Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.178
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(24): 4621-4633.e17, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36368323

RESUMEN

Methods for acquiring spatially resolved omics data from complex tissues use barcoded DNA arrays of low- to sub-micrometer features to achieve single-cell resolution. However, fabricating such arrays (randomly assembled beads, DNA nanoballs, or clusters) requires sequencing barcodes in each array, limiting cost-effectiveness and throughput. Here, we describe a vastly scalable stamping method to fabricate polony gels, arrays of ∼1-micrometer clonal DNA clusters bearing unique barcodes. By enabling repeatable enzymatic replication of barcode-patterned gels, this method, compared with the sequencing-dependent array fabrication, reduced cost by at least 35-fold and time to approximately 7 h. The gel stamping was implemented with a simple robotic arm and off-the-shelf reagents. We leveraged the resolution and RNA capture efficiency of polony gels to develop Pixel-seq, a single-cell spatial transcriptomic assay, and applied it to map the mouse parabrachial nucleus and analyze changes in neuropathic pain-regulated transcriptomes and cell-cell communication after nerve ligation.


Asunto(s)
Dolor Crónico , Transcriptoma , Ratones , Animales , ADN , ARN , Geles
2.
Annu Rev Cell Dev Biol ; 30: 39-58, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288112

RESUMEN

Cells organize many of their biochemical reactions in non-membrane compartments. Recent evidence has shown that many of these compartments are liquids that form by phase separation from the cytoplasm. Here we discuss the basic physical concepts necessary to understand the consequences of liquid-like states for biological functions.


Asunto(s)
Compartimento Celular , Líquido Intracelular/química , Animales , Compartimento Celular/fisiología , Citoplasma/química , Difusión , Entropía , Geles , Origen de la Vida , Transición de Fase , Solubilidad , Terminología como Asunto
3.
N Engl J Med ; 390(3): 203-211, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38231621

RESUMEN

BACKGROUND: Testosterone treatment in men with hypogonadism improves bone density and quality, but trials with a sufficiently large sample and a sufficiently long duration to determine the effect of testosterone on the incidence of fractures are needed. METHODS: In a subtrial of a double-blind, randomized, placebo-controlled trial that assessed the cardiovascular safety of testosterone treatment in middle-aged and older men with hypogonadism, we examined the risk of clinical fracture in a time-to-event analysis. Eligible men were 45 to 80 years of age with preexisting, or high risk of, cardiovascular disease; one or more symptoms of hypogonadism; and two morning testosterone concentrations of less than 300 ng per deciliter (10.4 nmol per liter), in fasting plasma samples obtained at least 48 hours apart. Participants were randomly assigned to apply a testosterone or placebo gel daily. At every visit, participants were asked if they had had a fracture since the previous visit. If they had, medical records were obtained and adjudicated. RESULTS: The full-analysis population included 5204 participants (2601 in the testosterone group and 2603 in the placebo group). After a median follow-up of 3.19 years, a clinical fracture had occurred in 91 participants (3.50%) in the testosterone group and 64 participants (2.46%) in the placebo group (hazard ratio, 1.43; 95% confidence interval, 1.04 to 1.97). The fracture incidence also appeared to be higher in the testosterone group for all other fracture end points. CONCLUSIONS: Among middle-aged and older men with hypogonadism, testosterone treatment did not result in a lower incidence of clinical fracture than placebo. The fracture incidence was numerically higher among men who received testosterone than among those who received placebo. (Funded by AbbVie and others; TRAVERSE ClinicalTrials.gov number, NCT03518034.).


Asunto(s)
Fracturas Óseas , Hipogonadismo , Testosterona , Anciano , Humanos , Masculino , Persona de Mediana Edad , Densidad Ósea/efectos de los fármacos , Enfermedades Cardiovasculares/etiología , Método Doble Ciego , Fracturas Óseas/epidemiología , Fracturas Óseas/etiología , Fracturas Óseas/prevención & control , Hipogonadismo/sangre , Hipogonadismo/complicaciones , Hipogonadismo/tratamiento farmacológico , Testosterona/administración & dosificación , Testosterona/efectos adversos , Testosterona/sangre , Testosterona/farmacología , Geles , Administración Tópica
4.
Nature ; 590(7844): 47-56, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536649

RESUMEN

Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.


Asunto(s)
Biotecnología/métodos , Biotecnología/tendencias , Celulosa/química , Nanoestructuras/química , Desarrollo Sostenible/tendencias , Materiales Biocompatibles/química , Geles/química , Humanos , Porosidad
5.
J Cell Sci ; 137(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38108421

RESUMEN

Cellular heterogeneity and extracellular matrix (ECM) stiffening have been shown to be drivers of breast cancer invasiveness. Here, we examine how stiffness-dependent crosstalk between cancer cells and mesenchymal stem cells (MSCs) within an evolving tumor microenvironment regulates cancer invasion. By analyzing previously published single-cell RNA sequencing datasets, we establish the existence of a subpopulation of cells in primary tumors, secondary sites and circulatory tumor cell clusters of highly aggressive triple-negative breast cancer (TNBC) that co-express MSC and cancer-associated fibroblast (CAF) markers. By using hydrogels with stiffnesses of 0.5, 2 and 5 kPa to mimic different stages of ECM stiffening, we show that conditioned medium from MDA-MB-231 TNBC cells cultured on 2 kPa gels, which mimic the pre-metastatic stroma, drives efficient MSC chemotaxis and induces stable differentiation of MSC-derived CAFs in a TGFß (TGFB1)- and contractility-dependent manner. In addition to enhancing cancer cell proliferation, MSC-derived CAFs on 2 kPa gels maximally boost local invasion and confer resistance to flow-induced shear stresses. Collectively, our results suggest that homing of MSCs at the pre-metastatic stage and their differentiation into CAFs actively drives breast cancer invasion and metastasis in TNBC.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Células Madre Mesenquimatosas , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Diferenciación Celular , Geles , Microambiente Tumoral/genética , Línea Celular Tumoral
6.
N Engl J Med ; 389(2): 107-117, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37326322

RESUMEN

BACKGROUND: The cardiovascular safety of testosterone-replacement therapy in middle-aged and older men with hypogonadism has not been determined. METHODS: In a multicenter, randomized, double-blind, placebo-controlled, noninferiority trial, we enrolled 5246 men 45 to 80 years of age who had preexisting or a high risk of cardiovascular disease and who reported symptoms of hypogonadism and had two fasting testosterone levels of less than 300 ng per deciliter. Patients were randomly assigned to receive daily transdermal 1.62% testosterone gel (dose adjusted to maintain testosterone levels between 350 and 750 ng per deciliter) or placebo gel. The primary cardiovascular safety end point was the first occurrence of any component of a composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke, assessed in a time-to-event analysis. A secondary cardiovascular end point was the first occurrence of any component of the composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or coronary revascularization, assessed in a time-to-event analysis. Noninferiority required an upper limit of less than 1.5 for the 95% confidence interval of the hazard ratio among patients receiving at least one dose of testosterone or placebo. RESULTS: The mean (±SD) duration of treatment was 21.7±14.1 months, and the mean follow-up was 33.0±12.1 months. A primary cardiovascular end-point event occurred in 182 patients (7.0%) in the testosterone group and in 190 patients (7.3%) in the placebo group (hazard ratio, 0.96; 95% confidence interval, 0.78 to 1.17; P<0.001 for noninferiority). Similar findings were observed in sensitivity analyses in which data on events were censored at various times after discontinuation of testosterone or placebo. The incidence of secondary end-point events or of each of the events of the composite primary cardiovascular end point appeared to be similar in the two groups. A higher incidence of atrial fibrillation, of acute kidney injury, and of pulmonary embolism was observed in the testosterone group. CONCLUSIONS: In men with hypogonadism and preexisting or a high risk of cardiovascular disease, testosterone-replacement therapy was noninferior to placebo with respect to the incidence of major adverse cardiac events. (Funded by AbbVie and others; TRAVERSE ClinicalTrials.gov number, NCT03518034.).


Asunto(s)
Enfermedades Cardiovasculares , Terapia de Reemplazo de Hormonas , Hipogonadismo , Testosterona , Anciano , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/epidemiología , Diabetes Mellitus Tipo 2 , Método Doble Ciego , Hipogonadismo/sangre , Hipogonadismo/tratamiento farmacológico , Infarto del Miocardio/epidemiología , Accidente Cerebrovascular/epidemiología , Testosterona/efectos adversos , Testosterona/sangre , Testosterona/uso terapéutico , Terapia de Reemplazo de Hormonas/efectos adversos , Terapia de Reemplazo de Hormonas/métodos , Anciano de 80 o más Años , Geles , Parche Transdérmico
7.
Chem Rev ; 124(9): 5668-5694, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38635951

RESUMEN

Faced with desiccation stress, many organisms deploy strategies to maintain the integrity of their cellular components. Amorphous glassy media composed of small molecular solutes or protein gels present general strategies for protecting against drying. We review these strategies and the proposed molecular mechanisms to explain protein protection in a vitreous matrix under conditions of low hydration. We also describe efforts to exploit similar strategies in technological applications for protecting proteins in dry or highly desiccated states. Finally, we outline open questions and possibilities for future explorations.


Asunto(s)
Desecación , Geles , Proteínas , Proteínas/química , Proteínas/metabolismo , Geles/química , Vidrio/química , Humanos , Agua/química
8.
Annu Rev Biomed Eng ; 26(1): 93-118, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38316064

RESUMEN

Cell traction force plays a critical role in directing cellular functions, such as proliferation, migration, and differentiation. Current understanding of cell traction force is largely derived from 2D measurements where cells are plated on 2D substrates. However, 2D measurements do not recapitulate a vital aspect of living systems; that is, cells actively remodel their surrounding extracellular matrix (ECM), and the remodeled ECM, in return, can have a profound impact on cell phenotype and traction force generation. This reciprocal adaptivity of living systems is encoded in the material properties of biological gels. In this review, we summarize recent progress in measuring cell traction force for cells embedded within 3D biological gels, with an emphasis on cell-ECM cross talk. We also provide perspectives on tools and techniques that could be adapted to measure cell traction force in complex biochemical and biophysical environments.


Asunto(s)
Matriz Extracelular , Esferoides Celulares , Humanos , Matriz Extracelular/metabolismo , Esferoides Celulares/citología , Animales , Movimiento Celular , Geles/química , Adhesión Celular , Microscopía de Fuerza Atómica/métodos , Análisis de la Célula Individual/métodos , Hidrogeles/química
9.
Methods ; 228: 55-64, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782295

RESUMEN

Metal ions, including biologically prevalent sodium ions, can modulate electrostatic interactions frequently involved in the stability of condensed compartments in cells. Quantitative characterization of heterogeneous ion dynamics inside biomolecular condensates demands new experimental approaches. Here we develop a 23Na NMR relaxation-based integrative approach to probe dynamics of sodium ions inside agarose gels as a model system. We exploit the electric quadrupole moment of spin-3/2 23Na nuclei and, through combination of single-quantum and triple-quantum-filtered 23Na NMR relaxation methods, disentangle the relaxation contribution of different populations of sodium ions inside gels. Three populations of sodium ions are identified: a population with bi-exponential relaxation representing ions within the slow motion regime and two populations with mono-exponential relaxation but at different rates. Our study demonstrates the dynamical heterogeneity of sodium ions inside agarose gels and presents a new experimental approach for monitoring dynamics of sodium and other spin-3/2 ions (e.g. chloride) in condensed environments.


Asunto(s)
Geles , Sefarosa , Sodio , Sefarosa/química , Sodio/química , Geles/química , Espectroscopía de Resonancia Magnética/métodos , Iones/química , Teoría Cuántica
11.
Nature ; 631(8021): 507-508, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39020039
12.
Proc Natl Acad Sci U S A ; 119(24): e2200930119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35671425

RESUMEN

Biological functionality is often enabled by a fascinating variety of physical phenomena that emerge from orientational order of building blocks, a defining property of nematic liquid crystals that is also pervasive in nature. Out-of-equilibrium, "living" analogs of these technological materials are found in biological embodiments ranging from myelin sheath of neurons to extracellular matrices of bacterial biofilms and cuticles of beetles. However, physical underpinnings behind manifestations of orientational order in biological systems often remain unexplored. For example, while nematiclike birefringent domains of biofilms are found in many bacterial systems, the physics behind their formation is rarely known. Here, using cellulose-synthesizing Acetobacter xylinum bacteria, we reveal how biological activity leads to orientational ordering in fluid and gel analogs of these soft matter systems, both in water and on solid agar, with a topological defect found between the domains. Furthermore, the nutrient feeding direction plays a role like that of rubbing of confining surfaces in conventional liquid crystals, turning polydomain organization within the biofilms into a birefringent monocrystal-like order of both the extracellular matrix and the rod-like bacteria within it. We probe evolution of scalar orientational order parameters of cellulose nanofibers and bacteria associated with fluid-gel and isotropic-nematic transformations, showing how highly ordered active nematic fluids and gels evolve with time during biological-activity-driven, disorder-order transformation. With fluid and soft-gel nematics observed in a certain range of biological activity, this mesophase-exhibiting system is dubbed "biotropic," analogously to thermotropic nematics that exhibit solely orientational order within a temperature range, promising technological and fundamental-science applications.


Asunto(s)
Celulosa , Gluconacetobacter xylinus , Cristales Líquidos , Celulosa/biosíntesis , Celulosa/química , Geles , Gluconacetobacter xylinus/metabolismo , Cristales Líquidos/química , Agua/química
13.
J Am Chem Soc ; 146(20): 13903-13913, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38721817

RESUMEN

Cohesive and interfacial adhesion energies are difficult to balance to obtain reversible adhesives with both high mechanical strength and high adhesion strength, although various methods have been extensively investigated. Here, a biocompatible citric acid/L-(-)-carnitine (CAC)-based ionic liquid was developed as a solvent to prepare tough and high adhesion strength ionogels for reversible engineered and biological adhesives. The prepared ionogels exhibited good mechanical properties, including tensile strength (14.4 MPa), Young's modulus (48.1 MPa), toughness (115.2 MJ m-3), and high adhesion strength on the glass substrate (24.4 MPa). Furthermore, the ionogels can form mechanically matched tough adhesion at the interface of wet biological tissues (interfacial toughness about 191 J m-2) and can be detached by saline solution on demand, thus extending potential applications in various clinical scenarios such as wound adhesion and nondestructive transfer of organs.


Asunto(s)
Materiales Biocompatibles , Ácido Cítrico , Geles , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Ácido Cítrico/química , Geles/química , Carnitina/química , Líquidos Iónicos/química , Resistencia a la Tracción , Adhesivos/química
14.
J Am Chem Soc ; 146(28): 19555-19565, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38963823

RESUMEN

Gelation of protein condensates formed by liquid-liquid phase separation occurs in a wide range of biological contexts, from the assembly of biomaterials to the formation of fibrillar aggregates, and is therefore of interest for biomedical applications. Soluble-to-gel (sol-gel) transitions are controlled through macroscopic processes such as changes in temperature or buffer composition, resulting in bulk conversion of liquid droplets into microgels within minutes to hours. Using microscopy and mass spectrometry, we show that condensates of an engineered mini-spidroin (NT2repCTYF) undergo a spontaneous sol-gel transition resulting in the loss of exchange of proteins between the soluble and the condensed phase. This feature enables us to specifically trap a silk-domain-tagged target protein in the spidroin microgels. Surprisingly, laser pulses trigger near-instant gelation. By loading the condensates with fluorescent dyes or drugs, we can control the wavelength at which gelation is triggered. Fluorescence microscopy reveals that laser-induced gelation significantly further increases the partitioning of the fluorescent molecules into the condensates. In summary, our findings demonstrate direct control of phase transitions in individual condensates, opening new avenues for functional and structural characterization.


Asunto(s)
Rayos Láser , Transición de Fase , Fibroínas/química , Colorantes Fluorescentes/química , Geles/química
15.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656455

RESUMEN

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Asunto(s)
Alginatos , Anticuerpos Antivirales , Quitosano , Inmunidad Mucosa , Inmunoglobulina A , Inmunoglobulina G , Virus de la Diarrea Epidémica Porcina , Vacunas Virales , Animales , Administración Oral , Virus de la Diarrea Epidémica Porcina/inmunología , Alginatos/administración & dosificación , Quitosano/administración & dosificación , Ratones , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Anticuerpos Antivirales/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Porcinos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Femenino , Geles/administración & dosificación , Ratones Endogámicos BALB C , Interferón gamma/inmunología , Ácido Glucurónico/administración & dosificación , Ácidos Hexurónicos/administración & dosificación
16.
Anal Chem ; 96(32): 13217-13225, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39078883

RESUMEN

Gel-electromembrane extraction (G-EME) is an increasingly popular green variant of electromembrane extraction (EME). However, the electroendosmosis (EEO) flow associated with G-EME greatly limits the development of this technology. To address this challenge, the current study proposed the concept of confined G-EME (CG-EME), and a three-dimensional-printed modular device was elaborately designed to realize this concept. The device blocked the EEO flow by limiting the volume of the sample compartment. Moreover, the mesh structure at the bottom of the extraction module helps to prepare thin and stable gel films, which enhance the electromigration driving force and shorten the migration path. In addition, polar oligonucleotides, a nucleic acid analyte, were extracted for the first time to prove the concept of CG-EME. After optimization, 62% of the oligonucleotides were extracted at 50 V voltage for 15 min using a 3 mm thick agarose (3%) gel film. Finally, the application capability of CG-EME was further demonstrated by recovering DNA primers and isolating disease biomarkers (miRNA-181b) from real samples. In combination with CG-EME and quantitative polymerase chain reaction (qPCR) analysis, the upregulation of miRNA-181b expression in the peripheral blood of patients with schizophrenia was observed. In conclusion, this study proposes CG-EME to diminish EEO and push EME into the clinical field to isolate nucleic acid biomarkers, which will greatly expand the application scenarios of this emerging technology.


Asunto(s)
Geles , Oligonucleótidos , Oligonucleótidos/aislamiento & purificación , Oligonucleótidos/química , Geles/química , Membranas Artificiales , Humanos , MicroARNs/sangre , MicroARNs/análisis , MicroARNs/aislamiento & purificación , Técnicas Electroquímicas
17.
Anal Chem ; 96(24): 9961-9968, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838250

RESUMEN

In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Europio , Geles , Mediciones Luminiscentes , MicroARNs , Europio/química , MicroARNs/análisis , Técnicas Electroquímicas/métodos , Ligandos , Geles/química , Técnicas Biosensibles/métodos , Límite de Detección , Humanos
18.
Anal Chem ; 96(21): 8648-8656, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38716690

RESUMEN

Microfluidic analytical tools play an important role in miniaturizing targeted proteomic assays for improved detection sensitivity, throughput, and automation. Microfluidic isoelectric focusing (IEF) can resolve proteoforms in lysate from low-to-single cell numbers. However, IEF assays often use carrier ampholytes (CAs) to establish a pH gradient for protein separation, presenting limitations like pH instability in the form of cathodic drift (migration of focused proteins toward the cathode). Immobilized pH gradient (IPG) gels reduce cathodic drift by covalently immobilizing the pH buffering components to a matrix. To our knowledge, efforts to implement IPG gels at the microscale have been limited to glass microdevices. To adapt IEF using IPGs to widely used microfluidic device materials, we introduce a polydimethylsiloxane (PDMS)-based microfluidic device and compare the microscale pH gradient stability of IEF established with IPGs, CAs, and a hybrid formulation of IPG gels and CAs (mixed-bed IEF). The PDMS-based IPG microfluidic device (µIPG) resolved analytes differing by 0.1 isoelectric point within a 3.5 mm separation lane over a 20 min focusing duration. During the 20 min duration, we observed markedly different cathodic drift velocities among the three formulations: 60.1 µm/min in CA-IEF, 2.5 µm/min in IPG-IEF (∼24-fold reduction versus CA-IEF), and 1.4 µm/min in mixed-bed IEF (∼43-fold reduction versus CA-IEF). Lastly, mixed-bed IEF in a PDMS device resolved green fluorescent protein (GFP) proteoforms from GFP-expressing human breast cancer cell lysate, thus establishing stability in lysate from complex biospecimens. µIPG is a promising and stable technique for studying proteoforms from small volumes.


Asunto(s)
Dimetilpolisiloxanos , Focalización Isoeléctrica , Focalización Isoeléctrica/métodos , Humanos , Dimetilpolisiloxanos/química , Concentración de Iones de Hidrógeno , Electrodos , Técnicas Analíticas Microfluídicas/instrumentación , Fuerza Protón-Motriz , Dispositivos Laboratorio en un Chip , Geles/química
19.
Anal Chem ; 96(31): 12593-12597, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39041729

RESUMEN

In this Letter, a sensitive DNA sensing platform was developed using an indium-ion-coordinated 1,1,2,2-tetra(4-carboxylphenyl)ethylene (TPE) metal-organic gel (In-MOG) as an aggregation-induced electrochemiluminescence (AIECL) emitter and nanosurface energy transfer (NSET) as an efficient quenching strategy for detecting aflatoxin B1 (AFB1), the most dangerous food toxin. The coordination occurred in indium ions, and carboxyl groups restricted the internal rotation and vibration of TPE molecules, forcing them to release photons via radiative transitions. The quenchers of microfluidic-produced gold nanoparticles were embedded in a long-tailed triangular DNA structure, where the quenching phenomenon aligned with the theory of ECL-NSET under the overlap of spectra and appropriate donor-acceptor spacing. The proposed analytical method showed a sensitive ECL response to AFB1 in the wide concentration range of 0.50-200.00 ng/mL with a limit of detection of 0.17 ng/mL. Experimental results confirmed that constraining luminescent molecules using coordination and bonding to trigger the AIECL phenomenon was a promising method to prepare signal labels for the trace detection of food toxins.


Asunto(s)
Aflatoxina B1 , Técnicas Electroquímicas , Transferencia de Energía , Mediciones Luminiscentes , Aflatoxina B1/análisis , Oro/química , Nanopartículas del Metal/química , ADN/química , Geles/química , Límite de Detección
20.
Anal Chem ; 96(3): 1102-1111, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38179931

RESUMEN

Extracellular matrix (ECM) stiffness modulates a variety of cellular processes, including ferroptosis, a process with significant potential implications for hepatocellular carcinoma (HCC) fibrosis and cirrhosis. However, the exact relationship between ECM stiffness and HCC ferroptosis is yet unclarified, partially due to the lack of in situ information on key parameters of the ferroptosis process of living HCC cells. This study pioneers the use of in vitro mechanical microenvironment models of HCC and the scanning electrochemical microscopy (SECM) technique for understanding this interplay. We first cultured HuH7 cells on 4.0, 18.0, and 44.0 kPa polyacrylamide (PA) gels to simulate early, intermediate, and advanced HCC ECM stiffness, respectively. Then, we used SECM to in situ monitor changes in cell membrane permeability, respiratory activity, and reactive oxygen species (ROS) levels of erastin-induced HuH7 cells on PA gels, finding that increasing ECM stiffness potentiates ferroptosis, including increased membrane permeabilization and H2O2 release as well as reduced respiratory activity. Through further transcriptome sequencing and molecular biology measurements, we identified a critical role for focal adhesion kinase (FAK)-mediated yes-associated protein (YAP) in regulating the ferroptosis process dependent on ECM stiffness, which provides novel insights into the mechanical regulation of ferroptosis in HCC cells and may pave the way for innovative therapeutic strategies.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Peróxido de Hidrógeno/metabolismo , Microscopía Electroquímica de Rastreo , Matriz Extracelular/metabolismo , Fibrosis , Geles/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA