálicos/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Proteína Quinasa C-theta/genética , Proteínas SNARE/genética , Plaquetas/citología , Plaquetas/metabolismo , Monóxido de Carbono/química , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Exocitosis , Regulación de la Expresión Génica , Humanos , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Fusión de Membrana/efectos de los fármacos , Modelos Biológicos , Proteínas Munc18/metabolismo , Compuestos Organometálicos/química , Activación Plaquetaria/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Cultivo Primario de Células , Proteína Quinasa C-theta/metabolismo , Proteínas SNARE/metabolismo , Sepsis/genética , Sepsis/metabolismo , Sepsis/patología , Transducción de Señal
11.
Proc Natl Acad Sci U S A ; 115(47): 11923-11928, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397112

RESUMEN

Arginine-rich cell-penetrating peptides do not enter cells by directly passing through a lipid membrane; they instead passively enter vesicles and live cells by inducing membrane multilamellarity and fusion. The molecular picture of this penetration mode, which differs qualitatively from the previously proposed direct mechanism, is provided by molecular dynamics simulations. The kinetics of vesicle agglomeration and fusion by an iconic cell-penetrating peptide-nonaarginine-are documented via real-time fluorescence techniques, while the induction of multilamellar phases in vesicles and live cells is demonstrated by a combination of electron and fluorescence microscopies. This concert of experiments and simulations reveals that the identified passive cell penetration mechanism bears analogy to vesicle fusion induced by calcium ions, indicating that the two processes may share a common mechanistic origin.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Fusión de Membrana/fisiología , Arginina/metabolismo , Arginina/fisiología , Transporte Biológico , Membrana Celular/metabolismo , Cinética , Membrana Dobles de Lípidos/química , Fusión de Membrana/efectos de los fármacos , Membranas/metabolismo , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/fisiología , Seudópodos/metabolismo , Seudópodos/fisiología
12.
Proc Natl Acad Sci U S A ; 115(36): E8421-E8429, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127032

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) catalyze membrane fusion by forming coiled-coil bundles between membrane bilayers. The SNARE bundle zippers progressively toward the membranes, pulling the lipid bilayers into close proximity to fuse. In this work, we found that the +1 and +2 layers in the C-terminal domains (CTDs) of SNAREs are dispensable for reconstituted SNARE-mediated fusion reactions. By contrast, all CTD layers are required for fusion reactions activated by the cognate Sec1/Munc18 (SM) protein or a synthetic Vc peptide derived from the vesicular (v-) SNARE, correlating with strong acceleration of fusion kinetics. These results suggest a similar mechanism underlying the stimulatory functions of SM proteins and Vc peptide in SNARE-dependent membrane fusion. Unexpectedly, we identified a conserved SNARE-like peptide (SLP) in SM proteins that structurally and functionally resembles Vc peptide. Like Vc peptide, SLP binds and activates target (t-) SNAREs, accelerating the fusion reaction. Disruption of the t-SNARE-SLP interaction inhibits exocytosis in vivo. Our findings demonstrated that a t-SNARE-SLP intermediate must form before SNAREs can drive efficient vesicle fusion.


Asunto(s)
Exocitosis/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Proteínas Munc18 , Péptidos , Proteínas SNARE , Animales , Células COS , Chlorocebus aethiops , Cinética , Ratones , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Péptidos/química , Péptidos/farmacología , Ratas , Proteínas SNARE/química , Proteínas SNARE/metabolismo
13.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466417

RESUMEN

Liposomes are highly biocompatible and versatile drug carriers with an increasing number of applications in the field of nuclear medicine and diagnostics. So far, only negatively charged liposomes with intercalated radiometals, e.g., 64Cu, 99mTc, have been reported. However, the process of cellular uptake of liposomes by endocytosis is rather slow. Cellular uptake can be accelerated by recently developed cationic liposomes, which exhibit extraordinarily high membrane fusion ability. The aim of the present study was the development of the formulation and the characterization of such cationic fusogenic liposomes with intercalated radioactive [131I]I- for potential use in therapeutic applications. The epithelial human breast cancer cell line MDA-MB-231 was used as a model for invasive cancer cells and cellular uptake of [131I]I- was monitored in vitro. Delivery efficiencies of cationic and neutral liposomes were compared with uptake of free iodide. The best cargo delivery efficiency (~10%) was achieved using cationic fusogenic liposomes due to their special delivery pathway of membrane fusion. Additionally, human blood cells were also incubated with cationic control liposomes and free [131I]I-. In these cases, iodide delivery efficiencies remained below 3%.


Asunto(s)
Cationes/química , Portadores de Fármacos/química , Radioisótopos de Yodo/administración & dosificación , Radioisótopos de Yodo/química , Liposomas/química , Nanopartículas/química , Animales , Células CHO , Línea Celular , Línea Celular Tumoral , Cricetulus , Endocitosis/efectos de los fármacos , Humanos , Fusión de Membrana/efectos de los fármacos
14.
Angew Chem Int Ed Engl ; 60(11): 6101-6106, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33241871

RESUMEN

The entry of enveloped virus requires the fusion of viral and host cell membranes. An effective fusion inhibitor aiming at impeding such membrane fusion may emerge as a broad-spectrum antiviral agent against a wide range of viral infections. Mycobacterium survives inside the phagosome by inhibiting phagosome-lysosome fusion with the help of a coat protein coronin 1. Structural analysis of coronin 1 and other WD40-repeat protein suggest that the trp-asp (WD) sequence is placed at distorted ß-meander motif (more exposed) in coronin 1. The unique structural feature of coronin 1 was explored to identify a simple lipo-peptide sequence (myr-WD), which effectively inhibits membrane fusion by modulating the interfacial order, water penetration, and surface potential. The mycobacterium inspired lipo-dipeptide was successfully tested to combat type 1 influenza virus (H1N1) and murine coronavirus infections as a potential broad-spectrum antiviral agent.


Asunto(s)
Antivirales/farmacología , Dipéptidos/farmacología , Lipopéptidos/farmacología , Fusión de Membrana/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/química , Antivirales/toxicidad , Dipéptidos/química , Dipéptidos/toxicidad , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Lipopéptidos/química , Lipopéptidos/toxicidad , Liposomas/química , Células de Riñón Canino Madin Darby , Virus de la Hepatitis Murina/efectos de los fármacos , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Ratas
16.
J Biol Chem ; 294(1): 182-194, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30404919

RESUMEN

Viral infections still threaten human health all over the world, and many people die from viral diseases every year. However, there are no effective vaccines or drugs for preventing or managing most viral diseases. Thus, the discovery and development of broad-spectrum antiviral agents remain urgent. Here, we expressed and purified a venom peptide, Ev37, from the scorpion Euscorpiops validus in a prokaryotic system. We found that rEv37 can inhibit dengue virus type 2 (DENV-2), hepatitis C virus (HCV), Zika virus (ZIKV), and herpes simplex virus type 1 (HSV-1) infections in a dose-dependent manner at noncytotoxic concentrations, but that it has no effect on Sendai virus (SeV) and adenovirus (AdV) infections in vitro Furthermore, rEv37 alkalized acidic organelles to prevent low pH-dependent fusion of the viral membrane-endosomal membrane, which mainly blocks the release of the viral genome from the endosome to the cytoplasm and then restricts viral late entry. Taken together, our results indicate that the scorpion venom peptide Ev37 is a broad-spectrum antiviral agent with a specific molecular mechanism against viruses undergoing low pH-dependent fusion activation during entry into host cells. We conclude that Ev37 is a potential candidate for development as an antiviral drug.


Asunto(s)
Citoplasma/metabolismo , Virus del Dengue/fisiología , Endosomas/metabolismo , Venenos de Escorpión/farmacología , Escorpiones/química , Internalización del Virus/efectos de los fármacos , Adenoviridae/fisiología , Animales , Chlorocebus aethiops , Citoplasma/virología , Endosomas/virología , Células HEK293 , Humanos , Fusión de Membrana/efectos de los fármacos , Venenos de Escorpión/química , Virus Sendai/fisiología , Células Vero
17.
J Biol Chem ; 294(46): 17168-17185, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31515268

RESUMEN

The homeostasis of most organelles requires membrane fusion mediated by soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive cis-SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, N-ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17. Sec18-mediated ATP hydrolysis drives the mechanical disassembly of SNAREs into individual coils, permitting a new cycle of fusion. Previously, we found that Sec18 monomers are sequestered away from SNAREs by binding phosphatidic acid (PA). Sec18 is released from the membrane when PA is hydrolyzed to diacylglycerol by the PA phosphatase Pah1. Although PA can inhibit SNARE priming, it binds other proteins and thus cannot be used as a specific tool to further probe Sec18 activity. Here, we report the discovery of a small-molecule compound, we call IPA (inhibitor of priming activity), that binds Sec18 with high affinity and blocks SNARE activation. We observed that IPA blocks SNARE priming and competes for PA binding to Sec18. Molecular dynamics simulations revealed that IPA induces a more rigid NSF/Sec18 conformation, which potentially disables the flexibility required for Sec18 to bind to PA or to activate SNAREs. We also show that IPA more potently and specifically inhibits NSF/Sec18 activity than does N-ethylmaleimide, requiring the administration of only low micromolar concentrations of IPA, demonstrating that this compound could help to further elucidate SNARE-priming dynamics.


Asunto(s)
Adenosina Trifosfatasas/genética , Etilmaleimida/metabolismo , Ácidos Fosfatidicos/química , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/química , Proteínas de Transporte Vesicular/genética , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adenosina Trifosfatasas/química , Fusión de Membrana/efectos de los fármacos , Fusión de Membrana/genética , Lípidos de la Membrana/química , Lípidos de la Membrana/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Simulación de Dinámica Molecular , Proteínas Sensibles a N-Etilmaleimida/química , Proteínas Sensibles a N-Etilmaleimida/genética , Ácidos Fosfatidicos/antagonistas & inhibidores , Proteínas SNARE/química , Proteínas SNARE/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/química , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Vacuolas/genética , Proteínas de Transporte Vesicular/química
18.
Biochem Biophys Res Commun ; 526(1): 231-238, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32204915

RESUMEN

A key feature of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders including Alzheimer disease (AD), Parkinson disease (PD) and Huntington's disease (HD) is abnormal aggregation and deposition of misfolded proteins. Previous studies have shown that autophagy plays an important role in the clearance of disease-linked protein aggregates. In the current study, we report that ibudilast, which is a non-selective inhibitor of phosphodiesterases (PDEs) and an anti-inflammation drug, can induce autophagy and lysosomal biogenesis through mammalian target of rapamycin complex 1 - transcription factor EB (mTORC1-TFEB) signaling. We have found that ibudilast significantly enhances the clearance of disease-linked TAR DNA binding protein (TDP-43) and superoxide dismutase 1 (SOD1) protein aggregates in transfected cellular models carrying corresponding gene mutations. The mechanistic study revealed that ibudilast could markedly enhance TFEB nuclear translocation and increase the autolysosomes by inhibiting mTORC1 activity. We have also demonstrated that ibudilast could protect TDP-43-induced cytotoxicity in motor neuron-like NSC-34 cells. Collectively, our study identifies ibudilast as an autophagy enhancer and provides insights into the molecular basis of ibudilast for the potential treatment of several neurodegenerative disorders.


Asunto(s)
Autofagia , Proteínas de Unión al ADN/metabolismo , Lisosomas/metabolismo , Fármacos Neuroprotectores/farmacología , Agregado de Proteínas , Piridinas/farmacología , Superóxido Dismutasa-1/metabolismo , Esclerosis Amiotrófica Lateral/patología , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Muerte Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Lisosomas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fusión de Membrana/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos
19.
J Membr Biol ; 253(5): 425-444, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32862236

RESUMEN

The emerging and re-emerging viral infections are constant threats to human health and wellbeing. Several strategies have been explored to develop vaccines against these viral diseases. The main effort in the journey of development of vaccines is to neutralize the fusion protein using antibodies. However, significant efforts have been made in discovering peptides and small molecules that inhibit the fusion between virus and host cell, thereby inhibiting the entry of viruses. This class of inhibitors is called entry inhibitors, and they are extremely efficient in reducing viral infection as the entry of the virus is considered as the first step of infection. Nevertheless, these inhibitors are highly selective for a particular virus as antibody-based vaccines. The recent COVID-19 pandemic lets us ponder to shift our attention towards broad-spectrum antiviral agents from the so-called 'one bug-one drug' approach. This review discusses peptide and small molecule-based entry inhibitors against class I, II, and III viruses and sheds light on broad-spectrum antiviral agents.


Asunto(s)
Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Fusión de Membrana/efectos de los fármacos , Neumonía Viral/tratamiento farmacológico , Internalización del Virus/efectos de los fármacos , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Humanos , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , SARS-CoV-2
20.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30867304

RESUMEN

HIV infection requires lifelong treatment with multiple antiretroviral drugs in a combination, which ultimately causes cumulative toxicities and drug resistance, thus necessitating the development of novel antiviral agents. We recently found that enfuvirtide (T-20)-based lipopeptides conjugated with fatty acids have dramatically increased in vitro and in vivo anti-HIV activities. Herein, a group of cholesterol-modified fusion inhibitors were characterized with significant findings. First, novel cholesterylated inhibitors, such as LP-83 and LP-86, showed the most potent activity in inhibiting divergent human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). Second, the cholesterylated inhibitors were highly active to inhibit T-20-resistant mutants that still conferred high resistance to the fatty acid derivatives. Third, the cholesterylated inhibitors had extremely potent activity to block HIV envelope (Env)-mediated cell-cell fusion, especially a truncated minimum lipopeptide (LP-95), showing a greatly increased potency relative to its inhibition on virus infection. Fourth, the cholesterylated inhibitors efficiently bound to both the cellular and viral membranes to exert their antiviral activities. Fifth, the cholesterylated inhibitors displayed low cytotoxicity and binding capacity with human serum albumin. Sixth, we further demonstrated that LP-83 exhibited extremely potent and long-lasting anti-HIV activity in rhesus monkeys. Taken together, the present results help our understanding on the mechanism of action of lipopeptide-based viral fusion inhibitors and facilitate the development of novel anti-HIV drugs.IMPORTANCE The peptide drug enfuvirtide (T-20) remains the only membrane fusion inhibitor available for treatment of viral infection, which is used in combination therapy of HIV-1 infection; however, it exhibits relatively low antiviral activity and a genetic barrier to inducing resistance, calling for the continuous development for novel anti-HIV agents. In this study, we report cholesterylated fusion inhibitors showing the most potent and broad anti-HIV activities to date. The new inhibitors have been comprehensively characterized for their modes of action and druggability, including small size, low cytotoxicity, binding ability to human serum albumin (HSA), and, especially, extremely potent and long-lasting antiviral activity in rhesus monkeys. Therefore, the present studies have provided new drug candidates for clinical development, which can also be used as tools to probe the mechanisms of viral entry and inhibition.


Asunto(s)
Enfuvirtida/farmacología , Infecciones por VIH/terapia , Lipopéptidos/farmacología , Animales , Fármacos Anti-VIH/farmacología , Antirretrovirales/uso terapéutico , Antivirales/farmacología , Línea Celular , Diseño de Fármacos , Farmacorresistencia Viral/efectos de los fármacos , Células HEK293 , Proteína gp41 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/farmacología , VIH-1/fisiología , VIH-2/fisiología , Humanos , Macaca mulatta , Fusión de Membrana/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA