RESUMEN
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Asunto(s)
Glicómica/métodos , Glicoproteínas/química , Espectrometría de Masas , Polisacáridos/química , Proteómica/métodos , Glicómica/instrumentación , Glicosilación , Procesamiento Proteico-Postraduccional , Proteómica/instrumentaciónRESUMEN
Knowledge of glycoproteins, their site-specific glycosylation patterns, and the glycan structures that they present to their recognition partners in health and disease is gradually being built on using a range of experimental approaches. The data from these analyses are increasingly being standardized and presented in various sources, from supplemental tables in publications to localized servers in investigator laboratories. Bioinformatics tools are now needed to collect these data and enable the user to search, display, and connect glycomics and glycoproteomics to other sources of related proteomics, genomics, and interactomics information. We here introduce GlyConnect ( https://glyconnect.expasy.org/ ), the central platform of the Glycomics@ExPASy portal for glycoinformatics. GlyConnect has been developed to gather, monitor, integrate, and visualize data in a user-friendly way to facilitate the interpretation of collected glycoscience data. GlyConnect is designed to accommodate and integrate multiple data types as they are increasingly produced.
Asunto(s)
Glicómica/métodos , Proteómica/métodos , Programas Informáticos , Biología Computacional/métodos , Glicómica/instrumentación , Glicoproteínas/análisis , Glicosilación , Interfaz Usuario-ComputadorRESUMEN
Glycan microarrays have become a powerful technology to study biological processes, such as cell-cell interaction, inflammation, and infections. Yet, several challenges, especially in multivalent display, remain. In this introductory lecture we discuss the state-of-the-art glycan microarray technology, with emphasis on novel approaches to access collections of pure glycans and their immobilization on surfaces. Future directions to mimic the natural glycan presentation on an array format, as well as in situ generation of combinatorial glycan collections, are discussed.
Asunto(s)
Análisis por Micromatrices/métodos , Polisacáridos/análisis , Animales , Bioimpresión/instrumentación , Bioimpresión/métodos , Química Clic/instrumentación , Química Clic/métodos , Diseño de Equipo , Glicómica/instrumentación , Glicómica/métodos , Humanos , Análisis por Micromatrices/instrumentaciónRESUMEN
Glycoproteomics involves the study of glycosylation events on protein sequences ranging from purified proteins to whole proteome scales. Understanding these complex post-translational modification (PTM) events requires elucidation of the glycan moieties (monosaccharide sequences and glycosidic linkages between residues), protein sequences, as well as site-specific attachment of glycan moieties onto protein sequences, in a spatial and temporal manner in a variety of biological contexts. Compared with proteomics, bioinformatics for glycoproteomics is immature and many researchers still rely on tedious manual interpretation of glycoproteomics data. As sample preparation protocols and analysis techniques have matured, the number of publications on glycoproteomics and bioinformatics has increased substantially; however, the lack of consensus on tool development and code reuse limits the dissemination of bioinformatics tools because it requires significant effort to migrate a computational tool tailored for one method design to alternative methods. This review discusses algorithms and methods in glycoproteomics, and refers to the general proteomics field for potential solutions. It also introduces general strategies for tool integration and pipeline construction in order to better serve the glycoproteomics community. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:475-498, 2017.
Asunto(s)
Algoritmos , Biología Computacional/métodos , Glicómica/métodos , Glicoproteínas/análisis , Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional , Secuencia de Carbohidratos , Biología Computacional/instrumentación , Biología Computacional/normas , Glicómica/instrumentación , Glicómica/normas , Glicoproteínas/química , Glicósidos/análisis , Glicósidos/química , Glicosilación , Humanos , Espectrometría de Masas/instrumentación , Espectrometría de Masas/normas , Monosacáridos/análisis , Monosacáridos/química , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química , Mapeo Peptídico/métodos , Mapeo Peptídico/estadística & datos numéricos , Proteoma/análisis , Proteoma/química , Programas InformáticosRESUMEN
Glycosaminoglycans regulate numerous physiopathological processes such as development, angiogenesis, innate immunity, cancer and neurodegenerative diseases. Cell surface GAGs are involved in cell-cell and cell-matrix interactions, cell adhesion and signaling, and host-pathogen interactions. GAGs contribute to the assembly of the extracellular matrix and heparan sulfate chains are able to sequester growth factors in the ECM. Their biological activities are regulated by their interactions with proteins. The structural heterogeneity of GAGs, mostly due to chemical modifications occurring during and after their synthesis, makes the development of analytical techniques for their profiling in cells, tissues, and biological fluids, and of computational tools for mining GAG-protein interaction data very challenging. We give here an overview of the experimental approaches used in glycosaminoglycomics, of the major GAG-protein interactomes characterized so far, and of the computational tools and databases available to analyze and store GAG structures and interactions.
Asunto(s)
Células Eucariotas/química , Matriz Extracelular/química , Glicómica/tendencias , Heparitina Sulfato/química , Animales , Comunicación Celular , Cromatografía/instrumentación , Cromatografía/métodos , Biología Computacional/métodos , Bases de Datos de Compuestos Químicos , Células Eucariotas/metabolismo , Matriz Extracelular/metabolismo , Glicómica/instrumentación , Glicómica/métodos , Heparitina Sulfato/metabolismo , Interacciones Huésped-Patógeno , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Espectroscopía de Resonancia Magnética/instrumentación , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Unión ProteicaRESUMEN
A new acridone derivative 2-aminoacetamido-10-(3, 5-dimethoxy)-benzyl-9(10H)-acridone hydrochloride (8a) has been shown to have potent antitumor activity. In order to understand the underlying action mechanism of 8a, three compounds of the same class with structures optimized step-by-step, 9(10H)-acridone (A), 10-(3,5-dimethoxy) benzyl-9(10H)-acridone (I) and 8a, were exposed to CCRF-CEM leukemia cell to determine the N-glycosylation changes using the microfluidic HPLC-chip-TOF MS platform. N-Glycans from whole cell lysates (WCL) and cell membranes (CM) were analyzed using isomer-sensitive chip-based porous graphitized carbon nano-LC/MS. A total of 223 N-glycan compositions and 398 N-glycan compounds were identified. Comparison of the two analyses showed that more apparent changes were observed in the CM compared with WCL, suggesting that CM may be a more sensitive indicator of changes in glycosylation. Upon 8a exposure to CCRF-CEM cells, a significant decrease in high-mannose-type glycans was observed. Different expressions of oligosaccharyltransferase subunits appear to play a key functional role in regulating the hypoglycosylation and contribute to the action mechanism of 8a. Taken together our findings suggest that glycosylation is strongly affected by therapeutic potency and can be used as possible biomarkers for monitoring toxicity and antitumor activity of 8a.
Asunto(s)
Acridonas/farmacología , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Polisacáridos/análisis , Línea Celular Tumoral , Glicómica/instrumentación , Glicómica/métodos , Glicosilación/efectos de los fármacos , Hexosiltransferasas/antagonistas & inhibidores , Hexosiltransferasas/metabolismo , Humanos , Leucemia/patología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Modelos Teóricos , Polisacáridos/química , Proteómica/métodosRESUMEN
The lectin microarray is an emerging technology for glycomics. It has already found maximum use in diverse fields of glycobiology by providing simple procedures for differential glycan profiling in a rapid and high-throughput manner. Since its first appearance in the literature in 2005, many application methods have been developed essentially on the same platform, comprising a series of glycan-binding proteins immobilized on an appropriate substrate such as a glass slide. Because the lectin microarray strategy does not require prior liberation of glycans from the core protein in glycoprotein analysis, it should encourage researchers not familiar with glycotechnology to use glycan analysis in future work. This feasibility should provide a broader range of experimental scientists with good opportunities to investigate novel aspects of glycoscience. Applications of the technology include not only basic sciences but also the growing fields of bio-industry. This chapter describes first the essence of glycan profiling and the basic fabrication of the lectin microarray for this purpose. In the latter part the focus is on diverse applications to both structural and functional glycomics, with emphasis on the wide applicability now available with this new technology. Finally, the importance of developing advanced lectin engineering is discussed.
Asunto(s)
Glicómica/instrumentación , Glicoproteínas/análisis , Lectinas/química , Polisacáridos/análisis , Análisis por Matrices de Proteínas/instrumentación , Animales , Automatización de Laboratorios , Líquidos Corporales/química , Glicómica/métodos , Glicoproteínas/química , Humanos , Microtecnología/instrumentación , Microtecnología/métodos , Polisacáridos/química , Análisis por Matrices de Proteínas/métodos , Ingeniería de Proteínas , Coloración y Etiquetado/métodosRESUMEN
Sample preparation is of vital importance for proteomic analysis because of the high complexity of biological samples. The rapid development of novel nanomaterials with various compositions, morphologies, and proper surface modifications provides a category of powerful tools for the sample preparation for protein analysis. In this paper, we have summarized recent progresses for the applications of novel nanomaterials in sample preparation for the analysis of proteomes, especially for phosphoproteomes, glycoproteomes, and peptidoms. Several kinds of novel nanomaterials were also discussed for their use in other kinds of proteomics analysis.
Asunto(s)
Glicómica/métodos , Nanoestructuras/química , Proteómica/métodos , Métodos Analíticos de la Preparación de la Muestra , Animales , Cromatografía de Afinidad , Glicómica/instrumentación , Humanos , Fosfoproteínas/análisis , Proteómica/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described.
Asunto(s)
Cromatografía de Afinidad , Glicómica , Lectinas , Polisacáridos , Cromatografía de Afinidad/instrumentación , Cromatografía de Afinidad/métodos , Glicómica/instrumentación , Glicómica/métodos , Lectinas/química , Lectinas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismoRESUMEN
A combined glycomics and glycoproteomics strategy was developed for the site-specific analysis of N-linked glycosylation heterogeneity from a complex mammalian protein mixture. Initially, global characterization of the N-glycome was performed using porous graphitized carbon liquid chromatography-tandem mass spectrometry (PGC-LC-MS/MS) and the data used to create an N-glycan modification database. In the next step, tryptic glycopeptides were enriched using zwitterionic hydrophilic interaction liquid chromatography (Zic-HILIC) and fractionated by reversed-phase liquid chromatography (RPLC; pH 7.9). The resulting fractions were each separated into two equal aliquots. The first set of aliquots were treated with peptide-N-glycosidase F (PNGase F) to remove N-glycans and the former N-glycopeptides analyzed by nano-RPLC-MS/MS (pH 2.7) and identified by Mascot database search. This enabled the creation of a glycopeptide-centric concatenated database for each fraction. The second set of aliquots was analyzed directly by nanoRPLC-MS/MS (pH 2.7), employing fragmentation by CID and HCD. The assignment of glycan compositions to peptide sequences was achieved by searching the N-glycopeptide HCD MS/MS spectra against the glycopeptide-centric concatenated databases employing the N-glycan modification database. CID spectra were used to assign glycan structures identified in the glycomic analysis to peptide sequences. This multidimensional approach allowed confident identification of 863 unique intact N-linked glycopeptides from 161 rat brain glycoproteins.
Asunto(s)
Encéfalo/metabolismo , Glicómica/métodos , Mapeo Peptídico/métodos , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Secuencia de Aminoácidos , Animales , Química Encefálica , Secuencia de Carbohidratos , Cromatografía Liquida/instrumentación , Cromatografía Liquida/métodos , Bases de Datos Factuales , Heterogeneidad Genética , Glicómica/instrumentación , Glicosilación , Humanos , Concentración de Iones de Hidrógeno , Masculino , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Proteoma/química , Ratas , Ratas Endogámicas Lew , Espectrometría de Masas en TándemRESUMEN
DNA and protein arrays are commonly accepted as powerful exploratory tools in research. This has mainly been achieved by the establishment of proper guidelines for quality control, allowing cross-comparison between different array platforms. As a natural extension, glycan microarrays were subsequently developed, and recent advances using such arrays have greatly enhanced our understanding of protein-glycan recognition in nature. However, although it is assumed that biologically significant protein-glycan binding is robustly detected by glycan microarrays, there are wide variations in the methods used to produce, present, couple, and detect glycans, and systematic cross-comparisons are lacking. We address these issues by comparing two arrays that together represent the marked diversity of sialic acid modifications, linkages, and underlying glycans in nature, including some identical motifs. We compare and contrast binding interactions with various known and novel plant, vertebrate, and viral sialic acid-recognizing proteins and present a technical advance for assessing specificity using mild periodate oxidation of the sialic acid chain. These data demonstrate both the diversity of sialic acids and the analytical power of glycan arrays, showing that different presentations in different formats provide useful and complementary interpretations of glycan-binding protein specificity. They also highlight important challenges and questions for the future of glycan array technology and suggest that glycan arrays with similar glycan structures cannot be simply assumed to give similar results.
Asunto(s)
Glucolípidos/metabolismo , Glicómica , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Análisis por Matrices de Proteínas , Acetilación , Anticuerpos/inmunología , Especificidad de Anticuerpos , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Glucolípidos/inmunología , Glicómica/instrumentación , Glicómica/métodos , Glicómica/normas , Lectinas/metabolismo , Ácido N-Acetilneuramínico/inmunología , Oxidación-Reducción , Ácido Peryódico/metabolismo , Lectinas de Plantas/metabolismo , Polisacáridos/inmunología , Análisis por Matrices de Proteínas/instrumentación , Análisis por Matrices de Proteínas/métodos , Análisis por Matrices de Proteínas/normas , Reproducibilidad de los Resultados , Lectinas Similares a la Inmunoglobulina de Unión a Ácido SiálicoRESUMEN
Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein ß-dystroglycan (ß-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. ß-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function.
Asunto(s)
Glicómica/métodos , Laminina/metabolismo , Mioblastos Esqueléticos/metabolismo , Polisacáridos/metabolismo , Músculo Cuádriceps/metabolismo , Sarcolema/metabolismo , Animales , Células Cultivadas , Glicómica/instrumentación , Glicosilación , Lobelina/farmacología , Masculino , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Lectinas de Plantas/farmacología , Músculo Cuádriceps/citología , ARN Interferente Pequeño/genética , Receptores N-Acetilglucosamina , Sarcolema/efectos de los fármacosRESUMEN
MOTIVATION: The development of glycomics technologies in recent years has produced a sufficient amount of data to begin analyzing the glycan structures present in various organisms and tissues. In particular, glycan profiling using mass spectrometry (MS) and tandem MS has generated a large amount of data that are waiting to be analyzed. The Consortium for Functional Glycomics (CFG) has provided a web resource for obtaining such glycan profiling data easily. Although an interactive spectrum viewer is provided on the website as a Java applet, it is not necessarily easy to search for particular glycans or to find commonalities between different tissues in a single organism, for example. Therefore, to allow users to better take advantage of the valuable glycome data that can be obtained from mass spectra and other leading technologies, we have developed a tool called Glycome Atlas which is pre-loaded with the data from the CFG and is also able to visualize local glycan profiling data for human and mouse. RESULTS: We have developed a tool to allow users to visualize and perform queries of glycome data. This tool, called GlycomeAtlas, is pre-loaded with glycome data as provided by the CFG. Moreover, users can load their own local glycome data into this tool to visualize and perform queries on their own data. AVAILABILITY: This tool is available at the following URL: http://www.rings.t.soka.ac.jp/GlycomeAtlas/GUI.html.
Asunto(s)
Atlas como Asunto , Presentación de Datos , Glicómica/instrumentación , Polisacáridos/química , Algoritmos , Animales , Minería de Datos/métodos , Diseño de Equipo , Humanos , Almacenamiento y Recuperación de la Información/métodos , Internet , Espectrometría de Masas , Ratones , Estructura Molecular , Espectrometría de Masas en Tándem , Interfaz Usuario-ComputadorRESUMEN
A novel online enzyme reactor incorporating peptide-N-glycosidase F (PNGase F) on a monolithic polymer support has been developed to allow the rapid simultaneous release of both neutral and acidic N-linked glycans from glycoproteins. The PNGase F monolithic reactor was fabricated in a fused silica using glycidyl methacrylate-co-ethylene dimethacrylate polymer. The reactor was coupled to a C8 trap and a porous graphitic carbon (PGC) HPLC-chip. This arrangement was interfaced to an ion trap mass spectrometer for liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. The performance of the PNGase F reactor was optimized using the MS signal for the disialylated biantennary N-glycan derived from fetuin. Optimum conditions for glycan release were attained at room temperature using a loading flow rate of 2 µL/min and a reaction time of 6 min. The loading capacity of the reactor was determined to be around 2 pmol of glycoprotein. The online digestion and MS characterization experiments resulted in sensitivities as high as 100 fmol of glycoprotein and 0.1 µL of human blood serum. The enzyme reactor activity was also shown to remain stable after 1 month of continuous use. Both small and large glycoproteins as well as glycoproteins containing high-mannose glycans, fucolsylated glycans, sialylated glycans, and hybrid structures were studied. The model glycoproteins included ribonuclease B, fetuin, α(1)-acid glycoprotein, immunoglobulin, and thyroglobulin. All N-glycans associated with these model glycoproteins were detected using the online PNGase F reactor setup.
Asunto(s)
Glicómica/instrumentación , Glicoproteínas/química , Polisacáridos/análisis , Animales , Secuencia de Carbohidratos , Bovinos , Cromatografía Liquida/métodos , Enzimas Inmovilizadas/metabolismo , Diseño de Equipo , Flavobacteriaceae/enzimología , Glicómica/métodos , Glicoproteínas/sangre , Glicoproteínas/metabolismo , Humanos , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Datos de Secuencia Molecular , Polisacáridos/sangre , Polisacáridos/metabolismo , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem/métodosAsunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Glicómica/métodos , Glicoproteínas/análisis , Proteínas/análisis , Secuencia de Aminoácidos , Animales , Técnicas Biosensibles/instrumentación , Secuencia de Carbohidratos , Técnicas Electroquímicas/instrumentación , Glicómica/instrumentación , Glicoproteínas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas/metabolismoRESUMEN
Glycomic profiling methods were used to determine the effect of metabolic inhibitors on glycan production. These inhibitors are commonly used to alter the cell surface glycosylation. However, structural analysis of the released glycans has been limited. In this research, the cell membranes were enriched and the glycans were released to obtain the N-glycans of the glycocalyx. Glycomic analysis using liquid chromatography-mass spectrometry (LC-MS) with a PGC chip column was used to profile the structures in the cell membrane. Glycans of untreated cells were compared to glycans of cells treated with inhibitors, including kifunensine, which inhibits the formation of complex- and hybrid-type structures, 2,4,7,8,9-Penta-O-acetyl-N-acetyl-3-fluoro-b-d-neuraminic acid methyl ester for sialylated glycans, 2-deoxy-2-fluorofucose, and 6-alkynyl fucose for fucosylated glycans. Kifunensine was the most effective, converting nearly 95% of glycans to high mannose types. The compound 6-alkynyl fucose inhibited some fucosylation but also incorporated into the glycan structure. Proteomic analysis of the enriched membrane for the four inhibitors showed only small changes in the proteome accompanied by large changes in the N-glycome for Caco-2. Future works may use these inhibitors to study the cellular behavior associated with the alteration of glycosylation in various biological systems, e.g., viral and bacterial infection, drug binding, and cell-cell interactions.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Glicocálix/efectos de los fármacos , Glicómica , Glicoproteínas/metabolismo , Glicosiltransferasas/antagonistas & inhibidores , Polisacáridos/metabolismo , Células A549 , Alcaloides/química , Alcaloides/farmacología , Células CACO-2 , Cromatografía Liquida , Inhibidores Enzimáticos/química , Fucosa/análogos & derivados , Fucosa/química , Fucosa/farmacología , Glicocálix/enzimología , Glicómica/instrumentación , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Espectrometría de Masas , Técnicas Analíticas Microfluídicas/instrumentación , Estructura Molecular , Ácidos Neuramínicos/química , Ácidos Neuramínicos/farmacología , Proteómica , Relación Estructura-ActividadRESUMEN
We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a three-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties.
Asunto(s)
Carbohidratos/química , Dendrímeros/química , Glicómica/métodos , Análisis por Micromatrices/métodos , Tampones (Química) , Glicómica/instrumentación , Análisis por Micromatrices/instrumentación , Microondas , Estructura Molecular , Propiedades de SuperficieRESUMEN
The interactions of glycosaminoglycans (GAGs) with proteins underlie a wide range of important biological processes. However, the study of such binding reactions has been hampered by the lack of a simple frontline analysis technique. Previously, we have reported that cold plasma polymerization can be used to coat microtiter plate surfaces with allyl amine to which GAGs (e.g., heparin) can be noncovalently immobilized retaining their ability to interact with proteins. Here, we have assessed the capabilities of surface coats derived from different ratios of allyl amine and octadiene (100:0 to 0:100) to support the binding of diverse GAGs (e.g., chondroitin-4-sulfate, dermatan sulfate, heparin preparations, and hyaluronan) in a functionally active state. The Link module from TSG-6 was used as a probe to determine the level of functional binding because of its broad (and unique) specificity for both sulfated and nonsulfated GAGs. All of the GAGs tested could bind this domain following their immobilization, although there were clear differences in their protein-binding activities depending on the surface chemistry to which they were adsorbed. On the basis of these experiments, 100% allyl amine was chosen for the generation of a microtiter plate-based "sugar array"; X-ray photoelectron spectroscopy revealed that similar relative amounts of chondroitin-4-sulfate, dermatan sulfate, and heparin (including two selectively de-sulfated derivatives) were immobilized onto this surface. Analysis of four unrelated proteins (i.e., TSG-6, complement factor H, fibrillin-1, and versican) illustrated the utility of this array to determine the GAG-binding profile and specificity for a particular target protein.
Asunto(s)
Glicómica/instrumentación , Glicómica/métodos , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Lectinas/metabolismo , Análisis por Micromatrices , Alilamina/química , Animales , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Factor H de Complemento/química , Factor H de Complemento/metabolismo , Fibrilina-1 , Fibrilinas , Heparina/química , Heparina/metabolismo , Humanos , Lectinas/análisis , Lectinas/aislamiento & purificación , Análisis por Micromatrices/instrumentación , Análisis por Micromatrices/métodos , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Microtecnología/instrumentación , Microtecnología/métodos , Unión Proteica , Especificidad por Sustrato , Propiedades de Superficie , Porcinos , Versicanos/química , Versicanos/metabolismoRESUMEN
Current analytical methods have been slow in addressing the growing need for glyco-analysis. A new generation of more empirical high-throughput (HTP) tools is needed to aid the advance of this important field. To this end, we have developed a new HTP screening platform for identification of surface-immobilized peptides that specifically bind O-antigenic glycans of bacterial lipopolysaccharides (LPS). This method involves screening of random sequence peptide libraries in addressable high-density microarray format with the newly developed luminescent LPS-quantum dot micelles. Screening of LPS fractions from O111:B4 and O55:B5 serotypes of E. coli on a microarray consisting of 10,000 20-mer peptide features revealed minor differences, while comparison of LPS from E. coli O111:B4 and P. aeruginosa produced sets of highly specific peptides. Peptides strongly binding to the E. coli LPS were highly enriched in aromatic and cationic amino acids, and most of these inhibited growth of E. coli. Flow cytometry and isothermal titration calorimetry (ITC) experiments showed that some of these peptides bind LPS in-solution with a K(d) of 1.75 microM. Peptide selections against P. aeruginosa were largely composed of hydrogen-bond forming amino acids in accordance with dramatic compositional differences in O-antigenic glycans in E. coli and P. aeruginosa. While the main value of this approach lies in the ability to rapidly differentiate bacterial and possibly other complex glycans, the peptides discovered here can potentially be used off-array as antiendotoxic and antimicrobial lead compounds, and on-array/on-bead as diagnostic and affinity reagents.
Asunto(s)
Proteínas Bacterianas/química , Glicómica , Péptidos/química , Análisis por Matrices de Proteínas , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conformación de Carbohidratos , Secuencia de Carbohidratos , Escherichia coli/química , Glicómica/instrumentación , Glicómica/métodos , Humanos , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Biblioteca de Péptidos , Péptidos/genética , Péptidos/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Análisis por Matrices de Proteínas/instrumentación , Análisis por Matrices de Proteínas/métodos , Pseudomonas aeruginosa/química , Puntos Cuánticos , Alineación de SecuenciaRESUMEN
The development of glycan arrays has enabled the high-sensitivity and high-throughput analysis of carbohydrate-protein interactions and contributed to significant advances in glycomics. A number of new array platforms that allow for qualitative and quantitative analysis of mono- and multivalent interactions on surfaces have been developed recently. Glycan arrays are not only a powerful tool for basic research, but also a promising technique for medical diagnosis, and detection of pathogens and cancers. These studies also have led to the design of efficient carbohydrate-based antimicrobial or anticancer vaccines.