Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.899
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 19(8): 486-487, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884834
2.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34349021

RESUMEN

The regulator of capsule synthesis (Rcs) is a complex signaling cascade that monitors gram-negative cell envelope integrity. The outer membrane (OM) lipoprotein RcsF is the sensory component, but how RcsF functions remains elusive. RcsF interacts with the ß-barrel assembly machinery (Bam) complex, which assembles RcsF in complex with OM proteins (OMPs), resulting in RcsF's partial cell surface exposure. Elucidating whether RcsF/Bam or RcsF/OMP interactions are important for its sensing function is challenging because the Bam complex is essential, and partial loss-of-function mutations broadly compromise the OM biogenesis. Our recent discovery that, in the absence of nonessential component BamE, RcsF inhibits function of the central component BamA provided a genetic tool to select mutations that specifically prevent RcsF/BamA interactions. We employed a high-throughput suppressor screen to isolate a collection of such rcsF and bamA mutants and characterized their impact on RcsF/OMP assembly and Rcs signaling. Using these mutants and BamA inhibitors MRL-494L and darobactin, we provide multiple lines of evidence against the model in which RcsF senses Bam complex function. We show that Rcs activation in bam mutants results from secondary OM and lipopolysaccharide defects and that RcsF/OMP assembly is required for this activation, supporting an active role of RcsF/OMP complexes in sensing OM stress.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Complejos Multiproteicos/metabolismo , Cápsulas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genes Supresores , Ensayos Analíticos de Alto Rendimiento , Lipopolisacáridos/metabolismo , Complejos Multiproteicos/genética , Mutación , Fenilpropionatos/farmacología
3.
Plant Cell ; 32(5): 1589-1609, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32169961

RESUMEN

Protein folding is a complex cellular process often assisted by chaperones, but it can also be facilitated by interactions with lipids. Disulfide bond formation is a common mechanism to stabilize a protein. This can help maintain functionality amid changes in the biochemical milieu, including those relating to energy-transducing membranes. Plastidic Type I Signal Peptidase 1 (Plsp1) is an integral thylakoid membrane signal peptidase that requires an intramolecular disulfide bond for in vitro activity. We have investigated the interplay between disulfide bond formation, lipids, and pH in the folding and activity of Plsp1. By combining biochemical approaches with a genetic complementation assay using Arabidopsis thaliana plants, we provide evidence that interactions with lipids in the thylakoid membrane have reconstitutive chaperoning activity toward Plsp1. Further, the disulfide bridge appears to prevent an inhibitory conformational change resulting from proton motive force-mimicking pH conditions. Broader implications related to the folding of proteins in energy-transducing membranes are discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Membranas Intracelulares/enzimología , Chaperonas Moleculares/metabolismo , Fuerza Protón-Motriz , Serina Endopeptidasas/metabolismo , Tilacoides/enzimología , Proteínas de Arabidopsis/química , Ritmo Circadiano/efectos de los fármacos , Cisteína/metabolismo , Disulfuros/metabolismo , Ditiotreitol/farmacología , Estabilidad de Enzimas , Escherichia coli/metabolismo , Genes Supresores , Membrana Dobles de Lípidos/metabolismo , Modelos Biológicos , Mutación/genética , Oxidación-Reducción , Conformación Proteica , Serina Endopeptidasas/química
4.
Nucleic Acids Res ; 49(19): 11274-11293, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34614168

RESUMEN

In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Proteínas de Ciclo Celular/genética , Interacciones Huésped-Patógeno/genética , Luteoviridae/genética , Enfermedades de las Plantas/genética , Ribonucleasa III/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Arabidopsis/inmunología , Arabidopsis/virología , Proteínas de Arabidopsis/inmunología , Proteínas Argonautas/inmunología , Proteínas de Ciclo Celular/inmunología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica , Genes Supresores , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/inmunología , Luteoviridae/crecimiento & desarrollo , Luteoviridae/metabolismo , Floema/genética , Floema/inmunología , Floema/virología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Interferencia de ARN , Ribonucleasa III/inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas Virales/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(48): 30687-30698, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184176

RESUMEN

The SARS-CoV-2 pandemic has made it clear that we have a desperate need for antivirals. We present work that the mammalian SKI complex is a broad-spectrum, host-directed, antiviral drug target. Yeast suppressor screening was utilized to find a functional genetic interaction between proteins from influenza A virus (IAV) and Middle East respiratory syndrome coronavirus (MERS-CoV) with eukaryotic proteins that may be potential host factors involved in replication. This screening identified the SKI complex as a potential host factor for both viruses. In mammalian systems siRNA-mediated knockdown of SKI genes inhibited replication of IAV and MERS-CoV. In silico modeling and database screening identified a binding pocket on the SKI complex and compounds predicted to bind. Experimental assays of those compounds identified three chemical structures that were antiviral against IAV and MERS-CoV along with the filoviruses Ebola and Marburg and two further coronaviruses, SARS-CoV and SARS-CoV-2. The mechanism of antiviral activity is through inhibition of viral RNA production. This work defines the mammalian SKI complex as a broad-spectrum antiviral drug target and identifies lead compounds for further development.


Asunto(s)
Antivirales/farmacología , Coronavirus/efectos de los fármacos , Filoviridae/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Orthomyxoviridae/efectos de los fármacos , Línea Celular , Genes Supresores , Modelos Moleculares , Terapia Molecular Dirigida , Unión Proteica , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
6.
Plant Physiol ; 185(4): 1903-1923, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793930

RESUMEN

The R2R3 transcription factor MdMYB88 has previously been reported to function in biotic and abiotic stress responses. Here, we identify BRI1 ETHYLMETHANE SULFONATE SUPRESSOR1 (MdBES1), a vital component of brassinosteroid (BR) signaling in apple (Malus × domestica) that directly binds to the MdMYB88 promoter, regulating the expression of MdMYB88 in a dynamic and multifaceted mode. MdBES1 positively regulated expression of MdMYB88 under cold stress and pathogen attack, but negatively regulated its expression under control and drought conditions. Consistently, MdBES1 was a positive regulator for cold tolerance and disease resistance in apple, but a negative regulator for drought tolerance. In addition, MdMYB88 participated in BR biosynthesis by directly regulating the BR biosynthetic genes DE ETIOLATED 2 (MdDET2), DWARF 4 (MdDWF4), and BRASSINOSTEROID 6 OXIDASE 2 (MdBR6OX2). Applying exogenous BR partially rescued the erect leaf and dwarf phenotypes, as well as defects in stress tolerance in MdMYB88/124 RNAi plants. Moreover, knockdown of MdMYB88 in MdBES1 overexpression (OE) plants decreased resistance to a pathogen and C-REPEAT BINDING FACTOR1 expression, whereas overexpressing MdMYB88 in MdBES1 OE plants increased expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 (MdSPL3) and BR biosynthetic genes, suggesting that MdMYB88 contributes to MdBES1 function during BR biosynthesis and the stress response. Taken together, our results reveal multifaceted regulation of MdBES1 on MdMYB88 in BR biosynthesis and stress tolerance.


Asunto(s)
Absorción Fisiológica/genética , Absorción Fisiológica/fisiología , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Metanosulfonato de Etilo/metabolismo , Malus/crecimiento & desarrollo , Malus/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Supresores , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Factores de Transcripción/metabolismo
7.
Mol Psychiatry ; 26(10): 5766-5788, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32647257

RESUMEN

A population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of ß-amyloid-(Aß)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar Aß deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome 21 gene BACE2, but prevented by combined chemical ß and γ-secretase inhibition. We found that T21 organoids secrete increased proportions of Aß-preventing (Aß1-19) and Aß-degradation products (Aß1-20 and Aß1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1 inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in ~30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Síndrome de Down/genética , Genes Supresores , Humanos , Organoides/metabolismo , Trisomía
8.
Proc Natl Acad Sci U S A ; 116(35): 17377-17382, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31409704

RESUMEN

Gross Chromosomal Rearrangements (GCRs) play an important role in human diseases, including cancer. Although most of the nonessential Genome Instability Suppressing (GIS) genes in Saccharomyces cerevisiae are known, the essential genes in which mutations can cause increased GCR rates are not well understood. Here 2 S. cerevisiae GCR assays were used to screen a targeted collection of temperature-sensitive mutants to identify mutations that caused increased GCR rates. This identified 94 essential GIS (eGIS) genes in which mutations cause increased GCR rates and 38 candidate eGIS genes that encode eGIS1 protein-interacting or family member proteins. Analysis of TCGA data using the human genes predicted to encode the proteins and protein complexes implicated by the S. cerevisiae eGIS genes revealed a significant enrichment of mutations affecting predicted human eGIS genes in 10 of the 16 cancers analyzed.


Asunto(s)
Genes Supresores , Genoma Fúngico , Inestabilidad Genómica , Neoplasias/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Supresoras de Tumor/genética , Daño del ADN , Humanos , Mutación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Supresoras de Tumor/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(27): 13384-13393, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31213543

RESUMEN

Sensing misfolded proteins in the endoplasmic reticulum (ER), cells initiate the ER stress response and, when overwhelmed, undergo apoptosis. However, little is known about how cells prevent excessive ER stress response and cell death to restore homeostasis. Here, we report the identification and characterization of cellular suppressors of ER stress-induced apoptosis. Using a genome-wide CRISPR library, we screen for genes whose inactivation further increases ER stress-induced up-regulation of C/EBP homologous protein 10 (CHOP)-the transcription factor central to ER stress-associated apoptosis. Among the top validated hits are two interacting components of the polycomb repressive complex (L3MBTL2 [L(3)Mbt-Like 2] and MGA [MAX gene associated]), and microRNA-124-3 (miR-124-3). CRISPR knockout of these genes increases CHOP expression and sensitizes cells to apoptosis induced by multiple ER stressors, while overexpression confers the opposite effects. L3MBTL2 associates with the CHOP promoter in unstressed cells to repress CHOP induction but dissociates from the promoter in the presence of ER stress, whereas miR-124-3 directly targets the IRE1 branch of the ER stress pathway. Our study reveals distinct mechanisms that suppress ER stress-induced apoptosis and may lead to a better understanding of diseases whose pathogenesis is linked to overactive ER stress response.


Asunto(s)
Apoptosis , Sistemas CRISPR-Cas , Estrés del Retículo Endoplásmico , Animales , Retículo Endoplásmico/metabolismo , Fibroblastos , Técnicas de Inactivación de Genes , Genes Supresores , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Ratones , Transducción de Señal , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada
10.
Pediatr Surg Int ; 38(11): 1601-1617, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36107237

RESUMEN

PURPOSE: Wilms' tumor is the most-frequent malignant-kidney tumor in children under 3-4 years of age and is caused by genetic alterations of oncogenes (OG) and tumor-suppressor genes (TG). Wilms' tumor has been linked to many OG-&-TG. However, only WT1 has a proven role in the development of this embryonic-tumor. METHODS: The study investigates the level of mRNA expression of 16 OGs and 20 TGs involved in key-signaling pathways, including chromatin modification; RAS; APC; Cell Cycle/Apoptosis; Transcriptional Regulation; PI3K; NOTCH-&-HH; PI3K & RAS of 24-fresh Wilms'-tumor cases by capture-and-reporter probe Code-Sets chemistry, as CNVs in these pathway genes have been reported. RESULTS: Upon extensively investigating, MEN1, MLL2, MLL3, PBRM1, PRDM1, SMARCB1, SETD2, WT1, PTPN11, KRAS, HRAS, NF1, APC, RB1, FUBP1, BCOR, U2AF1, PIK3CA, PTEN, EBXW7, SMO, ALK, CBL, EP300-and-GATA1 were found to be significantly up-regulated in 58.34, 62.5, 79.17, 91.67, 58, 66.66,54, 58.34, 66.67, 75, 62.5, 62.5, 58, 79.17, 79.17, 75, 70.84, 50, 50, 75, 66.66, 62.50, 61.66, 58.34-and-62.50% of cases respectively, whereas BRAF, NF2, CDH1, BCL2, FGFR3, ERBB2, MET, RET, EGFR-and-GATA2 were significantly down regulated in 58, 87.50, 79.16, 54.16, 79.17, 91.66, 66.66, 58.33, 91.66-and-62.50% of cases, respectively. Interestingly, the WT1 gene was five-fold down regulated in 41.66% of cases only. CONCLUSION: Hence, extensive profiling of OGs and TGs association of major-signaling pathways in Wilms' tumor cases may aid in disease diagnosis. PBRM1 (up-regulated in 91.67% of cases), ERBB2 and EGFR (down-regulated in 91.66 and 91.66% of cases, respectively) could be marker genes. However, validation of all relevant results in a larger number of samples is required.


Asunto(s)
Neoplasias Renales , Tumor de Wilms , Niño , Cromatina , Fosfatidilinositol 3-Quinasa Clase I/genética , Proteínas de Unión al ADN , Receptores ErbB , Genes Supresores , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Mensajero , Proteínas de Unión al ARN , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal/genética , Factor de Empalme U2AF/genética , Tumor de Wilms/genética , Tumor de Wilms/patología
11.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142151

RESUMEN

The status of DNA methylation in primary tumor tissue and adjacent tumor-free tissue is associated with the occurrence of aggressive colorectal cancer (CRC) and can aid personalized cancer treatments at early stages. Tumor tissue and matched adjacent nontumorous tissue were extracted from 208 patients with CRC, and the correlation between the methylation levels of PTGER4 and ZNF43 at certain CpG loci and the prognostic factors of CRC was determined using the MassARRAY System testing platform. The Wilcoxon signed-rank test, a Chi-square test, and McNemar's test were used for group comparisons, and Kaplan-Meier curves and a log-rank test were used for prediction. The hypermethylation of PTGER4 at the CpG_4, CpG_5, CpG_15, and CpG_17 tumor tissue sites was strongly correlated with shorter recurrence-free survival (RFS), progression-free survival (PFS), and overall survival (OS) [hazard ratio (HR) = 3.26, 95% confidence interval (CI) = 1.38-7.73 for RFS, HR = 2.35 and 95% CI = 1.17-4.71 for PFS, HR = 4.32 and 95% CI = 1.8-10.5 for OS]. By contrast, RFS and PFS were significantly longer in the case of increased methylation of ZNF43 at the CpG_5 site of normal tissue [HR = 2.33, 95% CI = 1.07-5.08 for RFS, HR = 2.42 and 95% CI = 1.19-4.91 for PFS]. Aberrant methylation at specific CpG sites indicates tissue with aggressive behavior. Therefore, the differential methylation of PTGER4 and ZNF43 at specific loci can be employed for the prognosis of patients with CRC.


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/patología , Islas de CpG , Genes Supresores , Humanos , Regiones Promotoras Genéticas , Subtipo EP4 de Receptores de Prostaglandina E/genética
12.
Plant J ; 103(5): 1723-1734, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32445599

RESUMEN

The Brassica-specific gene MS5 mediates early meiotic progression, and its allelic variants contribute to a valuable genic male sterility three-line hybrid production system in rapeseed (Brassica napus L.). However, the underlying mechanisms of its triallelic inheritance are poorly understood. Herein, we show that the restorer allele MS5a and the maintainer allele MS5c are both necessary for male fertility in B. napus. The functional divergence of MS5a and MS5c is strongly related to sequence variations in their coding regions and less strongly to their promoter regions. The male-sterile allele MS5b encodes a chimeric protein containing only the complete MS5 coiled-coil (CC) domain, having lost the MS5 superfamily domain. Both MS5a and MS5c can form homodimers in the nucleus via the CC domain. MS5b can interact competitively with MS5a or MS5c to form non-functional heterodimers. Owing to the close transcript levels of MS5b and MS5c in MS5b MS5c , these heterodimers induced a dominant-negative effect of MS5b on MS5c , resulting in a male-sterile phenotype. The extremely high transcript abundance of MS5a maintains sufficient MS5a homodimers in MS5a MS5b , causing the recovery of male sterility. These findings provide substantial genetic and molecular evidence to improve our understanding of the mechanisms underlying the multiallelic inheritance of MS5, and enable the construction of a solid foundation for improved use of the MS5-controlled GMS system in Brassica species.


Asunto(s)
Brassica napus/genética , Genes de Plantas/genética , Alelos , Fertilidad/genética , Genes Dominantes/genética , Genes Supresores
13.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33055249

RESUMEN

Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.IMPORTANCE The Potyviridae represent the largest group of known plant RNA viruses and account for more than half of the viral crop damage worldwide. The leader proteases of viruses within the family vary greatly in size and arrangement and play key roles during the infection. Here, we experimentally demonstrate the presence of a distinct pattern of leader proteases, HCPro1 and HCPro2 in tandem, in a newly identified member within the family. Moreover, HCPro1 and HCPro2, which are closely related and typically characterized with a short size, have evolved contrasting RNA silencing suppression activity and seem to function in a coordinated manner to maintain viral infectivity. Altogether, the new knowledge fills a missing piece in the evolutionary relationship history of potyvirids and improves our understanding of the diversification of potyvirid genomes.


Asunto(s)
Proteasas de Cisteína/metabolismo , Potyviridae/enzimología , Interferencia de ARN , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Proteasas de Cisteína/genética , Genes Supresores , Genoma Viral , Viabilidad Microbiana , Mutación , Filogenia , Enfermedades de las Plantas/virología , Poliproteínas , Potyviridae/genética , Dominios Proteicos , ARN Viral/genética , Proteínas Virales/genética
14.
Mol Syst Biol ; 16(9): e9828, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32939983

RESUMEN

Essential genes tend to be highly conserved across eukaryotes, but, in some cases, their critical roles can be bypassed through genetic rewiring. From a systematic analysis of 728 different essential yeast genes, we discovered that 124 (17%) were dispensable essential genes. Through whole-genome sequencing and detailed genetic analysis, we investigated the genetic interactions and genome alterations underlying bypass suppression. Dispensable essential genes often had paralogs, were enriched for genes encoding membrane-associated proteins, and were depleted for members of protein complexes. Functionally related genes frequently drove the bypass suppression interactions. These gene properties were predictive of essential gene dispensability and of specific suppressors among hundreds of genes on aneuploid chromosomes. Our findings identify yeast's core essential gene set and reveal that the properties of dispensable essential genes are conserved from yeast to human cells, correlating with human genes that display cell line-specific essentiality in the Cancer Dependency Map (DepMap) project.


Asunto(s)
Genes Esenciales , Genes Fúngicos , Saccharomyces cerevisiae/genética , Supresión Genética , Aneuploidia , Evolución Molecular , Eliminación de Gen , Duplicación de Gen , Redes Reguladoras de Genes , Genes Supresores , Complejos Multiproteicos/metabolismo
15.
Plant Cell ; 30(1): 196-208, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29233855

RESUMEN

Light utilization is finely tuned in photosynthetic organisms to prevent cellular damage. The dissipation of excess absorbed light energy, a process termed nonphotochemical quenching (NPQ), plays an important role in photoprotection. Little is known about the sustained or slowly reversible form(s) of NPQ and whether they are photoprotective, in part due to the lack of mutants. The Arabidopsis thaliana suppressor of quenching1 (soq1) mutant exhibits enhanced sustained NPQ, which we term qH. To identify molecular players involved in qH, we screened for suppressors of soq1 and isolated mutants affecting either chlorophyllide a oxygenase or the chloroplastic lipocalin, now renamed plastid lipocalin (LCNP). Analysis of the mutants confirmed that qH is localized to the peripheral antenna (LHCII) of photosystem II and demonstrated that LCNP is required for qH, either directly (by forming NPQ sites) or indirectly (by modifying the LHCII membrane environment). qH operates under stress conditions such as cold and high light and is photoprotective, as it reduces lipid peroxidation levels. We propose that, under stress conditions, LCNP protects the thylakoid membrane by enabling sustained NPQ in LHCII, thereby preventing singlet oxygen stress.


Asunto(s)
Arabidopsis/metabolismo , Lipocalinas/metabolismo , Procesos Fotoquímicos , Plastidios/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Frío , Genes de Plantas , Genes Supresores , Pruebas Genéticas , Luz , Mutación/genética , Oxigenasas/metabolismo , Procesos Fotoquímicos/efectos de la radiación , Plastidios/efectos de la radiación , Tiorredoxinas/metabolismo , Secuenciación Completa del Genoma
16.
Exp Cell Res ; 386(1): 111711, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704059

RESUMEN

The eye imaginal disc-specific knockdown of dFIG4, a Drosophila homolog of FIG4 that is one of the Charcot-Marie-Tooth disease (CMT)-causing genes, induces an aberrant adult compound eye morphology, the so-called rough eye phenotype. We previously performed modifier screening on the dFIG4 knockdown-induced rough eye phenotype and identified several genes, including CR18854, encoding a long non-coding RNA (lncRNA) as genetic interactants with dFIG4. In the present study, in more extensive genetic screening, we found that the deletion of a gene locus encoding both Odorant rector 46a (Or46a) and lncRNA CR43467 effectively suppressed the rough eye phenotype induced by the knockdown of dFIG4. Both genes were located on the same locus, but oriented in opposite directions. In order to identify which of these genes is responsible for the suppression of the rough eye phenotype, we established a CR43467-specific knockdown line using the CRISPR-dCas9 system. By using this system, we demonstrated that the CR43467 gene, but not the Or46a gene, genetically interacted with the dFIG4 gene. The knockdown of CR43467 rescued the reductions in the length of synaptic branches and number of boutons at neuromuscular junctions induced by the knockdown of dFIG4. The vacuole enlargement phenotype induced by the fat body-specific dFIG4 knockdown was also effectively suppressed by the knockdown of CR43467. The knockdown of CR43467 also suppressed the rough eye phenotype induced by other peripheral neuropathy-related genes, such as dCOA7, dHADHB, and dPDHB. We herein identified another gene encoding lncRNA, CR43467 as a genetic interactant with the CMT-causing gene.


Asunto(s)
Genes Supresores , Monoéster Fosfórico Hidrolasas/genética , ARN Largo no Codificante/genética , Animales , Ojo Compuesto de los Artrópodos/citología , Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Unión Neuromuscular/metabolismo , Fenotipo
17.
Plant Physiol ; 180(2): 1219-1229, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30975695

RESUMEN

In Arabidopsis (Arabidopsis thaliana), the abscission of floral organs is regulated by two related receptor-like protein kinases, HAESA (HAE) and HAESA-LIKE2 (HSL2). In complex with members of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family of coreceptor protein kinases, HAE and HSL2 are activated when bound by INFLORESCENCE DEFICIENT IN ABSICSSION, a proteolytically processed peptide ligand, activating the expression of genes encoding secreted cell wall remodeling and hydrolase enzymes. hae hsl2 mutants fail to induce expression of these genes and retain floral organs indefinitely. Here, we report identification of an allelic series of hae hsl2 suppressor mutations in the SERK1 coreceptor protein kinase gene. Genetic and transcriptomic evidence indicates that these alleles represent a novel class of gain-of-function mutations that activate signaling independently of HAE/HSL2. We show that, surprisingly, the suppression effect does not rely on the protein kinase activity of SERK1 and that activation of signaling relies on the receptor-like kinase gene SUPPRESSOR OF BIR1 (SOBIR1). The effect of these mutations can be mimicked by loss of function of BAK1-INTERACTING RECEPTOR-LIKE KINASE1 (BIR1), a known negative regulator of SERK-SOBIR1 signaling. These results suggest that BIR1 negatively regulates SERK-SOBIR1 signaling during abscission and that the identified SERK1 mutations likely interfere with this negative regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Proteínas Quinasas/metabolismo , Transducción de Señal , Alelos , Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Genes Supresores , Mutación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Supresión Genética
18.
Plant Physiol ; 180(1): 392-403, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30814131

RESUMEN

Repressive epigenetic marks, such as DNA and histone methylation, are sometimes located within introns. In Arabidopsis (Arabidopsis thaliana), INCREASE IN BONSAI METHYLATION2 (IBM2), an RNA-binding protein containing a bromo-adjacent homology domain, is required to process functional transcript isoforms of genes carrying intronic heterochromatin. In a genetic screen for suppressors of the ibm2 mutation, we identified FPA, an RNA-binding protein that promotes use of proximal polyadenylation sites in genes targeted by IBM2, including IBM1 encoding an essential H3K9 histone demethylase and the disease resistance gene RECOGNITION OF PERONOSPORA PARASITICA7 Both IBM2 and FPA are involved in the processing of their common mRNA targets: Transcription of IBM2 target genes is restored when FPA is mutated in ibm2 and impaired in transgenic plants overexpressing FPA By contrast, transposons targeted by IBM2 and localized outside introns are not under this antagonistic control. The DNA methylation patterns of some genes and transposons are modified in fpa plants, including the large intron of IBM1, but these changes are rather limited and reversed when the mutant is complemented, indicating that FPA has a restricted role in mediating silencing. These data reveal a complex regulation by IBM2 and FPA pathways in processing mRNAs of genes bearing heterochromatic marks.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Heterocromatina/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Arabidopsis/genética , Metilación de ADN , Elementos Transponibles de ADN , Genes Supresores , Intrones , Histona Demetilasas con Dominio de Jumonji/genética , Mutación , Plantas Modificadas Genéticamente , Poliadenilación , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
19.
Plant Cell ; 29(12): 3269-3285, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29203634

RESUMEN

The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana, disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 (ref4-3) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Epistasis Genética , Complejo Mediador/genética , Propanoles/metabolismo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Supresores , Lignina/metabolismo , Malatos/metabolismo , Complejo Mediador/química , Complejo Mediador/metabolismo , Mutación Missense/genética , Fenotipo , Fenilpropionatos/metabolismo , Solubilidad , Estrés Fisiológico/genética , Supresión Genética
20.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096801

RESUMEN

Reprogramming of the genetic code system is limited by the difficulty in creating new tRNA structures. Here, I developed translationally active tRNA variants tagged with a small hairpin RNA aptamer, using Escherichia coli reporter assay systems. As the tRNA chassis for engineering, I employed amber suppressor variants of allo-tRNAs having the 9/3 composition of the 12-base pair amino-acid acceptor branch as well as a long variable arm (V-arm). Although their V-arm is a strong binding site for seryl-tRNA synthetase (SerRS), insertion of a bulge nucleotide in the V-arm stem region prevented allo-tRNA molecules from being charged by SerRS with serine. The SerRS-rejecting allo-tRNA chassis were engineered to have another amino-acid identity of either alanine, tyrosine, or histidine. The tip of the V-arms was replaced with diverse hairpin RNA aptamers, which were recognized by their cognate proteins expressed in E. coli. A high-affinity interaction led to the sequestration of allo-tRNA molecules, while a moderate-affinity aptamer moiety recruited histidyl-tRNA synthetase variants fused with the cognate protein domain. The new design principle for tRNA-aptamer fusions will enhance radical and dynamic manipulation of the genetic code.


Asunto(s)
Aptámeros de Nucleótidos/genética , Ingeniería Genética/métodos , ARN de Transferencia/genética , Anticodón , Aptámeros de Nucleótidos/química , Escherichia coli/genética , Genes Supresores , Histidina-ARNt Ligasa/genética , Mutación Puntual , ARN de Transferencia/química , Serina-ARNt Ligasa/genética , Serina-ARNt Ligasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA