Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.256
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 85: 515-42, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27145844

RESUMEN

Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Anticongelantes/química , Criopreservación/métodos , Hielo/análisis , Animales , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/metabolismo , Bacterias/genética , Bacterias/metabolismo , Frío , Almacenamiento de Alimentos/métodos , Expresión Génica , Humanos , Modelos Moleculares , Plantas/genética , Plantas/metabolismo , Unión Proteica , Dominios Proteicos , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Levaduras/genética , Levaduras/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(26): e2407062121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900794

RESUMEN

Particular frost patterns on natural leaves had prompted Yao et al. [Y. Yao et al., Proc. Natl. Acad. Sci. U.S.A. 117, 6323-6329 (2020)] to investigate the underlying physics. Their work revealed why on corrugated surfaces ice forms on crests and dries out adjacent grooves. In the absence of frost, in contrast, grooves tend to constitute niches on a leaf where microorganisms are less limited by moisture than in other locations. Here, we show that microorganisms able to nucleate ice before it forms on crests can modify the frosting pattern to their advantage. This ability might drive in cold arid environments the association between certain microorganisms and plants.


Asunto(s)
Congelación , Hojas de la Planta , Hielo
3.
Proc Natl Acad Sci U S A ; 121(17): e2316452121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621125

RESUMEN

The main sources of redox gradients supporting high-productivity life in the Europan and other icy ocean world oceans were proposed to be photolytically derived oxidants, such as reactive oxygen species (ROS) from the icy shell, and reductants (Fe(II), S(-II), CH4, H2) from bottom waters reacting with a (ultra)mafic seafloor. Important roadblocks to maintaining life, however, are that the degree of ocean mixing to combine redox species is unknown, and ROS damage biomolecules. Here, we envisage a unique solution using an acid mine drainage (AMD)-filled pit lakes analog system for the Europan ocean, which previous models predicted to be acidic. We hypothesize that surface-generated ROS oxidize dissolved Fe(II) resulting in Fe(III) (hydr)oxide precipitates, that settle to the seafloor as "iron snow." The iron snow provides a respiratory substrate for anaerobic microorganisms ("breathing iron"), and limits harmful ROS exposure since they are now neutralized at the ice-water interface. Based on this scenario, we calculated Gibbs energies and maximal biomass productivities of various anaerobic metabolisms for a range of pH, temperatures, and H2 fluxes. Productivity by iron reducers was greater for most environmental conditions considered, whereas sulfate reducers and methanogens were more favored at high pH. Participation of Fe in the metabolic redox processes is largely neglected in most models of Europan biogeochemistry. Our model overcomes important conceptual roadblocks to life in icy ocean worlds and broadens the potential metabolic diversity, thus increasing total primary productivity, the diversity and volume of habitable environmental niches and, ultimately, the probability of biosignature detection.


Asunto(s)
Hielo , Hierro , Especies Reactivas de Oxígeno , Nieve , Oxidación-Reducción , Compuestos Ferrosos
4.
Proc Natl Acad Sci U S A ; 121(24): e2320205121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38833468

RESUMEN

Antifreeze proteins (AFPs) are remarkable biomolecules that suppress ice formation at trace concentrations. To inhibit ice growth, AFPs must not only bind to ice crystals, but also resist engulfment by ice. The highest supercooling, [Formula: see text], for which AFPs are able to resist engulfment is widely believed to scale as the inverse of the separation, [Formula: see text], between bound AFPs, whereas its dependence on the molecular characteristics of the AFP remains poorly understood. By using specialized molecular simulations and interfacial thermodynamics, here, we show that in contrast with conventional wisdom, [Formula: see text] scales as [Formula: see text] and not as [Formula: see text]. We further show that [Formula: see text] is proportional to AFP size and that diverse naturally occurring AFPs are optimal at resisting engulfment by ice. By facilitating the development of AFP structure-function relationships, we hope that our findings will pave the way for the rational design of AFPs.


Asunto(s)
Proteínas Anticongelantes , Hielo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Termodinámica , Simulación de Dinámica Molecular , Animales , Cristalización
5.
Nature ; 577(7788): 60-63, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31894149

RESUMEN

The formation and growth of water-ice layers on surfaces and of low-dimensional ice under confinement are frequent occurrences1-4. This is exemplified by the extensive reporting of two-dimensional (2D) ice on metals5-11, insulating surfaces12-16, graphite and graphene17,18 and under strong confinement14,19-22. Although structured water adlayers and 2D ice have been imaged, capturing the metastable or intermediate edge structures involved in the 2D ice growth, which could reveal the underlying growth mechanisms, is extremely challenging, owing to the fragility and short lifetime of those edge structures. Here we show that noncontact atomic-force microscopy with a CO-terminated tip (used previously to image interfacial water with minimal perturbation)12, enables real-space imaging of the edge structures of 2D bilayer hexagonal ice grown on a Au(111) surface. We find that armchair-type edges coexist with the zigzag edges usually observed in 2D hexagonal crystals, and freeze these samples during growth to identify the intermediate edge structures. Combined with simulations, these experiments enable us to reconstruct the growth processes that, in the case of the zigzag edge, involve the addition of water molecules to the existing edge and a collective bridging mechanism. Armchair edge growth, by contrast, involves local seeding and edge reconstruction and thus contrasts with conventional views regarding the growth of bilayer hexagonal ices and 2D hexagonal matter in general.


Asunto(s)
Hielo , Microscopía de Túnel de Rastreo , Cristalización
6.
Nature ; 577(7788): 69-73, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31894147

RESUMEN

More than one-third of Earth's landmass is drained by rivers that seasonally freeze over. Ice transforms the hydrologic1,2, ecologic3,4, climatic5 and socio-economic6-8 functions of river corridors. Although river ice extent has been shown to be declining in many regions of the world1, the seasonality, historical change and predicted future changes in river ice extent and duration have not yet been quantified globally. Previous studies of river ice, which suggested that declines in extent and duration could be attributed to warming temperatures9,10, were based on data from sparse locations. Furthermore, existing projections of future ice extent are based solely on the location of the 0-°C isotherm11. Here, using satellite observations, we show that the global extent of river ice is declining, and we project a mean decrease in seasonal ice duration of 6.10 ± 0.08 days per 1-°C increase in global mean surface air temperature. We tracked the extent of river ice using over 400,000 clear-sky Landsat images spanning 1984-2018 and observed a mean decline of 2.5 percentage points globally in the past three decades. To project future changes in river ice extent, we developed an observationally calibrated and validated model, based on temperature and season, which reduced the mean bias by 87 per cent compared with the 0-degree-Celsius isotherm approach. We applied this model to future climate projections for 2080-2100: compared with 2009-2029, the average river ice duration declines by 16.7 days under Representative Concentration Pathway (RCP) 8.5, whereas under RCP 4.5 it declines on average by 7.3 days. Our results show that, globally, river ice is measurably declining and will continue to decline linearly with projected increases in surface air temperature towards the end of this century.


Asunto(s)
Hielo , Modelos Teóricos , Ríos/química , Predicción , Fenómenos Geológicos , Imágenes Satelitales
7.
Proc Natl Acad Sci U S A ; 120(1): e2214143120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574684

RESUMEN

Due to its multifaceted impact in various applications, icing and ice dendrite growth has been the focus of numerous studies in the past. Dendrites on wetting (hydrophilic) and nonwetting (hydrophobic) surfaces are sharp, pointy, branching, and hairy. Here, we show a unique dendrite morphology on state-of-the-art micro/nanostructured oil-impregnated surfaces, which are commonly referred to as slippery liquid-infused porous surfaces or liquid-infused surfaces. Unlike the dendrites on traditional textured hydrophilic and hydrophobic surfaces, the dendrites on oil-impregnated surfaces are thick and lumpy without pattern. Our experiments show that the unique ice dendrite morphology on lubricant-infused surfaces is due to oil wicking into the porous dendritic network because of the capillary pressure imbalance between the surface texture and the dendrites. We characterized the shape complexity of the ice dendrites using fractal analysis. Experiments show that ice dendrites on textured oil-impregnated surfaces have lower fractal dimensions than those on traditional lotus leaf-inspired air-filled porous structures. Furthermore, we developed a regime map that can be used as a design guideline for micro/nanostructured oil-impregnated surfaces by capturing the complex effects of oil chemistry, oil viscosity, and wetting ridge volume on dendrite growth and morphology. The insights gained from this work inform strategies to reduce lubricant depletion, a major bottleneck for the transition of micro/nanostructured oil-impregnated surfaces from bench-top laboratory prototypes to industrial use. This work will assist the development of next-generation depletion-resistant lubricant-infused ice-repellent surfaces.


Asunto(s)
Excipientes , Hielo , Alimentos , Lubricantes , Dendritas
8.
Proc Natl Acad Sci U S A ; 120(46): e2303243120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37943838

RESUMEN

Biological ice nucleation plays a key role in the survival of cold-adapted organisms. Several species of bacteria, fungi, and insects produce ice nucleators (INs) that enable ice formation at temperatures above -10 °C. Bacteria and fungi produce particularly potent INs that can promote water crystallization above -5 °C. Bacterial INs consist of extended protein units that aggregate to achieve superior functionality. Despite decades of research, the nature and identity of fungal INs remain elusive. Here, we combine ice nucleation measurements, physicochemical characterization, numerical modeling, and nucleation theory to shed light on the size and nature of the INs from the fungus Fusarium acuminatum. We find ice-binding and ice-shaping activity of Fusarium IN, suggesting a potential connection between ice growth promotion and inhibition. We demonstrate that fungal INs are composed of small 5.3 kDa protein subunits that assemble into ice-nucleating complexes that can contain more than 100 subunits. Fusarium INs retain high ice-nucleation activity even when only the ~12 kDa fraction of size-excluded proteins are initially present, suggesting robust pathways for their functional aggregation in cell-free aqueous environments. We conclude that the use of small proteins to build large assemblies is a common strategy among organisms to create potent biological INs.


Asunto(s)
Hielo , Agua , Congelación , Temperatura , Proteínas de la Membrana Bacteriana Externa/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(27): e2220380120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364125

RESUMEN

Attaining molecular-level control over solidification processes is a crucial aspect of materials science. To control ice formation, organisms have evolved bewildering arrays of ice-binding proteins (IBPs), but these have poorly understood structure-activity relationships. We propose that reverse engineering using de novo computational protein design can shed light on structure-activity relationships of IBPs. We hypothesized that the model alpha-helical winter flounder antifreeze protein uses an unusual undertwisting of its alpha-helix to align its putative ice-binding threonine residues in exactly the same direction. We test this hypothesis by designing a series of straight three-helix bundles with an ice-binding helix projecting threonines and two supporting helices constraining the twist of the ice-binding helix. Our findings show that ice-recrystallization inhibition by the designed proteins increases with the degree of designed undertwisting, thus validating our hypothesis, and opening up avenues for the computational design of IBPs.


Asunto(s)
Lenguado , Hielo , Animales , Proteínas Anticongelantes/química , Caspasa 1
11.
Proc Natl Acad Sci U S A ; 119(43): e2210496119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252032

RESUMEN

The Earth's climate has been warming rapidly since the beginning of the industrial era, forcing terrestrial organisms to adapt. Migration constitutes one of the most effective processes for surviving and thriving, although the speed at which tree species migrate as a function of climate change is unknown. One way to predict latitudinal movement of trees under the climate of the twenty-first century is to examine past migration since the Last Glacial Maximum. In this study, radiocarbon-dated macrofossils were used to calculate the velocity of past migration of jack pine (Pinus banksiana) and black spruce (Picea mariana), two important fire-adapted conifers of the North American boreal forest. Jack pine migrated at a mean rate of 19 km per century (km-cent) from unglaciated sites in the central and southeastern United States to the northern limit of the species in subarctic Canada. However, the velocity increased between unglaciated and early deglaciated sites in southern Quebec and slowed from early to mid-Holocene in central and eastern Quebec. Migration was at its lowest speed in late-Holocene times, when it stopped about 3,000 y ago. Compared with jack pine, black spruce migrated at a faster mean rate of 25 km-cent from the ice border at the last interstadial (Bølling/Allerød) to the species tree limit. The modern range of both species was nearly occupied about 6,000 y ago. The factors modulating the changing velocity of jack pine migration were closely associated with the warm-dry climate of the late Pleistocene-Holocene transition and the more humid climate of the mid- and late-Holocene.


Asunto(s)
Incendios , Picea , Pinus , Canadá , Hielo
12.
Proc Natl Acad Sci U S A ; 119(49): e2209545119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442119

RESUMEN

The origin of ice slipperiness has been a matter of great controversy for more than a century, but an atomistic understanding of ice friction is still lacking. Here, we perform computer simulations of an atomically smooth substrate sliding on ice. In a large temperature range between 230 and 266 K, hydrophobic sliders exhibit a premelting layer similar to that found at the ice/air interface. On the contrary, hydrophilic sliders show larger premelting and a strong increase of the first adsorption layer. The nonequilibrium simulations show that premelting films of barely one-nanometer thickness are sufficient to provide a lubricating quasi-liquid layer with rheological properties similar to bulk undercooled water. Upon shearing, the films display a pattern consistent with lubricating Couette flow, but the boundary conditions at the wall vary strongly with the substrate's interactions. Hydrophobic walls exhibit large slip, while hydrophilic walls obey stick boundary conditions with small negative slip. By compressing ice above atmospheric pressure, the lubricating layer grows continuously, and the rheological properties approach bulk-like behavior. Below 260 K, the equilibrium premelting films decrease significantly. However, a very large slip persists on the hydrophobic walls, while the increased friction on hydrophilic walls is sufficient to melt ice and create a lubrication layer in a few nanoseconds. Our results show that the atomic-scale frictional behavior of ice is a combination of spontaneous premelting, pressure melting, and frictional heating.


Asunto(s)
Hielo , Tortugas , Animales , Fricción , Lubrificación , Películas Cinematográficas , Adsorción
13.
Proc Natl Acad Sci U S A ; 119(43): e2208121119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36269861

RESUMEN

Secondary organic aerosol (SOA) plays a critical, yet uncertain, role in air quality and climate. Once formed, SOA is transported throughout the atmosphere and is exposed to solar UV light. Information on the viscosity of SOA, and how it may change with solar UV exposure, is needed to accurately predict air quality and climate. However, the effect of solar UV radiation on the viscosity of SOA and the associated implications for air quality and climate predictions is largely unknown. Here, we report the viscosity of SOA after exposure to UV radiation, equivalent to a UV exposure of 6 to 14 d at midlatitudes in summer. Surprisingly, UV-aging led to as much as five orders of magnitude increase in viscosity compared to unirradiated SOA. This increase in viscosity can be rationalized in part by an increase in molecular mass and oxidation of organic molecules constituting the SOA material, as determined by high-resolution mass spectrometry. We demonstrate that UV-aging can lead to an increased abundance of aerosols in the atmosphere in a glassy solid state. Therefore, UV-aging could represent an unrecognized source of nuclei for ice clouds in the atmosphere, with important implications for Earth's energy budget. We also show that UV-aging increases the mixing times within SOA particles by up to five orders of magnitude throughout the troposphere with important implications for predicting the growth, evaporation, and size distribution of SOA, and hence, air pollution and climate.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Luz Solar , Hielo , Aerosoles/química , Atmósfera/química
14.
Biophys J ; 123(6): 718-729, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38368506

RESUMEN

Preparation of cryoelectron microscopy (cryo-EM) grids for imaging of amyloid fibrils is notoriously challenging. The human islet amyloid polypeptide (hIAPP) serves as a notable example, as the majority of reported structures have relied on the use of nonphysiological pH buffers, N-terminal tags, and seeding. This highlights the need for more efficient, reproducible methodologies that can elucidate amyloid fibril structures formed under diverse conditions. In this work, we demonstrate that the distribution of fibrils on cryo-EM grids is predominantly determined by the solution composition, which is critical for the stability of thin vitreous ice films. We discover that, among physiological pH buffers, HEPES uniquely enhances the distribution of fibrils on cryo-EM grids and improves the stability of ice layers. This improvement is attributed to direct interactions between HEPES molecules and hIAPP, effectively minimizing the tendency of hIAPP to form dense clusters in solutions and preventing ice nucleation. Furthermore, we provide additional support for the idea that denatured protein monolayers forming at the interface are also capable of eliciting a surfactant-like effect, leading to improved particle coverage. This phenomenon is illustrated by the addition of nonamyloidogenic rat IAPP (rIAPP) to a solution of preaggregated hIAPP just before the freezing process. The resultant grids, supplemented with this "spectator protein", exhibit notably enhanced coverage and improved ice quality. Unlike conventional surfactants, rIAPP is additionally capable of disentangling the dense clusters formed by hIAPP. By applying the proposed strategies, we have resolved the structure of the dominant hIAPP polymorph, formed in vitro at pH 7.4, to a final resolution of 4 Å. The advances in grid preparation presented in this work hold significant promise for enabling structural determination of amyloid proteins which are particularly resistant to conventional grid preparation techniques.


Asunto(s)
Amiloide , Hielo , Ratas , Animales , Humanos , Amiloide/química , Microscopía por Crioelectrón , HEPES , Polipéptido Amiloide de los Islotes Pancreáticos/química
15.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805964

RESUMEN

Freeze tolerance, the ability of an organism to survive internal ice formation, is a striking survival strategy employed by some ectotherms living in cold environments. However, the genetic bases of this remarkable adaptation are largely unknown. The Amur sleeper (Perccottus glenii), the only known freeze-tolerant fish species, can overwinter with its entire body frozen in ice. Here, we sequenced the chromosome-level genome of the Amur sleeper and performed comparative genomic, transcriptomic, and metabolomic analyses to investigate its strategies for surviving freezing. Evolutionary analysis suggested that the Amur sleeper diverged from its closest non-cold-hardy relative about 15.07 million years ago and has experienced a high rate of protein evolution. Transcriptomic and metabolomic data identified a coordinated and tissue-specific regulation of genes and metabolites involved in hypometabolism, cellular stress response, and cryoprotectant accumulation involved in freezing and thawing. Several genes show evidence of accelerated protein sequence evolution or family size expansion were found as adaptive responses to freezing-induced stresses. Specifically, genetic changes associated with cytoskeleton stability, cryoprotectant synthesis, transmembrane transport, and neuroprotective adaptations were identified as potentially key innovations that aid in freezing survival. Our work provides valuable resources and opportunities to unveil the molecular adaptations supporting freeze tolerance in ectothermic vertebrates.


Asunto(s)
Hielo , Perciformes , Animales , Congelación , Multiómica , Vertebrados , Adaptación Fisiológica/fisiología , Aclimatación/genética
16.
Annu Rev Biomed Eng ; 25: 333-362, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37104651

RESUMEN

One of the greatest concerns in the subzero storage of cells, tissues, and organs is the ability to control the nucleation or recrystallization of ice. In nature, evidence of these processes, which aid in sustaining internal temperatures below the physiologic freezing point for extended periods of time, is apparent in freeze-avoidant and freeze-tolerant organisms. After decades of studying these proteins, we now have easily accessible compounds and materials capable of recapitulating the mechanisms seen in nature for biopreser-vation applications. The output from this burgeoning area of research can interact synergistically with other novel developments in the field of cryobiology, making it an opportune time for a review on this topic.


Asunto(s)
Proteínas Anticongelantes , Hielo , Humanos , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Congelación , Temperatura
17.
Plant Physiol ; 191(1): 199-218, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36383186

RESUMEN

The regulation of root Plasma membrane (PM) Intrinsic Protein (PIP)-type aquaporins (AQPs) is potentially important for salinity tolerance. However, the molecular and cellular details underlying this process in halophytes remain unclear. Using free-flow electrophoresis and label-free proteomics, we report that the increased abundance of PIPs at the PM of the halophyte ice plant (Mesembryanthemum crystallinum L.) roots under salinity conditions is regulated by clathrin-coated vesicles (CCV). To understand this regulation, we analyzed several components of the M. crystallinum CCV complexes: clathrin light chain (McCLC) and subunits µ1 and µ2 of the adaptor protein (AP) complex (McAP1µ and McAP2µ). Co-localization analyses revealed the association between McPIP1;4 and McAP2µ and between McPIP2;1 and McAP1µ, observations corroborated by mbSUS assays, suggesting that AQP abundance at the PM is under the control of CCV. The ability of McPIP1;4 and McPIP2;1 to form homo- and hetero-oligomers was tested and confirmed, as well as their activity as water channels. Also, we found increased phosphorylation of McPIP2;1 only at the PM in response to salt stress. Our results indicate root PIPs from halophytes might be regulated through CCV trafficking and phosphorylation, impacting their localization, transport activity, and abundance under salinity conditions.


Asunto(s)
Acuaporinas , Mesembryanthemum , Vesículas Cubiertas por Clatrina , Mesembryanthemum/genética , Hielo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Estrés Salino , Plantas Tolerantes a la Sal/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
18.
Ann Surg Oncol ; 31(7): 4487-4497, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38557909

RESUMEN

BACKGROUND: Radioactive tracer injections for breast cancer sentinel lymph node mapping can be painful. In this randomized trial, we compared four approaches to topical pain control for radiotracer injections. METHODS: Breast cancer patients were randomized (9 April 2021-8 May 2022) to receive the institutional standard of ice prior to injection (n = 44), or one of three treatments: ice plus a vibrating distraction device (Buzzy®; n = 39), 4% lidocaine patch (n = 44), or 4% lidocaine patch plus ice plus Buzzy® (n = 40). Patients completed the Wong-Baker FACES® pain score (primary outcome) and a satisfaction with pain control received scale (secondary). Nuclear medicine technologists (n = 8) rated perceived pain control and ease of administration for each patient. At study conclusion, technologists rank-ordered treatments. Data were analyzed as intention-to-treat. Wilcoxon rank-sum tests were used to compare pain scores of control versus pooled treatment arms (primary) and then control to each treatment arm individually (secondary). RESULTS: There were no differences in pain scores between the control and treatment groups, both pooled and individually. Eighty-five percent of patients were 'satisfied/very satisfied' with treatment received, with no differences between groups. No differences in providers' perceptions of pain were observed, although providers perceived treatments involving Buzzy© more difficult to administer (p < 0.001). Providers rated lidocaine patch as the easiest, with ice being second. CONCLUSION: In this randomized trial, no differences in patient-reported pain or satisfaction with treatment was observed between ice and other topical treatments. Providers found treatments using Buzzy® more difficult to administer. Given patient satisfaction and ease of administration, ice is a reasonable standard.


Asunto(s)
Anestésicos Locales , Neoplasias de la Mama , Lidocaína , Manejo del Dolor , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Persona de Mediana Edad , Manejo del Dolor/métodos , Lidocaína/administración & dosificación , Anestésicos Locales/administración & dosificación , Ganglio Linfático Centinela/patología , Radiofármacos/administración & dosificación , Anciano , Biopsia del Ganglio Linfático Centinela/métodos , Adulto , Estudios de Seguimiento , Pronóstico , Hielo , Dimensión del Dolor , Dolor/etiología , Dolor/prevención & control , Dolor/tratamiento farmacológico , Administración Tópica
19.
Stem Cells ; 41(11): 1006-1021, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37622655

RESUMEN

Human induced pluripotent stem cells (iPSCs) and iPSC-derived neurons (iPSC-Ns) represent a differentiated modality toward developing novel cell-based therapies for regenerative medicine. However, the successful application of iPSC-Ns in cell-replacement therapies relies on effective cryopreservation. In this study, we investigated the role of ice recrystallization inhibitors (IRIs) as novel cryoprotectants for iPSCs and terminally differentiated iPSC-Ns. We found that one class of IRIs, N-aryl-D-aldonamides (specifically 2FA), increased iPSC post-thaw viability and recovery with no adverse effect on iPSC pluripotency. While 2FA supplementation did not significantly improve iPSC-N cell post-thaw viability, we observed that 2FA cryopreserved iPSC-Ns re-established robust neuronal network activity and synaptic function much earlier compared to CS10 cryopreserved controls. The 2FA cryopreserved iPSC-Ns retained expression of key neuronal specific and terminally differentiated markers and displayed functional electrophysiological and neuropharmacological responses following treatment with neuroactive agonists and antagonists. We demonstrate how optimizing cryopreservation media formulations with IRIs represents a promising strategy to improve functional cryopreservation of iPSCs and post-mitotic iPSC-Ns, the latter of which have been challenging to achieve. Developing IRI enabling technologies to support an effective cryopreservation and an efficiently managed cryo-chain is fundamental to support the delivery of successful iPSC-derived therapies to the clinic.


Asunto(s)
Hielo , Células Madre Pluripotentes Inducidas , Humanos , Hielo/efectos adversos , Neuronas , Criopreservación , Crioprotectores/farmacología , Crioprotectores/química
20.
Langmuir ; 40(14): 7395-7404, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38527127

RESUMEN

Ice-binding proteins (IBPs) are expressed in various organisms for several functions, such as protecting them from freezing and freeze injuries. Via adsorption on ice surfaces, IBPs depress ice growth and recrystallization and affect nucleation and ice shaping. IBPs have shown promise in mitigating ice growth under moderate supercooling conditions, but their functionality under cryogenic conditions has been less explored. In this study, we investigate the impact of two types of antifreeze proteins (AFPs): type III AFP from fish and a hyperactive AFP from an insect, the Tenebrio molitor AFP, in vitrified dimethylsulfoxide (DMSO) solutions. We report that these AFPs depress devitrification at -80 °C. Furthermore, in cases where devitrification does occur, AFPs depress ice recrystallization during the warming stage. The data directly demonstrate that AFPs are active at temperatures below the regime of homogeneous nucleation. This research paves the way for exploring AFPs as potential enhancers of cryopreservation techniques, minimizing ice-growth-related damage, and promoting advancements in this vital field.


Asunto(s)
Hielo , alfa-Fetoproteínas , Animales , Temperatura , Congelación , Proteínas Anticongelantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA