Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.522
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 181(5): 1131-1145.e21, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32386546

RESUMEN

There are many unanswered questions about the population history of the Central and South Central Andes, particularly regarding the impact of large-scale societies, such as the Moche, Wari, Tiwanaku, and Inca. We assembled genome-wide data on 89 individuals dating from ∼9,000-500 years ago (BP), with a particular focus on the period of the rise and fall of state societies. Today's genetic structure began to develop by 5,800 BP, followed by bi-directional gene flow between the North and South Highlands, and between the Highlands and Coast. We detect minimal admixture among neighboring groups between ∼2,000-500 BP, although we do detect cosmopolitanism (people of diverse ancestries living side-by-side) in the heartlands of the Tiwanaku and Inca polities. We also highlight cases of long-range mobility connecting the Andes to Argentina and the Northwest Andes to the Amazon Basin. VIDEO ABSTRACT.


Asunto(s)
Antropología/métodos , ADN Antiguo/análisis , Flujo Génico/genética , América Central , ADN Mitocondrial/genética , Flujo Génico/fisiología , Genética de Población/métodos , Haplotipos , Humanos , Análisis de Secuencia de ADN , América del Sur
2.
Cell ; 181(5): 1146-1157.e11, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32470400

RESUMEN

We report genome-wide DNA data for 73 individuals from five archaeological sites across the Bronze and Iron Ages Southern Levant. These individuals, who share the "Canaanite" material culture, can be modeled as descending from two sources: (1) earlier local Neolithic populations and (2) populations related to the Chalcolithic Zagros or the Bronze Age Caucasus. The non-local contribution increased over time, as evinced by three outliers who can be modeled as descendants of recent migrants. We show evidence that different "Canaanite" groups genetically resemble each other more than other populations. We find that Levant-related modern populations typically have substantial ancestry coming from populations related to the Chalcolithic Zagros and the Bronze Age Southern Levant. These groups also harbor ancestry from sources we cannot fully model with the available data, highlighting the critical role of post-Bronze-Age migrations into the region over the past 3,000 years.


Asunto(s)
ADN Antiguo/análisis , Etnicidad/genética , Flujo Génico/genética , Arqueología/métodos , ADN Mitocondrial/genética , Etnicidad/historia , Flujo Génico/fisiología , Variación Genética/genética , Genética de Población/métodos , Genoma Humano/genética , Genómica/métodos , Haplotipos , Historia Antigua , Migración Humana/historia , Humanos , Región Mediterránea , Medio Oriente , Análisis de Secuencia de ADN
3.
Cell ; 181(5): 1158-1175.e28, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32470401

RESUMEN

Here, we report genome-wide data analyses from 110 ancient Near Eastern individuals spanning the Late Neolithic to Late Bronze Age, a period characterized by intense interregional interactions for the Near East. We find that 6th millennium BCE populations of North/Central Anatolia and the Southern Caucasus shared mixed ancestry on a genetic cline that formed during the Neolithic between Western Anatolia and regions in today's Southern Caucasus/Zagros. During the Late Chalcolithic and/or the Early Bronze Age, more than half of the Northern Levantine gene pool was replaced, while in the rest of Anatolia and the Southern Caucasus, we document genetic continuity with only transient gene flow. Additionally, we reveal a genetically distinct individual within the Late Bronze Age Northern Levant. Overall, our study uncovers multiple scales of population dynamics through time, from extensive admixture during the Neolithic period to long-distance mobility within the globalized societies of the Late Bronze Age. VIDEO ABSTRACT.


Asunto(s)
ADN Antiguo/análisis , Etnicidad/genética , Flujo Génico/genética , Arqueología/métodos , ADN Mitocondrial/genética , Etnicidad/historia , Flujo Génico/fisiología , Variación Genética/genética , Genética de Población/métodos , Genoma Humano/genética , Genómica/métodos , Haplotipos , Historia Antigua , Migración Humana/historia , Humanos , Región Mediterránea , Medio Oriente , Análisis de Secuencia de ADN
4.
Cell ; 177(1): 184-199, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901539

RESUMEN

Pathogen-imposed selection pressures have been paramount during human evolution. Detecting such selection signatures in ancient and modern human genomes can thus help us to identify genes of temporal and spatial immunological relevance. Admixture with ancient hominins and between human populations has been a source of genetic diversity open to selection by infections. Furthermore, cultural transitions, such as the advent of agriculture, have exposed humans to new microbial threats, with impacts on host defense mechanisms. The integration of population genetics and systems immunology holds great promise for the increased understanding of the factors driving immune response variation between individuals and populations.


Asunto(s)
Fenómenos del Sistema Inmunológico/fisiología , Inmunidad/genética , Adaptación Fisiológica/inmunología , Adaptación Fisiológica/fisiología , Evolución Biológica , Evolución Molecular , Variación Genética , Genética de Población/métodos , Humanos , Inmunidad/fisiología , Selección Genética/genética , Selección Genética/inmunología , Biología de Sistemas/métodos
5.
Cell ; 179(3): 589-603, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31607513

RESUMEN

Genome-wide association studies (GWASs) have focused primarily on populations of European descent, but it is essential that diverse populations become better represented. Increasing diversity among study participants will advance our understanding of genetic architecture in all populations and ensure that genetic research is broadly applicable. To facilitate and promote research in multi-ancestry and admixed cohorts, we outline key methodological considerations and highlight opportunities, challenges, solutions, and areas in need of development. Despite the perception that analyzing genetic data from diverse populations is difficult, it is scientifically and ethically imperative, and there is an expanding analytical toolbox to do it well.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Técnicas de Genotipaje/métodos , Genética Humana/métodos , Exactitud de los Datos , Variación Genética , Genética de Población/métodos , Genética de Población/normas , Estudio de Asociación del Genoma Completo/normas , Técnicas de Genotipaje/normas , Genética Humana/normas , Humanos , Linaje
6.
Cell ; 177(2): 326-338.e16, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30879787

RESUMEN

Crossing over is a nearly universal feature of sexual reproduction. Here, analysis of crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamental, evolutionarily conserved feature of meiosis: within individual nuclei, crossover frequencies covary across different chromosomes. This effect results from per-nucleus covariation of chromosome axis lengths. Crossovers can promote evolutionary adaptation. However, the benefit of creating favorable new allelic combinations must outweigh the cost of disrupting existing favorable combinations. Covariation concomitantly increases the frequencies of gametes with especially high, or especially low, numbers of crossovers, and thus might concomitantly enhance the benefits of crossing over while reducing its costs. A four-locus population genetic model suggests that such an effect can pertain in situations where the environment fluctuates: hyper-crossover gametes are advantageous when the environment changes while hypo-crossover gametes are advantageous in periods of environmental stasis. These findings reveal a new feature of the basic meiotic program and suggest a possible adaptive advantage.


Asunto(s)
Intercambio Genético/genética , Intercambio Genético/fisiología , Animales , Núcleo Celular , Segregación Cromosómica , Cromosomas/genética , Cromosomas/fisiología , Simulación por Computador , Femenino , Genética de Población/métodos , Recombinación Homóloga/genética , Humanos , Solanum lycopersicum/genética , Masculino , Meiosis/genética , Recombinación Genética/genética , Complejo Sinaptonémico
7.
Cell ; 177(1): 115-131, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901534

RESUMEN

Identifying the causes of similarities and differences in genetic disease prevalence among humans is central to understanding disease etiology. While present-day humans are not strongly differentiated, vast amounts of genomic data now make it possible to study subtle patterns of genetic variation. This allows us to trace our genomic history thousands of years into the past and its implications for the distribution of disease-associated variants today. Genomic analyses have shown that demographic processes shaped the distribution and frequency of disease-associated variants over time. Furthermore, local adaptation to new environmental conditions-including pathogens-has generated strong patterns of differentiation at particular loci. Researchers are also beginning to uncover the genetic architecture of complex diseases, affected by many variants of small effect. The field of population genomics thus holds great potential for providing further insights into the evolution of human disease.


Asunto(s)
Enfermedades Genéticas Congénitas/epidemiología , Enfermedades Genéticas Congénitas/etiología , Metagenómica/métodos , Adaptación Fisiológica/genética , Alelos , Evolución Molecular , Frecuencia de los Genes/genética , Flujo Genético , Variación Genética/genética , Genética de Población/métodos , Genómica/métodos , Humanos , Metagenómica/tendencias , Modelos Genéticos , Filogenia
8.
Cell ; 175(3): 848-858.e6, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30318150

RESUMEN

In familial searching in forensic genetics, a query DNA profile is tested against a database to determine whether it represents a relative of a database entrant. We examine the potential for using linkage disequilibrium to identify pairs of profiles as belonging to relatives when the query and database rely on nonoverlapping genetic markers. Considering data on individuals genotyped with both microsatellites used in forensic applications and genome-wide SNPs, we find that ∼30%-32% of parent-offspring pairs and ∼35%-36% of sib pairs can be identified from the SNPs of one member of the pair and the microsatellites of the other. The method suggests the possibility of performing familial searches of microsatellite databases using query SNP profiles, or vice versa. It also reveals that privacy concerns arising from computations across multiple databases that share no genetic markers in common entail risks, not only for database entrants, but for their close relatives as well.


Asunto(s)
Familia , Genética Forense/métodos , Genética de Población/métodos , Técnicas de Genotipaje/métodos , Polimorfismo de Nucleótido Simple , Femenino , Humanos , Desequilibrio de Ligamiento , Masculino , Repeticiones de Microsatélite , Modelos Genéticos , Modelos Estadísticos , Linaje
9.
Cell ; 175(2): 347-359.e14, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30290141

RESUMEN

We analyze whole-genome sequencing data from 141,431 Chinese women generated for non-invasive prenatal testing (NIPT). We use these data to characterize the population genetic structure and to investigate genetic associations with maternal and infectious traits. We show that the present day distribution of alleles is a function of both ancient migration and very recent population movements. We reveal novel phenotype-genotype associations, including several replicated associations with height and BMI, an association between maternal age and EMB, and between twin pregnancy and NRG1. Finally, we identify a unique pattern of circulating viral DNA in plasma with high prevalence of hepatitis B and other clinically relevant maternal infections. A GWAS for viral infections identifies an exceptionally strong association between integrated herpesvirus 6 and MOV10L1, which affects piwi-interacting RNA (piRNA) processing and PIWI protein function. These findings demonstrate the great value and potential of accumulating NIPT data for worldwide medical and genetic analyses.


Asunto(s)
Pueblo Asiatico/genética , Diagnóstico Prenatal/métodos , Adulto , Alelos , China , ADN/genética , Etnicidad/genética , Femenino , Frecuencia de los Genes/genética , Pruebas Genéticas , Variación Genética/genética , Genética de Población/métodos , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Migración Humana , Humanos , Embarazo , Análisis de Secuencia de ADN
10.
Nat Rev Genet ; 25(11): 750-767, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38877133

RESUMEN

Genomic data are ubiquitous across disciplines, from agriculture to biodiversity, ecology, evolution and human health. However, these datasets often contain noise or errors and are missing information that can affect the accuracy and reliability of subsequent computational analyses and conclusions. A key step in genomic data analysis is filtering - removing sequencing bases, reads, genetic variants and/or individuals from a dataset - to improve data quality for downstream analyses. Researchers are confronted with a multitude of choices when filtering genomic data; they must choose which filters to apply and select appropriate thresholds. To help usher in the next generation of genomic data filtering, we review and suggest best practices to improve the implementation, reproducibility and reporting standards for filter types and thresholds commonly applied to genomic datasets. We focus mainly on filters for minor allele frequency, missing data per individual or per locus, linkage disequilibrium and Hardy-Weinberg deviations. Using simulated and empirical datasets, we illustrate the large effects of different filtering thresholds on common population genetics statistics, such as Tajima's D value, population differentiation (FST), nucleotide diversity (π) and effective population size (Ne).


Asunto(s)
Genómica , Humanos , Genómica/métodos , Genética de Población/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Frecuencia de los Genes , Desequilibrio de Ligamiento , Animales , Variación Genética
11.
Annu Rev Genet ; 54: 213-236, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32870729

RESUMEN

Natural highly fecund populations abound. These range from viruses to gadids. Many highly fecund populations are economically important. Highly fecund populations provide an important contrast to the low-fecundity organisms that have traditionally been applied in evolutionary studies. A key question regarding high fecundity is whether large numbers of offspring are produced on a regular basis, by few individuals each time, in a sweepstakes mode of reproduction. Such reproduction characteristics are not incorporated into the classical Wright-Fisher model, the standard reference model of population genetics, or similar types of models, in which each individual can produce only small numbers of offspring relative to the population size. The expected genomic footprints of population genetic models of sweepstakes reproduction are very different from those of the Wright-Fisher model. A key, immediate issue involves identifying the footprints of sweepstakes reproduction in genomic data. Whole-genome sequencing data can be used to distinguish the patterns made by sweepstakes reproduction from the patterns made by population growth in a population evolving according to the Wright-Fisher model (or similar models). If the hypothesis of sweepstakes reproduction cannot be rejected, then models of sweepstakes reproduction and associated multiple-merger coalescents will become at least as relevant as the Wright-Fisher model (or similar models) and the Kingman coalescent, the cornerstones of mathematical population genetics, in further discussions of evolutionary genomics of highly fecund populations.


Asunto(s)
Fertilidad/genética , Evolución Biológica , Genética de Población/métodos , Genómica/métodos , Humanos , Modelos Genéticos , Densidad de Población , Crecimiento Demográfico , Reproducción/genética
12.
Nat Rev Genet ; 23(1): 5-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34363067

RESUMEN

Gene drives are selfish genetic elements that are transmitted to progeny at super-Mendelian (>50%) frequencies. Recently developed CRISPR-Cas9-based gene-drive systems are highly efficient in laboratory settings, offering the potential to reduce the prevalence of vector-borne diseases, crop pests and non-native invasive species. However, concerns have been raised regarding the potential unintended impacts of gene-drive systems. This Review summarizes the phenomenal progress in this field, focusing on optimal design features for full-drive elements (drives with linked Cas9 and guide RNA components) that either suppress target mosquito populations or modify them to prevent pathogen transmission, allelic drives for updating genetic elements, mitigating strategies including trans-complementing split-drives and genetic neutralizing elements, and the adaptation of drive technology to other organisms. These scientific advances, combined with ethical and social considerations, will facilitate the transparent and responsible advancement of these technologies towards field implementation.


Asunto(s)
Sistemas CRISPR-Cas , Tecnología de Genética Dirigida/métodos , Edición Génica/métodos , Genética de Población/métodos , ARN Guía de Kinetoplastida/genética , Alelos , Animales , Tecnología de Genética Dirigida/tendencias , Edición Génica/tendencias , Humanos , Modelos Genéticos , Mutación , ARN Guía de Kinetoplastida/metabolismo
13.
Am J Hum Genet ; 111(10): 2129-2138, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39270648

RESUMEN

Large-scale, multi-ethnic whole-genome sequencing (WGS) studies, such as the National Human Genome Research Institute Genome Sequencing Program's Centers for Common Disease Genomics (CCDG), play an important role in increasing diversity for genetic research. Before performing association analyses, assessing Hardy-Weinberg equilibrium (HWE) is a crucial step in quality control procedures to remove low quality variants and ensure valid downstream analyses. Diverse WGS studies contain ancestrally heterogeneous samples; however, commonly used HWE methods assume that the samples are homogeneous. Therefore, directly applying these to the whole dataset can yield statistically invalid results. To account for this heterogeneity, HWE can be tested on subsets of samples that have genetically homogeneous ancestries and the results aggregated at each variant. To facilitate valid HWE subset testing, we developed a semi-supervised learning approach that predicts homogeneous ancestries based on the genotype. This method provides a convenient tool for estimating HWE in the presence of population structure and missing self-reported race and ethnicities in diverse WGS studies. In addition, assessing HWE within the homogeneous ancestries provides reliable HWE estimates that will directly benefit downstream analyses, including association analyses in WGS studies. We applied our proposed method on the CCDG dataset, predicting homogeneous genetic ancestry groups for 60,545 multi-ethnic WGS samples to assess HWE within each group.


Asunto(s)
Aprendizaje Automático Supervisado , Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/métodos , Genoma Humano , Genética de Población/métodos , Etnicidad/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Genotipo
14.
Annu Rev Genet ; 53: 347-372, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31505133

RESUMEN

The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.


Asunto(s)
Genética de Población/métodos , Patrón de Herencia , Plantas/genética , Espermatozoides/fisiología , Animales , Quimera , Mapeo Cromosómico , Femenino , Células Germinativas/fisiología , Heterocigoto , Depresión Endogámica , Masculino , Meiosis , Polen/genética , Autoincompatibilidad en las Plantas con Flores/genética , Razón de Masculinidad , Vertebrados/genética , Cigoto
15.
PLoS Biol ; 22(10): e3002847, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39383205

RESUMEN

In both statistical genetics and phylogenetics, a major goal is to identify correlations between genetic loci or other aspects of the phenotype or environment and a focal trait. In these 2 fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The disconnect between their respective approaches is becoming untenable as questions in medicine, conservation biology, and evolutionary biology increasingly rely on integrating data from within and among species, and once-clear conceptual divisions are becoming increasingly blurred. To help bridge this divide, we lay out a general model describing the covariance between the genetic contributions to the quantitative phenotypes of different individuals. Taking this approach shows that standard models in both statistical genetics (e.g., genome-wide association studies; GWAS) and phylogenetic comparative biology (e.g., phylogenetic regression) can be interpreted as special cases of this more general quantitative-genetic model. The fact that these models share the same core architecture means that we can build a unified understanding of the strengths and limitations of different methods for controlling for genetic structure when testing for associations. We develop intuition for why and when spurious correlations may occur analytically and conduct population-genetic and phylogenetic simulations of quantitative traits. The structural similarity of problems in statistical genetics and phylogenetics enables us to take methodological advances from one field and apply them in the other. We demonstrate by showing how a standard GWAS technique-including both the genetic relatedness matrix (GRM) as well as its leading eigenvectors, corresponding to the principal components of the genotype matrix, in a regression model-can mitigate spurious correlations in phylogenetic analyses. As a case study, we re-examine an analysis testing for coevolution of expression levels between genes across a fungal phylogeny and show that including eigenvectors of the covariance matrix as covariates decreases the false positive rate while simultaneously increasing the true positive rate. More generally, this work provides a foundation for more integrative approaches for understanding the genetic architecture of phenotypes and how evolutionary processes shape it.


Asunto(s)
Estudio de Asociación del Genoma Completo , Modelos Genéticos , Fenotipo , Filogenia , Estudio de Asociación del Genoma Completo/métodos , Genética de Población/métodos , Sitios de Carácter Cuantitativo , Humanos , Simulación por Computador , Modelos Estadísticos
16.
Proc Natl Acad Sci U S A ; 121(28): e2307107121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959040

RESUMEN

Despite evolutionary biology's obsession with natural selection, few studies have evaluated multigenerational series of patterns of selection on a genome-wide scale in natural populations. Here, we report on a 10-y population-genomic survey of the microcrustacean Daphnia pulex. The genome sequences of [Formula: see text]800 isolates provide insights into patterns of selection that cannot be obtained from long-term molecular-evolution studies, including the following: the pervasiveness of near quasi-neutrality across the genome (mean net selection coefficients near zero, but with significant temporal variance about the mean, and little evidence of positive covariance of selection across time intervals); the preponderance of weak positive selection operating on minor alleles; and a genome-wide distribution of numerous small linkage islands of observable selection influencing levels of nucleotide diversity. These results suggest that interannual fluctuating selection is a major determinant of standing levels of variation in natural populations, challenge the conventional paradigm for interpreting patterns of nucleotide diversity and divergence, and motivate the need for the further development of theoretical expressions for the interpretation of population-genomic data.


Asunto(s)
Daphnia , Genoma , Selección Genética , Animales , Daphnia/genética , Genoma/genética , Evolución Molecular , Variación Genética , Genética de Población/métodos
17.
Proc Natl Acad Sci U S A ; 121(19): e2315780121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687793

RESUMEN

Measuring inbreeding and its consequences on fitness is central for many areas in biology including human genetics and the conservation of endangered species. However, there is no consensus on the best method, neither for quantification of inbreeding itself nor for the model to estimate its effect on specific traits. We simulated traits based on simulated genomes from a large pedigree and empirical whole-genome sequences of human data from populations with various sizes and structures (from the 1,000 Genomes project). We compare the ability of various inbreeding coefficients ([Formula: see text]) to quantify the strength of inbreeding depression: allele-sharing, two versions of the correlation of uniting gametes which differ in the weight they attribute to each locus and two identical-by-descent segments-based estimators. We also compare two models: the standard linear model and a linear mixed model (LMM) including a genetic relatedness matrix (GRM) as random effect to account for the nonindependence of observations. We find LMMs give better results in scenarios with population or family structure. Within the LMM, we compare three different GRMs and show that in homogeneous populations, there is little difference among the different [Formula: see text] and GRM for inbreeding depression quantification. However, as soon as a strong population or family structure is present, the strength of inbreeding depression can be most efficiently estimated only if i) the phenotypes are regressed on [Formula: see text] based on a weighted version of the correlation of uniting gametes, giving more weight to common alleles and ii) with the GRM obtained from an allele-sharing relatedness estimator.


Asunto(s)
Depresión Endogámica , Modelos Genéticos , Humanos , Linaje , Genética de Población/métodos , Endogamia , Alelos
18.
PLoS Genet ; 20(7): e1011092, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959269

RESUMEN

Haplotype estimation, or phasing, has gained significant traction in large-scale projects due to its valuable contributions to population genetics, variant analysis, and the creation of reference panels for imputation and phasing of new samples. To scale with the growing number of samples, haplotype estimation methods designed for population scale rely on highly optimized statistical models to phase genotype data, and usually ignore read-level information. Statistical methods excel in resolving common variants, however, they still struggle at rare variants due to the lack of statistical information. In this study we introduce SAPPHIRE, a new method that leverages whole-genome sequencing data to enhance the precision of haplotype calls produced by statistical phasing. SAPPHIRE achieves this by refining haplotype estimates through the realignment of sequencing reads, particularly targeting low-confidence phase calls. Our findings demonstrate that SAPPHIRE significantly enhances the accuracy of haplotypes obtained from state of the art methods and also provides the subset of phase calls that are validated by sequencing reads. Finally, we show that our method scales to large data sets by its successful application to the extensive 3.6 Petabytes of sequencing data of the last UK Biobank 200,031 sample release.


Asunto(s)
Genética de Población , Haplotipos , Secuenciación Completa del Genoma , Secuenciación Completa del Genoma/métodos , Humanos , Genética de Población/métodos , Genoma Humano , Polimorfismo de Nucleótido Simple/genética , Estudio de Asociación del Genoma Completo/métodos , Algoritmos
19.
Proc Natl Acad Sci U S A ; 121(27): e2406734121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38913897

RESUMEN

The Merovingian period (5th to 8th cc AD) was a time of demographic, socioeconomic, cultural, and political realignment in Western Europe. Here, we report the whole-genome shotgun sequence data of 30 human skeletal remains from a coastal Late Merovingian site of Koksijde (675 to 750 AD), alongside 18 remains from two Early to Late Medieval sites in present-day Flanders, Belgium. We find two distinct ancestries, one shared with Early Medieval England and the Netherlands, while the other, minor component, reflecting likely continental Gaulish ancestry. Kinship analyses identified no large pedigrees characteristic to elite burials revealing instead a high modularity of distant relationships among individuals of the main ancestry group. In contrast, individuals with >90% Gaulish ancestry had no kinship links among sampled individuals. Evidence for population structure and major differences in the extent of Gaulish ancestry in the main group, including in a mother-daughter pair, suggests ongoing admixture in the community at the time of their burial. The isotopic and genetic evidence combined supports a model by which the burials, representing an established coastal nonelite community, had incorporated migrants from inland populations. The main group of burials at Koksijde shows an abundance of >5 cM long shared allelic intervals with the High Medieval site nearby, implying long-term continuity and suggesting that similarly to Britain, the Early Medieval ancestry shifts left a significant and long-lasting impact on the genetic makeup of the Flemish population. We find substantial allele frequency differences between the two ancestry groups in pigmentation and diet-associated variants, including those linked with lactase persistence, likely reflecting ancestry change rather than local adaptation.


Asunto(s)
Linaje , Humanos , Historia Medieval , Bélgica , Entierro/historia , Genética de Población/métodos , Femenino , Masculino , ADN Antiguo/análisis , Inglaterra , Migración Humana , Arqueología , Países Bajos , Genoma Humano
20.
Proc Natl Acad Sci U S A ; 121(34): e2411487121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39136984

RESUMEN

When biological populations expand into new territory, the evolutionary outcomes can be strongly influenced by genetic drift, the random fluctuations in allele frequencies. Meanwhile, spatial variability in the environment can also significantly influence the competition between subpopulations vying for space. Little is known about the interplay of these intrinsic and extrinsic sources of noise in population dynamics: When does environmental heterogeneity dominate over genetic drift or vice versa, and what distinguishes their population genetics signatures? Here, in the context of neutral evolution, we examine the interplay between a population's intrinsic, demographic noise and an extrinsic, quenched random noise provided by a heterogeneous environment. Using a multispecies Eden model, we simulate a population expanding over a landscape with random variations in local growth rates and measure how this variability affects genealogical tree structure, and thus genetic diversity. We find that, for strong heterogeneity, the genetic makeup of the expansion front is to a great extent predetermined by the set of fastest paths through the environment. The landscape-dependent statistics of these optimal paths then supersede those of the population's intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the statistics for coalescence of genealogical lineages, derived from those deterministic paths, strongly resemble the statistics emerging from demographic noise alone in uniform landscapes. This cautions interpretations of coalescence statistics and raises new challenges for inferring past population dynamics.


Asunto(s)
Dinámica Poblacional , Modelos Genéticos , Flujo Genético , Genética de Población/métodos , Variación Genética , Frecuencia de los Genes , Humanos , Evolución Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA