Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 599(7884): 278-282, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707287

RESUMEN

The phytohormone auxin controls many processes in plants, at least in part through its regulation of cell expansion1. The acid growth hypothesis has been proposed to explain auxin-stimulated cell expansion for five decades, but the mechanism that underlies auxin-induced cell-wall acidification is poorly characterized. Auxin induces the phosphorylation and activation of the plasma membrane H+-ATPase that pumps protons into the apoplast2, yet how auxin activates its phosphorylation remains unclear. Here we show that the transmembrane kinase (TMK) auxin-signalling proteins interact with plasma membrane H+-ATPases, inducing their phosphorylation, and thereby promoting cell-wall acidification and hypocotyl cell elongation in Arabidopsis. Auxin induced interactions between TMKs and H+-ATPases in the plasma membrane within seconds, as well as TMK-dependent phosphorylation of the penultimate threonine residue on the H+-ATPases. Our genetic, biochemical and molecular evidence demonstrates that TMKs directly phosphorylate plasma membrane H+-ATPase and are required for auxin-induced H+-ATPase activation, apoplastic acidification and cell expansion. Thus, our findings reveal a crucial connection between auxin and plasma membrane H+-ATPase activation in regulating apoplastic pH changes and cell expansion through TMK-based cell surface auxin signalling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ácidos , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/enzimología , Activación Enzimática , Concentración de Iones de Hidrógeno , Hipocótilo/enzimología , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Proteínas de la Membrana/genética , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Protones , Treonina/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(36): e2403040121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190354

RESUMEN

ELONGATED HYPOCOTOYL5 (HY5) and PHYTOCHROME INTERACTING FACTORs (PIFs) are two types of important light-related regulators of plant growth, however, their interplay remains elusive. Here, we report that the activated tomato (Solanum lycopersicum) HY5 (SlHY5) triggers the transcription of a Calcium-dependent Protein Kinase SlCPK27. SlCPK27 interacts with and phosphorylates SlPIF4 at Ser-252 and Ser-308 phosphosites to promote its degradation. SlPIF4 promotes hypocotyl elongation mainly by activating the transcription of SlDWF, a key gene in brassinosteroid (BR) biosynthesis. Such a SlHY5-SlCPK27-SlPIF4-BR cascade not only plays a crucial role in photomorphogenesis but also regulates thermomorphogenesis. Our results uncover a previously unidentified mechanism that integrates Ca2+ signaling with the light signaling pathways to regulate plant growth by modulating BR biosynthesis in response to changes in ambient light and temperature.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Proteínas Quinasas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Brasinoesteroides/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Luz , Fosforilación , Hipocótilo/metabolismo , Hipocótilo/crecimiento & desarrollo , Temperatura , Morfogénesis
3.
Proc Natl Acad Sci U S A ; 121(33): e2404883121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102535

RESUMEN

Transcription factor ELONGATED HYPOCOTYL5 (HY5) is the central hub for seedling photomorphogenesis. E3 ubiquitin (Ub) ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) inhibits HY5 protein accumulation through ubiquitination. However, the process of HY5 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain HY5 homeostasis has never been studied. Here, we identified that Arabidopsis thaliana deubiquitinating enzyme, Ub-SPECIFIC PROTEASE 14 (UBP14) physically interacts with HY5 and enhances its protein stability by deubiquitination. The da3-1 mutant lacking UBP14 function exhibited a long hypocotyl phenotype, and UBP14 deficiency led to the failure of rapid accumulation of HY5 during dark to light. In addition, UBP14 preferred to stabilize nonphosphorylated form of HY5 which is more readily bound to downstream target genes. HY5 promoted the expression and protein accumulation of UBP14 for positive feedback to facilitate photomorphogenesis. Our findings thus established a mechanism by which UBP14 stabilizes HY5 protein by deubiquitination to promote photomorphogenesis in A. thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Ubiquitinación , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Estabilidad Proteica/efectos de la radiación , Luz , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/genética
4.
Plant Cell ; 35(6): 2044-2061, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36781395

RESUMEN

Hypocotyl elongation is an important morphological response during plant thermomorphogenesis. Multiple studies indicate that the transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) is a key regulator of high temperature-induced hypocotyl elongation. However, the underlying cellular mechanisms regarding PIF4-mediated hypocotyl elongation are largely unclear. In this study, we found that PIF4 regulates the PLANT U-BOX TYPE E3 UBIQUITIN LIGASE 31 (PUB31)-SPIRAL1 (SPR1) module and alters cortical microtubule reorganization to promote hypocotyl cell elongation during Arabidopsis thaliana (Arabidopsis) thermomorphogenesis. SPR1 loss-of-function mutants exhibit much shorter hypocotyls when grown at 28 °C, indicating a positive role for SPR1 in high ambient temperature-induced hypocotyl elongation. High ambient temperature induces SPR1 expression in a PIF4-dependent manner, and stabilizes SPR1 protein to mediate microtubule reorganization. Further investigation showed that PUB31 interacts with and ubiquitinates SPR1. In particular, the ubiquitinated effect on SPR1 was moderately decreased at high temperature, which was due to the direct binding of PIF4 to the PUB31 promoter and down-regulating its expression. Thus, this study reveals a mechanism in which PIF4 induces SPR1 expression and suppresses PUB31 expression, resulting in the accumulation and stabilization of SPR1 protein, and further promoting hypocotyl cell elongation by altering cortical microtubule organization during Arabidopsis thermomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/metabolismo , Fitocromo/metabolismo , Temperatura , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
5.
PLoS Genet ; 19(5): e1010779, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216398

RESUMEN

Integration of light and phytohormones is essential for plant growth and development. FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT 1 (JAR1) participates in phytochrome A (phyA)-mediated far-red (FR) light signaling in Arabidopsis and is a jasmonate (JA)-conjugating enzyme for the generation of an active JA-isoleucine. Accumulating evidence indicates that FR and JA signaling integrate with each other. However, the molecular mechanisms underlying their interaction remain largely unknown. Here, the phyA mutant was hypersensitive to JA. The double mutant fin219-2phyA-211 showed a synergistic effect on seedling development under FR light. Further evidence revealed that FIN219 and phyA antagonized with each other in a mutually functional demand to modulate hypocotyl elongation and expression of light- and JA-responsive genes. Moreover, FIN219 interacted with phyA under prolonged FR light, and MeJA could enhance their interaction with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) in the dark and FR light. FIN219 and phyA interaction occurred mainly in the cytoplasm, and they regulated their mutual subcellular localization under FR light. Surprisingly, the fin219-2 mutant abolished the formation of phyA nuclear bodies under FR light. Overall, these data identified a vital mechanism of phyA-FIN219-COP1 association in response to FR light, and MeJA may allow the photoactivated phyA to trigger photomorphogenic responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo A/genética , Fitocromo A/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Fitocromo/genética , Mutación , Regulación de la Expresión Génica de las Plantas
6.
Plant J ; 118(6): 1815-1831, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494883

RESUMEN

Rapid hypocotyl elongation allows buried seedlings to emerge, where light triggers de-etiolation and inhibits hypocotyl growth mainly by photoreceptors. Phosphorylation/dephosphorylation events regulate many aspects of plant development. Only recently we have begun to uncover the earliest phospho-signaling responders to light. Here, we reported a large-scale phosphoproteomic analysis and identified 20 proteins that changed their phosphorylation pattern following a 20 min light pulse compared to darkness. Microtubule-associated proteins were highly overrepresented in this group. Among them, we studied CIP7 (COP1-INTERACTING-PROTEIN 7), which presented microtubule (MT) localization in contrast to the previous description. An isoform of CIP7 phosphorylated at Serine915 was detected in etiolated seedlings but was undetectable after a light pulse in the presence of photoreceptors, while CIP7 transcript expression decays with long light exposure. The short hypocotyl phenotype and rearrangement of MTs in etiolated cip7 mutants are complemented by CIP7-YFP and the phospho-mimetic CIP7S915D-YFP, but not the phospho-null CIP7S915A-YFP suggesting that the phosphorylated S915CIP7 isoform promotes hypocotyl elongation through MT reorganization in darkness. Our evidence on Serine915 of CIP7 unveils phospho-regulation of MT-based processes during skotomorphogenic hypocotyl growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oscuridad , Hipocótilo , Proteínas Asociadas a Microtúbulos , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilación , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Luz , Regulación de la Expresión Génica de las Plantas , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Plantones/efectos de la radiación
7.
Plant J ; 119(2): 645-657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761364

RESUMEN

The interplay between microRNAs (miRNAs) and phytohormones allows plants to integrate multiple internal and external signals to optimize their survival of different environmental conditions. Here, we report that miR394 and its target gene LEAF CURLING RESPONSIVENESS (LCR), which are transcriptionally responsive to BR, participate in BR signaling to regulate hypocotyl elongation in Arabidopsis thaliana. Phenotypic analysis of various transgenic and mutant lines revealed that miR394 negatively regulates BR signaling during hypocotyl elongation, whereas LCR positively regulates this process. Genetically, miR394 functions upstream of BRASSINOSTEROID INSENSITIVE2 (BIN2), BRASSINAZOLEs RESISTANT1 (BZR1), and BRI1-EMS-SUPPRESSOR1 (BES1), but interacts with BRASSINOSTEROID INSENSITIVE1 (BRI1) and BRI1 SUPRESSOR PROTEIN (BSU1). RNA-sequencing analysis suggested that miR394 inhibits BR signaling through BIN2, as miR394 regulates a significant number of genes in common with BIN2. Additionally, miR394 increases the accumulation of BIN2 but decreases the accumulation of BZR1 and BES1, which are phosphorylated by BIN2. MiR394 also represses the transcription of PACLOBUTRAZOL RESISTANCE1/5/6 and EXPANSIN8, key genes that regulate hypocotyl elongation and are targets of BZR1/BES1. These findings reveal a new role for a miRNA in BR signaling in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Hipocótilo , MicroARNs , Transducción de Señal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Brasinoesteroides/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Plantas Modificadas Genéticamente , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Quinasas
8.
EMBO J ; 40(24): e108684, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34726281

RESUMEN

Plant photoperiodic growth is coordinated by interactions between circadian clock and light signaling networks. How post-translational modifications of clock proteins affect these interactions to mediate rhythmic growth remains unclear. Here, we identify five phosphorylation sites in the Arabidopsis core clock protein TIMING OF CAB EXPRESSION 1 (TOC1) which when mutated to alanine eliminate detectable phosphorylation. The TOC1 phospho-mutant fails to fully rescue the clock, growth, and flowering phenotypes of the toc1 mutant. Further, the TOC1 phospho-mutant shows advanced phase, a faster degradation rate, reduced interactions with PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) and HISTONE DEACETYLASE 15 (HDA15), and poor binding at pre-dawn hypocotyl growth-related genes (PHGs), leading to a net de-repression of hypocotyl growth. NUCLEAR FACTOR Y subunits B and C (NF-YB/C) stabilize TOC1 at target promoters, and this novel trimeric complex (NF-TOC1) acts as a transcriptional co-repressor with HDA15 to inhibit PIF-mediated hypocotyl elongation. Collectively, we identify a molecular mechanism suggesting how phosphorylation of TOC1 alters its phase, stability, and physical interactions with co-regulators to precisely phase PHG expression to control photoperiodic hypocotyl growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Factor de Unión a CCAAT/metabolismo , Mutación , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Fosforilación , Proteolisis , Transducción de Señal , Factores de Transcripción/química , Factores de Transcripción/metabolismo
9.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35502748

RESUMEN

Adventitious roots (ARs) are an important type of plant root and display high phenotypic plasticity in response to different environmental stimuli. It is known that photoreceptors inhibit darkness-induced hypocotyl adventitious root (HAR) formation by directly stabilizing Aux/IAA proteins. In this study, we further report that phytochrome-interacting factors (PIFs) plays a central role in HAR initiation by simultaneously inducing the expression of genes involved in auxin biosynthesis, auxin transport and the transcriptional control of root primordium initiation. We found that, on the basis of their activity downstream of phytochrome, PIFs are required for darkness-induced HAR formation. Specifically, PIFs directly bind to the promoters of some genes involved in root formation, including auxin biosynthesis genes YUCCA2 (YUC2) and YUC6, the auxin influx carrier genes AUX1 and LAX3, and the transcription factors WOX5/7 and LBD16/29, to activate their expression. These findings reveal a previously uncharacterized transcriptional regulatory network underlying HAR formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Fitocromo/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
10.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217857

RESUMEN

Cellular regeneration in response to wounding is fundamental to maintain tissue integrity. Various internal factors including hormones and transcription factors mediate healing, but little is known about the role of external factors. To understand how the environment affects regeneration, we investigated the effects of temperature upon the horticulturally relevant process of plant grafting. We found that elevated temperatures accelerated vascular regeneration in Arabidopsis thaliana and tomato grafts. Leaves were crucial for this effect, as blocking auxin transport or mutating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) or YUCCA2/5/8/9 in the cotyledons abolished the temperature enhancement. However, these perturbations did not affect grafting at ambient temperatures, and temperature enhancement of callus formation and tissue adhesion did not require PIF4, suggesting leaf-derived auxin specifically enhanced vascular regeneration in response to elevated temperatures. We also found that elevated temperatures accelerated the formation of inter-plant vascular connections between the parasitic plant Phtheirospermum japonicum and host Arabidopsis, and this effect required shoot-derived auxin from the parasite. Taken together, our results identify a pathway whereby local temperature perception mediates long distance auxin signaling to modify regeneration, grafting and parasitism. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Calor , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regeneración/genética , Transducción de Señal/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transporte Biológico/genética , Cotiledón/genética , Cotiledón/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/fisiología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Plantas Modificadas Genéticamente
11.
Plant Physiol ; 195(3): 2274-2288, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38487893

RESUMEN

Light and temperature are 2 major environmental factors that affect the growth and development of plants during their life cycle. Plants have evolved complex mechanisms to adapt to varying external environments. Here, we show that JASMONATE ZIM-domain protein 3 (JAZ3), a jasmonic acid signaling component, acts as a factor to integrate light and temperature in regulating seedling morphogenesis. JAZ3 overexpression transgenic lines display short hypocotyls under red, far-red, and blue light and warm temperature (28 °C) conditions compared to the wild type in Arabidopsis (Arabidopsis thaliana). We show that JAZ3 interacts with the transcription factor PHYTOCHROME-INTERACTING FACTOR4 (PIF4). Interestingly, JAZ3 spontaneously undergoes liquid-liquid phase separation (LLPS) in vitro and in vivo and promotes LLPS formation of PIF4. Moreover, transcriptomic analyses indicate that JAZ3 regulates the expression of genes involved in many biological processes, such as response to auxin, auxin-activated signaling pathway, regulation of growth, and response to red light. Finally, JAZ3 inhibits the transcriptional activation activity and binding ability of PIF4. Collectively, our study reveals a function and molecular mechanism of JAZ3 in regulating plant growth in response to environmental factors such as light and temperature.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Luz , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Temperatura , Plantas Modificadas Genéticamente , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Transducción de Señal , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Plantones/efectos de la radiación , Morfogénesis/efectos de la radiación , Morfogénesis/genética , Vernalización
12.
Plant Cell ; 34(3): 1020-1037, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34931682

RESUMEN

Vernalization, a long-term cold-mediated acquisition of flowering competence, is critically regulated by VERNALIZATION INSENSITIVE 3 (VIN3), a gene induced by vernalization in Arabidopsis. Although the function of VIN3 has been extensively studied, how VIN3 expression itself is upregulated by long-term cold is not well understood. In this study, we identified a vernalization-responsive cis-element in the VIN3 promoter, VREVIN3, composed of a G-box and an evening element (EE). Mutations in either the G-box or the EE prevented VIN3 expression from being fully induced upon vernalization, leading to defects in the vernalization response. We determined that the core clock proteins CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE-ELONGATED HYPOCOTYL (LHY) associate with the EE of VREVIN3, both in vitro and in vivo. In a cca1 lhy double mutant background harboring a functional FRIGIDA allele, long-term cold-mediated VIN3 induction and acceleration of flowering were impaired, especially under mild cold conditions such as at 12°C. During prolonged cold exposure, oscillations of CCA1/LHY transcripts were altered, while CCA1 abundance increased at dusk, coinciding with the diurnal peak of VIN3 transcripts. We propose that modulation of the clock proteins CCA1 and LHY participates in the systems involved in sensing long-term cold for the activation of VIN3 transcription.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Hipocótilo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
EMBO Rep ; 24(5): e56105, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36970931

RESUMEN

Shade avoidance syndrome (SAS) commonly occurs in plants experiencing vegetative shade, triggering a series of morphological and physiological changes for the plants to reach more light. A number of positive regulators, such as PHYTOCHROME-INTERACTING 7 (PIF7), and negative regulators, such as PHYTOCHROMES, are known to ensure appropriate SAS. Here, we identify 211 shade-regulated long non-coding RNAs (lncRNAs) in Arabidopsis. We further characterize PUAR (PHYA UTR Antisense RNA), a lncRNA produced from the intron of the 5' UTR of the PHYTOCHROME A (PHYA) locus. PUAR is induced by shade and promotes shade-induced hypocotyl elongation. PUAR physically associates with PIF7 and represses the shade-mediated induction of PHYA by blocking the binding of PIF7 to the 5' UTR of PHYA. Our findings highlight a role for lncRNAs in SAS and provide insight into the mechanism of PUAR in regulating PHYA gene expression and SAS.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , ARN Largo no Codificante , Regiones no Traducidas 5' , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Luz , Fitocromo/genética , Fitocromo/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
14.
Plant J ; 114(4): 824-835, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871136

RESUMEN

The formation of adventitious roots (ARs) derived from hypocotyl is the most important morphological adaptation to waterlogging stress in Cucumis sativus (cucumber). Our previous study showed that cucumbers with the gene CsARN6.1, encoding an AAA ATPase domain-containing protein, were more tolerant to waterlogging through increased AR formation. However, the apparent function of CsARN6.1 remained unknown. Here, we showed that the CsARN6.1 signal was predominantly observed throughout the cambium of hypocotyls, where de novo AR primordia are formed upon waterlogging treatment. The silencing of CsARN6.1 expression by virus-induced gene silencing and CRISPR/Cas9 technologies adversely affects the formation of ARs under conditions of waterlogging. Waterlogging treatment significantly induced ethylene production, thus upregulating CsEIL3 expression, which encodes a putative transcription factor involved in ethylene signaling. Furthermore, yeast one-hybrid, electrophoretic mobility assay and transient expression analyses showed that CsEIL3 binds directly to the CsARN6.1 promoter to initiate its expression. CsARN6.1 was found to interact with CsPrx5, a waterlogging-responsive class-III peroxidase that enhanced H2 O2 production and increased AR formation. These data provide insights into understanding the molecular mechanisms of AAA ATPase domain-containing protein and uncover a molecular mechanism that links ethylene signaling with the formation of ARs triggered by waterlogging.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Etilenos/metabolismo , Hipocótilo/metabolismo , Regulación de la Expresión Génica de las Plantas , ATPasas Asociadas con Actividades Celulares Diversas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
15.
Plant J ; 115(5): 1394-1407, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243898

RESUMEN

Reductions in red to far-red ratio (R:FR) provide plants with an unambiguous signal of vegetational shade and are monitored by phytochrome photoreceptors. Plants integrate this information with other environmental cues to determine the proximity and density of encroaching vegetation. Shade-sensitive species respond to reductions in R:FR by initiating a suite of developmental adaptations termed shade avoidance. These include the elongation of stems to facilitate light foraging. Hypocotyl elongation is driven by increased auxin biosynthesis promoted by PHYTOCHROME INTERACTING FACTORs (PIF) 4, 5 and 7. UV-B perceived by the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor rapidly inhibits shade avoidance, in part by suppressing PIF4/5 transcript accumulation and destabilising PIF4/5 protein. Here, we show that longer-term inhibition of shade avoidance is sustained by ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH), which regulate transcriptional reprogramming of genes involved in hormone signalling and cell wall modification. HY5 and HYH are elevated in UV-B and suppress the expression of XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) genes involved in cell wall loosening. They additionally increase expression GA2-OXIDASE1 (GA2ox1) and GA2ox2, encoding gibberellin catabolism enzymes that act redundantly to stabilise the PIF-inhibiting DELLA proteins. UVR8 therefore regulates temporally distinct signalling pathways to first rapidly inhibit and subsequently maintain suppression of shade avoidance following UV-B exposure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transducción de Señal/fisiología , Plantas/metabolismo , Fitocromo/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
16.
Plant J ; 114(6): 1267-1284, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36920240

RESUMEN

Iron (Fe) is an essential micronutrient for both plants and animals. Fe-limitation significantly reduces crop yield and adversely impacts on human nutrition. Owing to limited bioavailability of Fe in soil, plants have adapted different strategies that not only regulate Fe-uptake and homeostasis but also bring modifications in root system architecture to enhance survival. Understanding the molecular mechanism underlying the root growth responses will have critical implications for plant breeding. Fe-uptake is regulated by a cascade of basic helix-loop-helix (bHLH) transcription factors (TFs) in plants. In this study, we report that HY5 (Elongated Hypocotyl 5), a member of the basic leucine zipper (bZIP) family of TFs, plays an important role in the Fe-deficiency signaling pathway in Arabidopsis thaliana. The hy5 mutant failed to mount optimum Fe-deficiency responses, and displayed root growth defects under Fe-limitation. Our analysis revealed that the induction of the genes involved in Fe-uptake pathway (FIT-FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR, FRO2-FERRIC REDUCTION OXIDASE 2 and IRT1-IRON-REGULATED TRANSPORTER1) is reduced in the hy5 mutant as compared with the wild-type plants under Fe-deficiency. Moreover, we also found that the expression of coumarin biosynthesis genes is affected in the hy5 mutant under Fe-deficiency. Our results also showed that HY5 negatively regulates BRUTUS (BTS) and POPEYE (PYE). Chromatin immunoprecipitation followed by quantitative polymerase chain reaction revealed direct binding of HY5 to the promoters of BTS, FRO2 and PYE. Altogether, our results showed that HY5 plays an important role in the regulation of Fe-deficiency responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis/fisiología , Hipocótilo/metabolismo , Fitomejoramiento , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
17.
Plant Mol Biol ; 114(4): 72, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874897

RESUMEN

The red and far-red light photoreceptor phytochrome B (phyB) transmits light signals following cytosol-to-nuclear translocation to regulate transcriptional networks therein. This necessitates changes in protein-protein interactions of phyB in the cytosol, about which little is presently known. Via introduction of a nucleus-excluding G767R mutation into the dominant, constitutively active phyBY276H (YHB) allele, we explore the functional consequences of expressing a cytosol-localized YHBG767R variant in transgenic Arabidopsis seedlings. We show that YHBG767R elicits selective constitutive photomorphogenic phenotypes in dark-grown phyABCDE null mutants, wild type and other phy-deficient genotypes. These responses include light-independent apical hook opening, cotyledon unfolding, seed germination and agravitropic hypocotyl growth with minimal suppression of hypocotyl elongation. Such phenotypes correlate with reduced PIF3 levels, which implicates cytosolic targeting of PIF3 turnover or PIF3 translational inhibition by YHBG767R. However, as expected for a cytoplasm-tethered phyB, YHBG767R elicits reduced light-mediated signaling activity compared with similarly expressed wild-type phyB in phyABCDE mutant backgrounds. YHBG767R also interferes with wild-type phyB light signaling, presumably by formation of cytosol-retained and/or otherwise inactivated heterodimers. Our results suggest that cytosolic interactions with PIFs play an important role in phyB signaling even under physiological conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citosol , Fitocromo B , Transducción de Señal , Fitocromo B/metabolismo , Fitocromo B/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Citosol/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Plantas Modificadas Genéticamente , Luz , Mutación , Regulación de la Expresión Génica de las Plantas , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Plantones/metabolismo , Fenotipo
18.
Plant Cell Physiol ; 65(2): 301-318, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38190549

RESUMEN

Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.


Asunto(s)
Arabidopsis , Hidrolasas de Éster Carboxílico , Hipocótilo , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Mutación/genética , Pectinas/metabolismo , Concentración de Iones de Hidrógeno
19.
Biochem Biophys Res Commun ; 695: 149423, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38157630

RESUMEN

The Raffinose Family of Oligosaccharides (RFOs), including Galactinol, Raffinose, and Stachyose, are pivotal carbohydrates with significant roles in abiotic stress tolerance and growth within dynamic environments. Plant development is profoundly influenced by light, a major environmental signal. Despite this, the interconnections between the biosynthesis of secondary sugars and light signaling have remained unexplored. This study reveals that exposure to light induces the expression of Galactinol synthase (AtGolS1), a key enzyme in the RFO biosynthesis pathway. The light-inducible response of AtGolS1 operates downstream of ELONGATED HYPOCOTYL 5 (HY5), a central regulator in light signaling. Mutant seedlings with disrupted HY5 function (hy5-215) exhibit reduced AtGolS1 transcript accumulation compared to wild-type (WT) and HY5 overexpression seedlings. DNA-protein interaction studies demonstrate that HY5 directly binds to light-responsive cis-elements in the promoter region of AtGolS1, thereby mediating its light responsiveness. Quantification of galactinol revealed a diminished accumulation in the hy5-215 mutant compared to wild-type (WT) and HY5 overexpression seedlings. Consequently, these findings shed light on the intricate crosstalk between RFO biosynthesis and light signaling in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Disacáridos , Galactosiltransferasas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Rafinosa/metabolismo , Plantones/genética , Plantones/metabolismo
20.
Biochem Biophys Res Commun ; 717: 150050, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718571

RESUMEN

Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Luz , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Hipocótilo/genética , Criptocromos/metabolismo , Criptocromos/genética , Reparación del ADN/efectos de la radiación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Morfogénesis/efectos de la radiación , Luz Azul
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA