Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 18(1): e3000593, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31995552

RESUMEN

During host colonization, bacteria use the alarmones (p)ppGpp to reshape their proteome by acting pleiotropically on DNA, RNA, and protein synthesis. Here, we elucidate how the initiating ribosome senses the cellular pool of guanosine nucleotides and regulates the progression towards protein synthesis. Our results show that the affinity of guanosine triphosphate (GTP) and the inhibitory concentration of ppGpp for the 30S-bound initiation factor IF2 vary depending on the programmed mRNA. The TufA mRNA enhanced GTP affinity for 30S complexes, resulting in improved ppGpp tolerance and allowing efficient protein synthesis. Conversely, the InfA mRNA allowed ppGpp to compete with GTP for IF2, thus stalling 30S complexes. Structural modeling and biochemical analysis of the TufA mRNA unveiled a structured enhancer of translation initiation (SETI) composed of two consecutive hairpins proximal to the translation initiation region (TIR) that largely account for ppGpp tolerance under physiological concentrations of guanosine nucleotides. Furthermore, our results show that the mechanism enhancing ppGpp tolerance is not restricted to the TufA mRNA, as similar ppGpp tolerance was found for the SETI-containing Rnr mRNA. Finally, we show that IF2 can use pppGpp to promote the formation of 30S initiation complexes (ICs), albeit requiring higher factor concentration and resulting in slower transitions to translation elongation. Altogether, our data unveil a novel regulatory mechanism at the onset of protein synthesis that tolerates physiological concentrations of ppGpp and that bacteria can exploit to modulate their proteome as a function of the nutritional shift happening during stringent response and infection.


Asunto(s)
Guanosina Tetrafosfato/farmacología , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Unión Competitiva , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacología , Interacciones Huésped-Patógeno/fisiología , Cinética , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Iniciación de la Cadena Peptídica Traduccional/fisiología , Factor Tu de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/química , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética
2.
J Biol Chem ; 293(15): 5679-5694, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29475943

RESUMEN

The pathogen Vibrio cholerae is the causative agent of cholera. Emergence of antibiotic-resistant V. cholerae strains is increasing, but the underlying mechanisms remain unclear. Herein, we report that the stringent response regulator and stress alarmone guanosine tetra- and pentaphosphate ((p)ppGpp) significantly contributes to antibiotic tolerance in V. cholerae We found that N16961, a pandemic V. cholerae strain, and its isogenic (p)ppGpp-overexpressing mutant ΔrelAΔspoT are both more antibiotic-resistant than (p)ppGpp0 (ΔrelAΔrelVΔspoT) and ΔdksA mutants, which cannot produce or utilize (p)ppGpp, respectively. We also found that additional disruption of the aconitase B-encoding and tricarboxylic acid (TCA) cycle gene acnB in the (p)ppGpp0 mutant increases its antibiotic tolerance. Moreover, expression of TCA cycle genes, including acnB, was increased in (p)ppGpp0, but not in the antibiotic-resistant ΔrelAΔspoT mutant, suggesting that (p)ppGpp suppresses TCA cycle activity, thereby entailing antibiotic resistance. Importantly, when grown anaerobically or incubated with an iron chelator, the (p)ppGpp0 mutant became antibiotic-tolerant, suggesting that reactive oxygen species (ROS) are involved in antibiotic-mediated bacterial killing. Consistent with that hypothesis, tetracycline treatment markedly increased ROS production in the antibiotic-susceptible mutants. Interestingly, expression of the Fe(III) ABC transporter substrate-binding protein FbpA was increased 10-fold in (p)ppGpp0, and fbpA gene deletion restored viability of tetracycline-exposed (p)ppGpp0 cells. Of note, FbpA expression was repressed in the (p)ppGpp-accumulating mutant, resulting in a reduction of intracellular free iron, required for the ROS-generating Fenton reaction. Our results indicate that (p)ppGpp-mediated suppression of central metabolism and iron uptake reduces antibiotic-induced oxidative stress in V. cholerae.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Guanosina Pentafosfato/farmacología , Guanosina Tetrafosfato/farmacología , Especies Reactivas de Oxígeno/metabolismo , Vibrio cholerae/metabolismo , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mutación , Proteínas de Unión Periplasmáticas/biosíntesis , Proteínas de Unión Periplasmáticas/genética , Vibrio cholerae/genética
3.
Mol Microbiol ; 92(1): 28-46, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24612328

RESUMEN

When Escherichia coli grows in the presence of DNA-damaging agents such as methyl methanesulphonate (MMS), absence of the full-length form of Translation Initiation Factor 2 (IF2-1) or deficiency in helicase activity of replication restart protein PriA leads to a considerable loss of viability. MMS sensitivity of these mutants was contingent on the stringent response alarmone (p)ppGpp being at low levels. While zero levels (ppGpp°) greatly aggravated sensitivity, high levels promoted resistance. Moreover, M+ mutations, which suppress amino acid auxotrophy of ppGpp° strains and which have been found to map to RNA polymerase subunits, largely restored resistance to IF2-1- and PriA helicase-deficient mutants. The truncated forms IF2-2/3 played a key part in inducing especially severe negative effects in ppGpp° cells when restart function priB was knocked out, causing loss of viability and severe cell filamentation, indicative of SOS induction. Even a strain with the wild-type infB allele exhibited significant filamentation and MMS sensitivity in this background whereas mutations that prevent expression of IF2-2/3 essentially eliminated filamentation and largely restored MMS resistance. The results suggest different influences of IF2-1 and IF2-2/3 on the replication restart system depending on (p)ppGpp levels, each having the capacity to maximize survival under differing growth conditions.


Asunto(s)
ADN Helicasas/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/farmacología , Factor 2 Procariótico de Iniciación/metabolismo , Bacteriófago mu/genética , Bacteriófago mu/fisiología , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , Replicación del ADN/efectos de los fármacos , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Metilmetanosulfonato/farmacología , Factor 2 Procariótico de Iniciación/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
J Biol Chem ; 288(29): 21055-21064, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23749992

RESUMEN

The alarmone guanosine tetraphosphate (ppGpp) acts as both a positive and a negative regulator of gene expression in the presence of DksA, but the underlying mechanisms of this differential control are unclear. Here, using uspA hybrid promoters, we show that an AT-rich discriminator region is crucial for positive control by ppGpp/DksA. The AT-rich discriminator makes the RNA polymerase-promoter complex extremely stable and therefore easily saturated with RNA polymerase. A more efficient transcription is achieved when the RNA polymerase-promoter complex is destabilized with ppGpp/DksA. We found that exchanging the AT-rich discriminator of uspA with the GC-rich rrnB-P1 discriminator made the uspA promoter negatively regulated by ppGpp/DksA both in vivo and in vitro. In addition, the GC-rich discriminator destabilized the RNA polymerase-promoter complex, and the effect of ppGpp/DksA on the kinetic properties of the promoter was reversed. We propose that the transcription initiation rate from promoters with GC-rich discriminators, in contrast to the uspA-promoter, is not limited by the stability of the open complex. The findings are discussed in view of models for both direct and indirect effects of ppGpp/DksA on transcriptional trade-offs.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/farmacología , Regiones Promotoras Genéticas , Transcripción Genética , Secuencia Rica en At/genética , Composición de Base/genética , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Genes Bacterianos/genética , Cinética , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Unión Proteica/genética
5.
Mol Microbiol ; 88(1): 93-104, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23461544

RESUMEN

DNA replication is regulated in response to environmental constraints such as nutrient availability. While much is known about regulation of replication during initiation, little is known about regulation of replication during elongation. In the bacterium Bacillus subtilis, replication elongation is paused upon sudden amino acid starvation by the starvation-inducible nucleotide (p)ppGpp. However, in many bacteria including Escherichia coli, replication elongation is thought to be unregulated by nutritional availability. Here we reveal that the replication elongation rate in E. coli is modestly but significantly reduced upon strong amino acid starvation. This reduction requires (p)ppGpp and is exacerbated in a gppA mutant with increased pppGpp levels. Importantly, high levels of (p)ppGpp, independent of amino acid starvation, are sufficient to inhibit replication elongation even in the absence of transcription. Finally, in both E. coli and B. subtilis, (p)ppGpp inhibits replication elongation in a dose-dependent manner rather than via a switch-like mechanism, although this inhibition is much stronger in B. subtilis. This supports a model where replication elongation rates are regulated by (p)ppGpp to allow rapid and tunable response to multiple abrupt stresses in evolutionarily diverse bacteria.


Asunto(s)
Bacillus subtilis/metabolismo , Replicación del ADN/efectos de los fármacos , Escherichia coli/metabolismo , Guanosina Pentafosfato/farmacología , Guanosina Tetrafosfato/farmacología , Aminoácidos/deficiencia , Aminoácidos/metabolismo , Bacillus subtilis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
6.
Biosci Biotechnol Biochem ; 78(6): 1022-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036129

RESUMEN

The ppGpp-signaling system functions in plant chloroplasts. In bacteria, a negative effect of ppGpp on adenylosuccinate synthetase (AdSS) has been suggested. Our biochemical analysis also revealed rice AdSS homologs are apparently sensitive to ppGpp. However, further investigation clarified that this phenomenon is cancelled by the high substrate affinity to the enzymes, leading to a limited effect of ppGpp on adenylosuccinate synthesis.


Asunto(s)
Adenilosuccinato Sintasa/metabolismo , Guanosina Tetrafosfato/farmacología , Oryza/enzimología , Purinas/biosíntesis , Bacillus subtilis/enzimología , Escherichia coli/enzimología , Guanosina Tetrafosfato/química , Cinética , Oryza/metabolismo , Homología de Secuencia de Aminoácido
7.
Plant Mol Biol ; 78(1-2): 185-96, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22108865

RESUMEN

Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5'-(ß,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.


Asunto(s)
Cloroplastos/genética , Guanosina Tetrafosfato/metabolismo , Extensión de la Cadena Peptídica de Translación/genética , Proteínas de Plantas/genética , Antibacterianos/farmacología , Radioisótopos de Carbono , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Fusídico/farmacología , Guanosina Difosfato/metabolismo , Guanosina Difosfato/farmacología , Guanosina Tetrafosfato/farmacología , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacología , Leucina/genética , Leucina/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Péptidos/genética , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Poli U/genética , ARN Mensajero/genética , Tioestreptona/farmacología
8.
J Biol Chem ; 285(1): 473-82, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19901023

RESUMEN

The cyclic dinucleotide c-di-AMP [corrected] synthesized by the diadenylate cyclase domain was discovered recently [corrected] as a messenger molecule for signaling DNA breaks in Bacillus subtilis. By searching bacterial genomes, we identified a family of DHH/DHHA1 domain proteins (COG3387) that co-occur with a subset of the diadenylate cyclase domain proteins. Here we report that the B. subtilis protein YybT, a member of the COG3387 family proteins, exhibits phosphodiesterase activity toward cyclic dinucleotides. The DHH/DHHA1 domain hydrolyzes c-di-AMP and c-di-GMP to generate the linear dinucleotides 5'-pApA and 5'-pGpG. The data suggest that c-di-AMP could be the physiological substrate for YybT given the physiologically relevant Michaelis-Menten constant (K(m)) and the presence of YybT family proteins in the bacteria lacking c-di-GMP signaling network. The bacterial regulator ppGpp was found to be a strong competitive inhibitor of the DHH/DHHA1 domain, suggesting that YybT is under tight control during stringent response. In addition, the atypical GGDEF domain of YybT exhibits unexpected ATPase activity, distinct from the common diguanylate cyclase activity for GGDEF domains. We further demonstrate the participation of YybT in DNA damage and acid resistance by characterizing the phenotypes of the DeltayybT mutant. The novel enzymatic activity and stress resistance together point toward a role for YybT in stress signaling and response.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hidrolasas Diéster Fosfóricas/química , Transducción de Señal , Ácidos , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/efectos de los fármacos , Daño del ADN , Fosfatos de Dinucleósidos/metabolismo , Guanosina Tetrafosfato/farmacología , Concentración de Iones de Hidrógeno/efectos de los fármacos , Hidrólisis/efectos de los fármacos , Metales/farmacología , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Especificidad por Sustrato/efectos de los fármacos
9.
Proc Natl Acad Sci U S A ; 105(52): 20924-9, 2008 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19091955

RESUMEN

We present a molecular mechanism for signal transduction that activates transcription of the SlyA regulon in Salmonella typhimurium. We demonstrate that SlyA mediates transcriptional activation in response to guanosine tetraphosphate, ppGpp, according to the following observations: (i) in vivo transcription of SlyA-dependent genes is repressed when ppGpp is absent; this transcription can be restored by overproducing SlyA; (ii) in vivo dimerization and binding of SlyA to the target promoter are facilitated in the presence of ppGpp; and (iii) in vitro SlyA binding to the target promoter is enhanced when ppGpp is supplemented. Thus, ppGpp must be the cytoplasmic component that stimulates SlyA regulatory function by interacting directly with this regulator in Salmonella. This signaling domain, integrated by the PhoP/PhoQ 2-component system that activates slyA transcription by sensing Mg(2+), forms feedforward loops that regulate chromosomal loci identified through a motif search over the S. typhimurium genome. Many such loci are divergent operons, each formed by 2 neighboring genes in which transcription of these 2 loci proceeds in opposite directions. Both genes, however, are controlled by PhoP and SlyA through a single shared PhoP box and SlyA box present in their intergenic regions. A substitution in either box sequence causes a simultaneous cessation of transcription of a divergent operon, pagD-pagC, equivalent to the phenotype in a phoP or slyA mutant. We also identified several chromosomal loci that possess pagC-type genes without the cognate pagD-type genes. Therefore, our results provide a molecular basis for the understanding of SlyA-dependent phenotypes associated with Salmonella virulence.


Asunto(s)
Operón/fisiología , Regiones Promotoras Genéticas/fisiología , Salmonella typhimurium/metabolismo , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Cromosomas Bacterianos/fisiología , ADN Intergénico/genética , ADN Intergénico/metabolismo , Guanosina Tetrafosfato/farmacología , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Mutación , Estructura Terciaria de Proteína/fisiología , Sitios de Carácter Cuantitativo/fisiología , Salmonella typhimurium/genética , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
10.
mBio ; 12(3): e0142321, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34154407

RESUMEN

The catalytic subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) Nsp12 has a unique nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain that transfers nucleoside monophosphates to the Nsp9 protein and the nascent RNA. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites, and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation in bacterial cells) Nsp12 exists in an inactive state in which NiRAN-RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or nucleoside triphosphates (NTPs) partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote the synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN-RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and the design of its inhibitors. IMPORTANCEIn vitro interrogations of the central replicative complex of SARS-CoV-2, RNA-dependent RNA polymerase (RdRp), by structural, biochemical, and biophysical methods yielded an unprecedented windfall of information that, in turn, instructs drug development and administration, genomic surveillance, and other aspects of the evolving pandemic response. They also illuminated the vast disparity in the methods used to produce RdRp for experimental work and the hidden impact that this has on enzyme activity and research outcomes. In this report, we elucidate the positive and negative effects of codon optimization on the activity and folding of the recombinant RdRp and detail the design of a highly sensitive in vitro assay of RdRp-dependent RNA synthesis. Using this assay, we demonstrate that RdRp is allosterically activated by nontemplating phosphorylated nucleotides, including naturally occurring alarmone ppGpp and synthetic remdesivir triphosphate.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Guanosina Tetrafosfato/farmacología , SARS-CoV-2/efectos de los fármacos , Adenosina Trifosfato/farmacología , Dominio Catalítico/fisiología , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Humanos , Ribosomas/metabolismo , Tratamiento Farmacológico de COVID-19
11.
J Bacteriol ; 192(17): 4275-80, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20581211

RESUMEN

ppGpp regulates gene expression in a variety of bacteria and in plants. We proposed previously that ppGpp or its precursor, pppGpp [referred to collectively as (p)ppGpp], or both might regulate the activity of the enzyme polynucleotide phosphorylase in Streptomyces species. We have examined the effects of (p)ppGpp on the polymerization and phosphorolysis activities of PNPase from Streptomyces coelicolor, Streptomyces antibioticus, and Escherichia coli. We have shown that (p)ppGpp inhibits the activities of both Streptomyces PNPases but not the E. coli enzyme. The inhibition kinetics for polymerization using the Streptomyces enzymes are of the mixed noncompetitive type, suggesting that (p)ppGpp binds to a region other than the active site of the enzyme. ppGpp also inhibited the phosphorolysis of a model RNA substrate derived from the rpsO-pnp operon of S. coelicolor. We have shown further that the chemical stability of mRNA increases during the stationary phase in S. coelicolor and that induction of a plasmid-borne copy of relA in a relA-null mutant increases the chemical stability of bulk mRNA as well. We speculate that the observed inhibition in vitro may reflect a role of ppGpp in the regulation of antibiotic production in vivo.


Asunto(s)
Escherichia coli/enzimología , Guanosina Pentafosfato/farmacología , Guanosina Tetrafosfato/farmacología , Polirribonucleótido Nucleotidiltransferasa/antagonistas & inhibidores , Streptomyces coelicolor/enzimología , Dimerización , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/genética , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/crecimiento & desarrollo , Streptomyces coelicolor/metabolismo
12.
Plasmid ; 63(1): 61-7, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19945481

RESUMEN

DNA primase is an enzyme required for replication of both chromosomes and vast majority of plasmids. Guanosine tetra- and penta-phosphate (ppGpp and pppGpp, respectively) are alarmones of the bacterial stringent response to starvation and stress conditions, and act by modulation of the RNA polymerase activity. Recent studies indicated that the primase-catalyzed reaction is also inhibited by (p)ppGpp in Bacillus subtilis, where a specific regulation of DNA replication elongation, the replication fork arrest, was discovered. Although in Escherichia coli such a replication regulation was not reported to date, here we show that E. coli DnaG primase is directly inhibited by ppGpp and pppGpp. However, contrary to the B. subtilis primase response to the stringent control alarmones, the E, coli DnaG was inhibited more efficiently by ppGpp than by pppGpp.


Asunto(s)
Endodesoxirribonucleasas/antagonistas & inhibidores , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/enzimología , Exodesoxirribonucleasas/antagonistas & inhibidores , Guanosina Tetrafosfato/farmacología , Secuencia de Aminoácidos , Bacillus subtilis/enzimología , ADN Primasa , Cartilla de ADN/metabolismo , AdnB Helicasas/metabolismo , Endodesoxirribonucleasas/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/química , Exodesoxirribonucleasas/química , Guanosina Difosfato/farmacología , Guanosina Pentafosfato/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
13.
Bioorg Med Chem ; 18(12): 4485-97, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20483622

RESUMEN

A prominent feature of the stringent response is the accumulation of two unusual phosphorylated derivatives of GTP and GDP (pppGpp: 5'-triphosphate-3'-diphosphate, and ppGpp: 5'-3'-bis-diphosphate), collectively called (p)ppGpp, within a few seconds after the onset of amino-acid starvation. The synthesis of these 'alarmone' compounds is catalyzed by RelA homologues. Other features of the stringent response include inhibition of stable RNA synthesis and modulation of transcription, replication, and translation. (p)ppGpp accumulation is important for virulence induction, differentiation and antibiotic resistance. We have synthesized a group of (p)ppGpp analogues and tested them as competitive inhibitors of Rel proteins in vitro. 2'-Deoxyguanosine-3'-5'-di(methylene bisphosphonate) [compound (10)] was found as an inhibitor that reduces ppGpp formation in both Gram-negative and Gram-positive bacteria. In silico docking together with competitive inhibition analysis suggests that compound (10) inhibits activity of Rel proteins by competing with GTP/GDP for its binding site. As Rel proteins are completely absent in mammalians, this appears to be a very attractive approach for the development of novel antibacterial agents.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Bacterias Gramnegativas/enzimología , Bacterias Grampositivas/enzimología , Guanosina Tetrafosfato/análogos & derivados , Ligasas/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Guanosina Tetrafosfato/síntesis química , Guanosina Tetrafosfato/farmacología , Ligasas/metabolismo , Conformación Molecular
14.
Chembiochem ; 10(7): 1227-33, 2009 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-19308923

RESUMEN

It's alarming: Bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp), which is a key regulatory molecule that controls the stringent response, also exists in chloroplasts of plant cells. Cross-linking experiments with 6-thioguanosine 5'-diphosphate 3'-diphosphate (6-thioppGpp) and chloroplast RNA polymerase indicate that ppGpp binds the beta' subunit of plastid-encoded plastid RNA polymerase that corresponds to the Escherichia coli beta' subunit. Chloroplasts, which are thought to have originated from cyanobacteria, have their own genetic system that is similar to that of the bacteria from which they were derived. Recently, bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp, 1), a key regulatory molecule that controls the stringent response, was identified in the chloroplasts of plant cells. Similar to its function in bacteria, ppGpp inhibits chloroplast RNA polymerase; this suggests that ppGpp mediates gene expression through the stringent response in chloroplasts. However, a detailed mechanism of ppGpp action in chloroplasts remains elusive. We synthesized 6-thioguanosine 5'-diphosphate 3'-diphosphate (6-thioppGpp) as a photoaffinity probe of ppGpp; this probe thus enabled the investigation of ppGpp binding to chloroplast RNA polymerase. We found that 6-thioppGpp, as well as ppGpp, inhibits chloroplast RNA synthesis in vitro in a dose-dependent manner. Cross-linking experiments with 6-thioppGpp and chloroplast RNA polymerase indicated that ppGpp binds the beta' subunit (corresponding to the Escherichia coli beta' subunit) of plastid-encoded plastid RNA polymerase composed of alpha, beta, beta', beta'', and sigma subunits. Furthermore, ppGpp did not inhibit transcription in plastid nucleoids prepared from tobacco BY-2 cells; this suggests that ppGpp does not inhibit nuclear-encoded plastid RNA polymerase.


Asunto(s)
Cloroplastos/enzimología , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Guanosina Tetrafosfato/farmacología , Secuencia de Aminoácidos , Cloroplastos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/síntesis química , Guanosina Tetrafosfato/química , Plastidios/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido
15.
Sci Rep ; 7: 41839, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28157202

RESUMEN

The alarmone nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance and virulence, making (p)ppGpp-mediated signaling a promising target for development of antibacterials. Although ppGpp itself is an activator of the ribosome-associated ppGpp synthetase RelA, several ppGpp mimics have been developed as RelA inhibitors. However promising, the currently available ppGpp mimics are relatively inefficient, with IC50 in the sub-mM range. In an attempt to identify a potent and specific inhibitor of RelA capable of abrogating (p)ppGpp production in live bacterial cells, we have tested a targeted nucleotide library using a biochemical test system comprised of purified Escherichia coli components. While none of the compounds fulfilled this aim, the screen has yielded several potentially useful molecular tools for biochemical and structural work.


Asunto(s)
Ligasas/genética , Mutagénesis , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Guanosina Tetrafosfato/farmacología , Ligasas/antagonistas & inhibidores , Ligasas/metabolismo
16.
J Biotechnol ; 125(3): 328-37, 2006 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-16621093

RESUMEN

Although the enhancement of amino-acid synthesis by guanosine-3',5'-tetraphosphate (ppGpp) is well known, the effect of intracellular ppGpp levels on amino-acid overproduction in Escherichia coli has not been investigated. In this study, we demonstrate that overexpression of the relA gene, encoding ppGpp synthetase, increases the accumulation of amino acids, such as glutamate and lysine, in amino-acid-overproducing strains of E. coli. Elevation of intracellular ppGpp levels due to depletion of required amino acids also enhances glutamate overproduction. Moreover, the extent of overproduction is highly dependent on the intracellular ppGpp level. These results demonstrate that amino-acid overproduction in E. coli is closely connected to amino-acid auxotrophy via the accumulation of ppGpp.


Asunto(s)
Escherichia coli/metabolismo , Ácido Glutámico/biosíntesis , Guanosina Tetrafosfato/farmacología , Lisina/biosíntesis , Aminoácidos/biosíntesis , Escherichia coli/crecimiento & desarrollo , Guanosina Tetrafosfato/metabolismo , Espacio Intracelular/metabolismo , Factor de Transcripción ReIA/genética , Transformación Bacteriana
17.
Biochim Biophys Acta ; 677(3-4): 358-62, 1981 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-6117328

RESUMEN

Unusual guanosine nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp, also known as MSI) and guanosine 5'-diphosphate 3'-monophosphate (ppGp, also known as MSIII) accumulate to high concentrations in wild-type cells of Escherichia coli during amino acid starvation. We reported here that both nucleotides strongly inhibit the activity of enzymes IMP dehydrogenase and adenylosuccinate synthetase, the first enzymes of the guanylate and adenylate biosynthetic pathways. In both cases, ppGP (MSII) is a stronger inhibitor than ppGpp (MSI). On the other hand, these two nucleotides exhibited opposite effects on the activity of phosphoenolpyruvate carboxylase, the enzyme that utilizes phosphoenolpyruvate. At their respective physiological concentrations, the activity of phosphoenolpyruvate carboxylase is activated by ppGpp and inhibited by ppGp.


Asunto(s)
Escherichia coli/enzimología , Nucleótidos de Guanina/farmacología , Guanosina Tetrafosfato/farmacología , Adenilosuccinato Sintasa/antagonistas & inhibidores , Activación Enzimática , Guanosina Difosfato/farmacología , Guanosina Trifosfato/farmacología , IMP Deshidrogenasa/antagonistas & inhibidores , Fosfoenolpiruvato Carboxilasa/metabolismo
18.
Biochim Biophys Acta ; 541(2): 170-80, 1978 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-667124

RESUMEN

Guanosine 5'-tetraphosphate (GTP4) stimulated mammalian adenylate cyclase activity at concentrations down to 1 micronM. Greater stimulatory activity was apparent with lung than with heart, brain or liver from the rat. At a concentration of 0.1 mM, GTP4 stimulated lung adenylate cyclase activity from rat, guinea pig and mouse about four-fold. Other guanine nucleotides such as GTP, GDP, GMP, guanosine 3',5'-monophosphate and 5'-guanylylimidodiphosphate (GMP.PNP) also stimulated mammalian adenylate cyclase activity. EMP.PNP irreversibly activated, whereas GTP4 and GTP reversibly activated adenylate cyclase. Adenosine 5'-tetraphosphate (ATP4) stimulated rat lung and liver but inhibited rat heart and brain adenylate cyclase activities. Lung from guinea pig and mouse were not affected by ATP4. The formation of cyclic AMP by GTP4-stimulated rat lung adenylate cyclase was verified by Dowex-50 (H+), Dowex 1-formate and polyethyleneimine cellulose column chromatography. GTP4 was at least three times more potent than 1-isoproterenol in stimulating rat lung adenylate cyclase activity. The beta-adrenergic receptor antagonist propranolol blocked the effect of 1-isoproterenol but not that of GTP4, thus, suggesting that GTP4 and beta-adrenergic agonists interact with different receptor sites on membrane-bound adenylate cyclase. Stimulation of rat lung and liver adenylate cyclase activities with 1-isoproterenol was potentiated by either GTP4 or GMP.PNP, thus indicating that GTP4 resembles other guanine nucleotides in their capacity to increase the sensitivity of adenylate cyclase to beta-adrenergic agonists. Stimulation of adenylate cyclase activity by guanine derivatives requires one or more free phosphate moieties on the 5 position of ribose, as no effect was elicited with guanine, guanosine, guanosine 2'-monophosphate, guanosine 3'-monophosphate or guanosine 2',5'-monophosphate. Ribose, ribose 5-phosphate, phosphate and pyrophosphate were inactive. Pyrimidine nucleoside mono-, di-, tri- and tetraphosphates elicited negligible effects on mammalian adenylate cyclase activity.


Asunto(s)
Adenilil Ciclasas/metabolismo , Nucleótidos de Guanina/farmacología , Guanosina Tetrafosfato/farmacología , Animales , Interacciones Farmacológicas , Activación Enzimática/efectos de los fármacos , Cobayas , Isoproterenol/farmacología , Pulmón/enzimología , Masculino , Ratones , Nucleótidos/farmacología , Propranolol/farmacología , Ratas , Distribución Tisular
19.
J Mol Biol ; 305(4): 673-88, 2001 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-11162084

RESUMEN

To determine the role of ppGpp in both negative and positive regulation of transcription initiation during exponential growth in Escherichia coli, we examined transcription in vivo and in vitro from the growth-rate-dependent rRNA promoter rrnB P1 and from the inversely growth-rate-dependent amino acid biosynthesis/transport promoters PargI, PhisG, PlysC, PpheA, PthrABC, and PlivJ. rrnB P1 promoter activity was slightly higher at all growth-rates in strains unable to synthesize ppGpp (deltarelAdeltaspoT) than in wild-type strains. Consistent with this observation and with the large decrease in rRNA transcription during the stringent response (when ppGpp levels are much higher), ppGpp inhibited transcription from rrnB P1 in vitro. In contrast, amino acid promoter activity was considerably lower in deltarelAdeltaspoT strains than in wild-type strains, but ppGpp had no effect on amino acid promoter activity in vitro. Detailed kinetic analysis in vitro indicated that open complexes at amino acid promoters formed much more slowly and were much longer-lived than rrnB P1 open complexes. ppGpp did not increase the rates of association with, or escape from, amino acid promoters in vitro, consistent with its failure to stimulate transcription directly. In contrast, ppGpp decreased the half-lives of open complexes at all promoters, whether the half-life was seconds (rrnB P1) or hours (amino acid promoters). The results described here and in the accompanying paper indicate that ppGpp directly inhibits transcription, but only from promoters like rrnB P1 that make short-lived open complexes. The results indicate that stimulation of amino acid promoters occurs indirectly. The accompanying paper evaluates potential models for positive control of amino acid promoters by ppGpp that might explain the requirement of ppGpp for amino acid prototrophy.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/metabolismo , Transcripción Genética/genética , Aminoácidos/biosíntesis , Aminoácidos/genética , Secuencia de Bases , Secuencia de Consenso , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Reporteros/genética , Genes de ARNr/genética , Guanosina Tetrafosfato/farmacología , Semivida , Cinética , Operón Lac/genética , Desnaturalización de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Unión Proteica , Especificidad por Sustrato , Transcripción Genética/efectos de los fármacos , Operón de ARNr/genética
20.
J Mol Biol ; 305(4): 689-702, 2001 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-11162085

RESUMEN

Strains containing ppGpp, a nucleotide whose synthesis is dependent on the RelA and SpoT proteins of Escherichia coli, display slightly lower rRNA promoter activity and much higher amino acid biosynthesis/transport promoter activity than deltarelAdeltaspoT strains. In the accompanying paper, we show that ppGpp directly inhibits rRNA promoter activity in vitro by decreasing the lifetime of the rrn P1 open complex. However, ppGpp does not stimulate amino acid promoter activity in vitro. We show here that RNA polymerase (RNAP) mutants, selected to confer prototrophy to deltarelAdeltaspoT strains, mimic the effects of ppGpp on wild-type RNAP. Based on the positions of the mutant residues that confer prototrophy in the structure of core RNAP, we suggest molecular models for how the mutants, and by analogy ppGpp, generally decrease the lifetime of open complexes. We show that amino acid promoters require higher concentrations of RNAP for function in vitro and in vivo than control promoters, and are more sensitive to competition for RNAP in vivo than control promoters. Furthermore, we show that the requirement of an amino acid promoter for ppGpp in vivo can be alleviated by increasing its rate-limiting RNAP-binding step. Our data are consistent with a previously proposed passive model in which ppGpp inhibits stable RNA synthesis directly by reducing the lifetime of the rrn P1 open complex, liberating enough RNAP to stimulate transcription from amino acid promoters. Our data also place considerable constraints on models invoking hypothetical factors that might increase amino acid promoter activity in a ppGpp-dependent fashion.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/metabolismo , Mutación/genética , Transcripción Genética , Aminoácidos/biosíntesis , Aminoácidos/genética , Unión Competitiva , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Ribosómico/genética , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos/genética , Guanosina Tetrafosfato/farmacología , Semivida , Cinética , Ligasas/metabolismo , Modelos Genéticos , Modelos Moleculares , Desnaturalización de Ácido Nucleico/genética , Regiones Promotoras Genéticas/genética , Conformación Proteica , Subunidades de Proteína , Pirofosfatasas/metabolismo , ARN Bacteriano/biosíntesis , ARN Bacteriano/genética , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA