Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 48(3): 514-529.e6, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29548672

RESUMEN

Microglia as tissue macrophages contribute to the defense and maintenance of central nervous system (CNS) homeostasis. Little is known about the epigenetic signals controlling microglia function in vivo. We employed constitutive and inducible mutagenesis in microglia to delete two class I histone deacetylases, Hdac1 and Hdac2. Prenatal ablation of Hdac1 and Hdac2 impaired microglial development. Mechanistically, the promoters of pro-apoptotic and cell cycle genes were hyperacetylated in absence of Hdac1 and Hdac2, leading to increased apoptosis and reduced survival. In contrast, Hdac1 and Hdac2 were not required for adult microglia survival during homeostasis. In a mouse model of Alzheimer's disease, deletion of Hdac1 and Hdac2 in microglia, but not in neuroectodermal cells, resulted in a decrease in amyloid load and improved cognitive impairment by enhancing microglial amyloid phagocytosis. Collectively, we report a role for epigenetic factors that differentially affect microglia development, homeostasis, and disease that could potentially be utilized therapeutically.


Asunto(s)
Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Homeostasis , Microglía/inmunología , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Neurogénesis/genética , Animales , Apoptosis , Proliferación Celular , Modelos Animales de Enfermedad , Epigénesis Genética , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Histonas/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/psicología , Neurogénesis/inmunología , Fagocitosis/inmunología , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Aprendizaje Espacial , Transcriptoma
2.
Cell ; 149(6): 1327-38, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22682252

RESUMEN

The Drosophila fruitless (fru) gene encodes a set of putative transcription factors that promote male sexual behavior by controlling the development of sexually dimorphic neuronal circuitry. However, the mechanism whereby fru establishes the sexual fate of neurons remains enigmatic. Here, we show that Fru forms a complex with the transcriptional cofactor Bonus (Bon), which, in turn, recruits either of two chromatin regulators, Histone deacetylase 1 (HDAC1), which masculinizes individual sexually dimorphic neurons, or Heterochromatin protein 1a (HP1a), which demasculinizes them. Manipulations of HDAC1 or HP1a expression change the proportion of male-typical neurons and female-typical neurons rather than producing neurons with intersexual characteristics, indicating that on a single neuron level, this sexual switch operates in an all-or-none manner.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Histona Desacetilasa 1/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Caracteres Sexuales , Factores de Transcripción/metabolismo , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Drosophila/genética , Proteínas de Drosophila/genética , Femenino , Histona Desacetilasa 1/genética , Masculino , Conducta Sexual Animal , Transcripción Genética
3.
Nat Immunol ; 15(5): 439-448, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681565

RESUMEN

Molecular mechanisms that maintain lineage integrity of helper T cells are largely unknown. Here we show histone deacetylases 1 and 2 (HDAC1 and HDAC2) as crucial regulators of this process. Loss of HDAC1 and HDAC2 during late T cell development led to the appearance of major histocompatibility complex (MHC) class II-selected CD4(+) helper T cells that expressed CD8-lineage genes such as Cd8a and Cd8b1. HDAC1 and HDAC2-deficient T helper type 0 (TH0) and TH1 cells further upregulated CD8-lineage genes and acquired a CD8(+) effector T cell program in a manner dependent on Runx-CBFß complexes, whereas TH2 cells repressed features of the CD8(+) lineage independently of HDAC1 and HDAC2. These results demonstrate that HDAC1 and HDAC2 maintain integrity of the CD4 lineage by repressing Runx-CBFß complexes that otherwise induce a CD8(+) effector T cell-like program in CD4(+) T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Células TH1/inmunología , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Citocinas/metabolismo , Citotoxicidad Inmunológica/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica
4.
Nucleic Acids Res ; 52(10): 5698-5719, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38587186

RESUMEN

AT-rich interaction domain protein 1A (ARID1A), a SWI/SNF chromatin remodeling complex subunit, is frequently mutated across various cancer entities. Loss of ARID1A leads to DNA repair defects. Here, we show that ARID1A plays epigenetic roles to promote both DNA double-strand breaks (DSBs) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). ARID1A is accumulated at DSBs after DNA damage and regulates chromatin loops formation by recruiting RAD21 and CTCF to DSBs. Simultaneously, ARID1A facilitates transcription silencing at DSBs in transcriptionally active chromatin by recruiting HDAC1 and RSF1 to control the distribution of activating histone marks, chromatin accessibility, and eviction of RNAPII. ARID1A depletion resulted in enhanced accumulation of micronuclei, activation of cGAS-STING pathway, and an increased expression of immunomodulatory cytokines upon ionizing radiation. Furthermore, low ARID1A expression in cancer patients receiving radiotherapy was associated with higher infiltration of several immune cells. The high mutation rate of ARID1A in various cancer types highlights its clinical relevance as a promising biomarker that correlates with the level of immune regulatory cytokines and estimates the levels of tumor-infiltrating immune cells, which can predict the response to the combination of radio- and immunotherapy.


Asunto(s)
Cromatina , Reparación del ADN , Proteínas de Unión al ADN , Inmunidad , Factores de Transcripción , Humanos , Línea Celular Tumoral , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Recombinación Homóloga/genética , Inmunidad/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/inmunología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transactivadores , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(33): e2307287120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552759

RESUMEN

The nucleosome remodeling and deacetylase (NuRD) complex modifies nucleosome positioning and chromatin compaction to regulate gene expression. The methyl-CpG-binding domain proteins 2 and 3 (MBD2 and MBD3) play a critical role in complex formation; however, the molecular details of how they interact with other NuRD components have yet to be fully elucidated. We previously showed that an intrinsically disordered region (IDR) of MBD2 is necessary and sufficient to bind to the histone deacetylase core of NuRD. Building on that work, we have measured the inherent structural propensity of the MBD2-IDR using solvent and site-specific paramagnetic relaxation enhancement measurements. We then used the AlphaFold2 machine learning software to generate a model of the complex between MBD2 and the histone deacetylase core of NuRD. This model is remarkably consistent with our previous studies, including the current paramagnetic relaxation enhancement data. The latter suggests that the free MBD2-IDR samples conformations similar to the bound structure. We tested this model of the complex extensively by mutating key contact residues and measuring binding using an intracellular bioluminescent resonance energy transfer assay. Furthermore, we identified protein contacts that, when mutated, disrupted gene silencing by NuRD in a cell model of fetal hemoglobin regulation. Hence, this work provides insights into the formation of NuRD and highlights critical binding pockets that may be targeted to block gene silencing for therapy. Importantly, we show that AlphaFold2 can generate a credible model of a large complex that involves an IDR that folds upon binding.


Asunto(s)
Histona Desacetilasas , Nucleosomas , Histona Desacetilasas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Silenciador del Gen , Cromatina , Histona Desacetilasa 1/genética
6.
FASEB J ; 38(12): e23736, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38865202

RESUMEN

Subclinical hypothyroidism (SCH) in pregnancy is the most common form of thyroid dysfunction in pregnancy, which can affect fetal nervous system development and increase the risk of neurodevelopmental disorders after birth. However, the mechanism of the effect of maternal subclinical hypothyroidism on fetal brain development and behavioral phenotypes is still unclear and requires further study. In this study, we constructed a mouse model of maternal subclinical hypothyroidism by exposing dams to drinking water containing 50 ppm propylthiouracil (PTU) during pregnancy and found that its offspring were accompanied by severe cognitive deficits by behavioral testing. Mechanistically, gestational SCH resulted in the upregulation of protein expression and activity of HDAC1/2/3 in the hippocampus of the offspring. ChIP analysis revealed that H3K9ac on the neurogranin (Ng) promoter was reduced in the hippocampus of the offspring of SCH, with a significant reduction in Ng protein, leading to reduced expression levels of synaptic plasticity markers PSD95 (a membrane-associated protein in the postsynaptic density) and SYN (synaptophysin, a specific marker for presynaptic terminals), and impaired synaptic plasticity. In addition, administration of MS-275 (an HDAC1/2/3-specific inhibitor) to SCH offspring alleviated impaired synaptic plasticity and cognitive dysfunction in offspring. Thus, our study suggests that maternal subclinical hypothyroidism may mediate offspring cognitive dysfunction through the HDAC1/2/3-H3K9ac-Ng pathway. Our study contributes to the understanding of the signaling mechanisms underlying maternal subclinical hypothyroidism-mediated cognitive impairment in the offspring.


Asunto(s)
Disfunción Cognitiva , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Hipotiroidismo , Neurogranina , Efectos Tardíos de la Exposición Prenatal , Animales , Neurogranina/metabolismo , Neurogranina/genética , Hipotiroidismo/metabolismo , Femenino , Embarazo , Ratones , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/genética , Regulación hacia Abajo , Hipocampo/metabolismo , Masculino , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Ratones Endogámicos C57BL , Plasticidad Neuronal
7.
PLoS Genet ; 18(8): e1010376, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35994477

RESUMEN

The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.


Asunto(s)
Histona Desacetilasa 1 , Inhibidores de Histona Desacetilasas , Acetilación , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(37): e2123451119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067301

RESUMEN

Filaggrin (FLG), an essential structural protein for skin barrier function, is down-regulated under chronic inflammatory conditions, leading to disruption of the skin barrier. However, the detailed molecular mechanisms of how FLG changes in the context of chronic inflammation are poorly understood. Here, we identified the molecular mechanisms by which inflammatory cytokines inhibit FLG expression in the skin. We found that the AP1 response element within the -343/+25 of the FLG promoter was necessary for TNFα + IFNγ-induced down-regulation of FLG promoter activity. Using DNA affinity precipitation assay, we observed that AP1 subunit composition binding to the FLG promoter was altered from c-FOS:c-JUN (at the early time) to FRA1:c-JUN (at the late time) in response to TNFα + IFNγ stimulation. Knockdown of FRA1 or c-JUN abrogated TNFα + IFNγ-induced FLG suppression. Histone deacetylase (HDAC) 1 interacted with FRA1:c-JUN under TNFα + IFNγ stimulation. Knockdown of HDAC1 abrogated the inhibitory effect of TNFα + IFNγ on FLG expression. The altered expression of FLG, FRA1, c-JUN, and HDAC1 was confirmed in mouse models of 2,4-dinitrochlorobenzene-induced atopic dermatitis and imiquimod-induced psoriasis. Thus, the current study demonstrates that TNFα + IFNγ stimulation suppresses FLG expression by promoting the FRA1:c-JUN:HDAC1 complex. This study provides insight into future therapeutic strategies targeting the FRA1:c-JUN:HDAC1 complex to restore impaired FLG expression in chronic skin inflammation.


Asunto(s)
Proteínas Filagrina , Histona Desacetilasa 1 , Queratinocitos , Proteínas Proto-Oncogénicas c-fos , Proteínas Proto-Oncogénicas c-jun , Animales , Enfermedad Crónica , Dermatitis/genética , Dermatitis/metabolismo , Regulación hacia Abajo , Proteínas Filagrina/genética , Proteínas Filagrina/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Interferón gamma/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
9.
Mol Cancer ; 23(1): 85, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678233

RESUMEN

Nuclear condensates have been shown to regulate cell fate control, but its role in oncogenic transformation remains largely unknown. Here we show acquisition of oncogenic potential by nuclear condensate remodeling. The proto-oncogene SS18 and its oncogenic fusion SS18-SSX1 can both form condensates, but with drastically different properties and impact on 3D genome architecture. The oncogenic condensates, not wild type ones, readily exclude HDAC1 and 2 complexes, thus, allowing aberrant accumulation of H3K27ac on chromatin loci, leading to oncogenic expression of key target genes. These results provide the first case for condensate remodeling as a transforming event to generate oncogene and such condensates can be targeted for therapy. One sentence summary: Expulsion of HDACs complexes leads to oncogenic transformation.


Asunto(s)
Histona Desacetilasa 1 , Histona Desacetilasa 2 , Proto-Oncogenes Mas , Humanos , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Histonas/metabolismo , Animales
10.
Crit Rev Eukaryot Gene Expr ; 34(4): 45-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505872

RESUMEN

HDAC1 functions as an oncogene in multi-type cancers. This study aimed to investigate the roles of histone deacetylase 1 (HDAC1) in cervical cancer (CC). mRNA expression was determined using reverse transcription quantitative polymerase chain reaction. The protein-protein complexes was analyzed using co-immunoprecipitation assay. The binding sites between NRF2 and NEU1 were confirmed by chromatin immunoprecipitation assay. Cell viability was detected by CCK-8. Cell proliferation was measured using CCK-8 and colony formation assays. Cell migrative and invasive ability were determined using transwell assay. We found that HDAC1 was upregulated in CC patients and cells. Trichostatin A (TSA) treatment decreased the number of colonies and migrated and invaded cells. Moreover, HDAC1 interacted with NRF2 to downregulate NEU1 expression. NEU1 knockdown attenuated the effects of TSA and enhanced the aggressiveness of CC cells. In conclusion, HDAC1 functions as an oncogene in CC. Targeting HDAC1 may be an alternative strategy for CC.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Regulación hacia Abajo , Neoplasias del Cuello Uterino/genética , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sincalida/genética , Sincalida/metabolismo , Neuraminidasa/genética , Neuraminidasa/metabolismo
11.
Exp Cell Res ; 426(1): 113555, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36921705

RESUMEN

Pulmonary vascular remodeling caused by the excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) is the hallmark feature of pulmonary arterial hypertension (PAH). Eukaryotic initiation factor 3 subunit A (EIF3A) exhibited proliferative activity in multiple cell types. The present study investigated the role of EIF3A in the progression of PAH. A monocrotaline (MCT)-induced PAH rat model was constructed, and adeno-associated virus type 1 (AAV1) carrying EIF3A shRNA was intratracheally delivered to PAH rats to block EIF3A expression. PASMCs were isolated from rats and treated with PDGF-BB to simulate PASMC proliferation, and shRNA for EIF3 was conducted to investigate the mechanism behind the role of EIF3A in PASMC function in vitro. EIF3A expression was upregulated in pulmonary arteries, and EIF3A inhibition effectively improved pulmonary hypertension and right ventricular hypertrophy and suppressed MCT-induced vascular remodeling in vivo. In addition, we found that genetic knockdown of EIF3A reduced PDGF-triggered proliferation and arrested cell cycle, accompanied by downregulated proliferation-related protein expression in PASMCs. Mechanistically, the histone deacetylase 1 (HDAC1)-mediated PTEN/PI3K/AKT pathway was recognized as a primary mechanism in PAH progression. Silencing EIF3A decreased HDAC1 expression, and further inhibited the excessive proliferation of PASMCs by increasing the phosphatase and tension homolog (PTEN) expression and suppressing the AKT phosphorylation. Notably, HDAC1 expression reversed the effect of silencing EIF3A on PAH and PTEN/PI3K/AKT pathway. Collectively, silencing EIF3A improved PAH by decreasing PASMC proliferation through the HDAC1-mediated PTEN/PI3K/AKT pathway. These findings suggest that targeting EIF3A may represent a potential approach for the treatment of PAH.


Asunto(s)
Factor 3 de Iniciación Eucariótica , Hipertensión Arterial Pulmonar , Animales , Ratas , Proliferación Celular/genética , Eucariontes/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Miocitos del Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/metabolismo , ARN Interferente Pequeño/metabolismo , Remodelación Vascular , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo
12.
Mol Cell ; 63(6): 927-38, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27635759

RESUMEN

Acetylation of histones and transcription-related factors is known to exert epigenetic and transcriptional control of gene expression. Here we report that histone acetyltransferases (HATs) and histone deacetylases (HDACs) also regulate gene expression at the posttranscriptional level by controlling poly(A) RNA stability. Inhibition of HDAC1 and HDAC2 induces massive and widespread degradation of normally stable poly(A) RNA in mammalian and Drosophila cells. Acetylation-induced RNA decay depends on the HATs p300 and CBP, which acetylate the exoribonuclease CAF1a, a catalytic subunit of the CCR4-CAF1-NOT deadenlyase complex and thereby contribute to accelerating poly(A) RNA degradation. Taking adipocyte differentiation as a model, we observe global stabilization of poly(A) RNA during differentiation, concomitant with loss of CBP/p300 expression. Our study uncovers reversible acetylation as a fundamental switch by which HATs and HDACs control the overall turnover of poly(A) RNA.


Asunto(s)
Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Poli A/genética , ARN Mensajero/genética , Factores de Transcripción p300-CBP/genética , Células 3T3-L1 , Acetilación , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Humanos , Ratones , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Poli A/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/metabolismo
13.
Biochem J ; 480(20): 1675-1691, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815456

RESUMEN

Although Microrchidia 2 (MORC2) is widely overexpressed in human malignancies and linked to cancer cell proliferation, metabolism, and metastasis, the mechanism of action of MORC2 in cancer cell migration and invasion is yet undeciphered. Here, we identified for the first time that MORC2, a chromatin remodeler, regulates E-cadherin expression and, subsequently regulates breast cancer cell migration and invasion. We observed a negative correlation between the expression levels of MORC2 and E-cadherin in breast cancer. Furthermore, the overexpression of MORC2 resulted in decreased expression levels of E-cadherin. In addition, co-immunoprecipitation and chromatin immunoprecipitation assays revealed that MORC2 interacts with HDAC1 and gets recruited onto the E-cadherin promoter to inhibit its transcription, thereby suppress its expression. Consequently, knockdown of HDAC1 in MORC2-overexpressing cells led to reduced cancer cell migration and invasion. Interestingly, we noticed that MORC2-regulated glucose metabolism via c-Myc, and LDHA, also modulates the expression of E-cadherin. Collectively, these results demonstrate for the first time a mechanistic role for MORC2 as an upstream regulator of E-cadherin expression and its associated functions in breast cancer.


Asunto(s)
Neoplasias de la Mama , Histona Desacetilasa 1 , Humanos , Femenino , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Línea Celular Tumoral , Cadherinas/genética , Cadherinas/metabolismo , Neoplasias de la Mama/genética , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/metabolismo
14.
Nucleic Acids Res ; 50(14): 7938-7958, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35871293

RESUMEN

Although originally described as transcriptional activator, SPI1/PU.1, a major player in haematopoiesis whose alterations are associated with haematological malignancies, has the ability to repress transcription. Here, we investigated the mechanisms underlying gene repression in the erythroid lineage, in which SPI1 exerts an oncogenic function by blocking differentiation. We show that SPI1 represses genes by binding active enhancers that are located in intergenic or gene body regions. HDAC1 acts as a cooperative mediator of SPI1-induced transcriptional repression by deacetylating SPI1-bound enhancers in a subset of genes, including those involved in erythroid differentiation. Enhancer deacetylation impacts on promoter acetylation, chromatin accessibility and RNA pol II occupancy. In addition to the activities of HDAC1, polycomb repressive complex 2 (PRC2) reinforces gene repression by depositing H3K27me3 at promoter sequences when SPI1 is located at enhancer sequences. Moreover, our study identified a synergistic relationship between PRC2 and HDAC1 complexes in mediating the transcriptional repression activity of SPI1, ultimately inducing synergistic adverse effects on leukaemic cell survival. Our results highlight the importance of the mechanism underlying transcriptional repression in leukemic cells, involving complex functional connections between SPI1 and the epigenetic regulators PRC2 and HDAC1.


Asunto(s)
Histona Desacetilasa 1 , Leucemia Eritroblástica Aguda , Complejo Represivo Polycomb 2 , Proteínas Proto-Oncogénicas , Transactivadores , Acetilación , Animales , Cromatina/genética , Histona Desacetilasa 1/genética , Leucemia Eritroblástica Aguda/genética , Ratones , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética
15.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34815344

RESUMEN

Carriers of heterozygous germline BAP1 mutations (BAP1+/-) are affected by the "BAP1 cancer syndrome." Although they can develop almost any cancer type, they are unusually susceptible to asbestos carcinogenesis and mesothelioma. Here we investigate why among all carcinogens, BAP1 mutations cooperate with asbestos. Asbestos carcinogenesis and mesothelioma have been linked to a chronic inflammatory process promoted by the extracellular release of the high-mobility group box 1 protein (HMGB1). We report that BAP1+/- cells secrete increased amounts of HMGB1, and that BAP1+/- carriers have detectable serum levels of acetylated HMGB1 that further increase when they develop mesothelioma. We linked these findings to our discovery that BAP1 forms a trimeric protein complex with HMGB1 and with histone deacetylase 1 (HDAC1) that modulates HMGB1 acetylation and its release. Reduced BAP1 levels caused increased ubiquitylation and degradation of HDAC1, leading to increased acetylation of HMGB1 and its active secretion that in turn promoted mesothelial cell transformation.


Asunto(s)
Amianto , Proteína HMGB1/química , Histona Desacetilasa 1/química , Proteínas Supresoras de Tumor/química , Ubiquitina Tiolesterasa/química , Animales , Biomarcadores de Tumor/metabolismo , Carcinogénesis , Núcleo Celular/metabolismo , Femenino , Interacción Gen-Ambiente , Mutación de Línea Germinal , Proteína HMGB1/genética , Heterocigoto , Histona Desacetilasa 1/genética , Incidencia , Inflamación , Masculino , Mesotelioma/metabolismo , Ratones , Mutación , Pronóstico , Unión Proteica , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/química , Ubiquitina Tiolesterasa/metabolismo
16.
Biochemistry ; 62(8): 1388-1393, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36972223

RESUMEN

Treatment of HeLa cells with the DNA damaging agent, bleomycin (BLM), results in the formation of a nonenzymatic 5-methylene-2-pyrrolone histone covalent modification on lysine residues (KMP). KMP is much more electrophilic than other N-acyllysine covalent modifications and post-translational modifications, including N-acetyllysine (KAc). Using histone peptides containing KMP, we show that this modification inhibits the class I histone deacetylase, HDAC1, by reacting with a conserved cysteine (C261) located near the active site. HDAC1 is inhibited by histone peptides whose corresponding N-acetylated sequences are known deacetylation substrates, but not one containing a scrambled sequence. The HDAC1 inhibitor, trichostatin A, competes with covalent modification by the KMP-containing peptides. HDAC1 is also covalently modified by a KMP-containing peptide in a complex milieu. These data indicate that peptides containing KMP are recognized by HDAC1 and are bound in the active site. The effects on HDAC1 indicate that KMP formation in cells may contribute to the biological effects of DNA damaging agents, such as BLM, that form this nonenzymatic covalent modification.


Asunto(s)
Daño del ADN , Histona Desacetilasa 1 , Histonas , Humanos , Acetilación , ADN/metabolismo , Células HeLa , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Histonas/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional
17.
J Biol Chem ; 298(11): 102578, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220390

RESUMEN

Modification of histones provides a dynamic mechanism to regulate chromatin structure and access to DNA. Histone acetylation, in particular, plays a prominent role in controlling the interaction between DNA, histones, and other chromatin-associated proteins. Defects in histone acetylation patterns interfere with normal gene expression and underlie a wide range of human diseases. Here, we utilize Xenopus egg extracts to investigate how changes in histone acetylation influence transcription of a defined gene construct. We show that inhibition of histone deacetylase 1 and 2 (HDAC1/2) specifically counteracts transcription suppression by preventing chromatin compaction and deacetylation of histone residues H4K5 and H4K8. Acetylation of these sites supports binding of the chromatin reader and transcription regulator BRD4. We also identify HDAC1 as the primary driver of transcription suppression and show that this activity is mediated through the Sin3 histone deacetylase complex. These findings highlight functional differences between HDAC1 and HDAC2, which are often considered to be functionally redundant, and provide additional molecular context for their activity.


Asunto(s)
Histonas , Proteínas Nucleares , Animales , Humanos , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Histonas/metabolismo , Xenopus laevis/metabolismo , Proteínas Nucleares/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Cromatina , Acetilación , ADN/metabolismo , Proteínas de Ciclo Celular/metabolismo
18.
Lab Invest ; 103(8): 100180, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37230466

RESUMEN

Hepatocellular carcinoma (HCC) remains a significant health burden globally due to its high prevalence and morbidity. C-terminal-binding protein 1 (CTBP1) is a transcriptional corepressor that modulates gene transcription by interacting with transcription factors or chromatin-modifying enzymes. High CTBP1 expression has been associated with the progression of various human cancers. In this study, bioinformatics analysis suggested the existence of a CTBP1/histone deacetylase 1 (HDAC1)/HDAC2 transcriptional complex that regulates the expression of methionine adenosyltransferase 1A (MAT1A), whose loss has been associated with ferroptosis suppression and HCC development. Thus, this study aims to investigate the interactions between the CTBP1/HDAC1/HDAC2 complex and MAT1A and their roles in HCC progression. First, high expression of CTBP1 was observed in HCC tissues and cells, where it promoted HCC cell proliferation and mobility while inhibiting cell apoptosis. CTBP1 interacted with HDAC1 and HDAC2 to suppress the MAT1A transcription, and silencing of either HDAC1 or HDAC2 or overexpression of MAT1A led to the inhibition of cancer cell malignancy. In addition, MAT1A overexpression resulted in increased S-adenosylmethionine levels, which promoted ferroptosis of HCC cells directly or indirectly by increasing CD8+ T-cell cytotoxicity and interferon-γ production. In vivo, MAT1A overexpression suppressed growth of CTBP1-induced xenograft tumors in mice while enhancing immune activity and inducing ferroptosis. However, treatment with ferrostatin-1, a ferroptosis inhibitor, blocked the tumor-suppressive effects of MAT1A. Collectively, this study reveals that the CTBP1/HDAC1/HDAC2 complex-induced MAT1A suppression is liked to immune escape and reduced ferroptosis of HCC cells.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Factores de Transcripción , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Histona Desacetilasa 2/metabolismo
19.
EMBO J ; 38(14): e101564, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31304633

RESUMEN

DOT1L methylates histone H3K79 and is aberrantly regulated in MLL-rearranged leukemia. Inhibitors have been developed to target DOT1L activity in leukemia, but cellular mechanisms that regulate DOT1L are still poorly understood. We have identified the histone deacetylase Rpd3 as a negative regulator of budding yeast Dot1. At its target genes, the transcriptional repressor Rpd3 restricts H3K79 methylation, explaining the absence of H3K79me3 at a subset of genes in the yeast genome. Similar to the crosstalk in yeast, inactivation of the murine Rpd3 homolog HDAC1 in thymocytes led to an increase in H3K79 methylation. Thymic lymphomas that arise upon genetic deletion of Hdac1 retained the increased H3K79 methylation and were sensitive to reduced DOT1L dosage. Furthermore, cell lines derived from Hdac1Δ/Δ thymic lymphomas were sensitive to a DOT1L inhibitor, which induced apoptosis. In summary, we identified an evolutionarily conserved crosstalk between HDAC1 and DOT1L with impact in murine thymic lymphoma development.


Asunto(s)
Histona Desacetilasa 1/genética , Histona Desacetilasa 2/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Linfoma/metabolismo , Neoplasias del Timo/metabolismo , Acetilación , Animales , Línea Celular Tumoral , Eliminación de Gen , Histona Desacetilasas/genética , Humanos , Linfoma/genética , Metilación , Ratones , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Neoplasias del Timo/genética
20.
EMBO J ; 38(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30918008

RESUMEN

Long noncoding RNAs (lncRNAs) can regulate target gene expression by acting in cis (locally) or in trans (non-locally). Here, we performed genome-wide expression analysis of Toll-like receptor (TLR)-stimulated human macrophages to identify pairs of cis-acting lncRNAs and protein-coding genes involved in innate immunity. A total of 229 gene pairs were identified, many of which were commonly regulated by signaling through multiple TLRs and were involved in the cytokine responses to infection by group B Streptococcus We focused on elucidating the function of one lncRNA, named lnc-MARCKS or ROCKI (Regulator of Cytokines and Inflammation), which was induced by multiple TLR stimuli and acted as a master regulator of inflammatory responses. ROCKI interacted with APEX1 (apurinic/apyrimidinic endodeoxyribonuclease 1) to form a ribonucleoprotein complex at the MARCKS promoter. In turn, ROCKI-APEX1 recruited the histone deacetylase HDAC1, which removed the H3K27ac modification from the promoter, thus reducing MARCKS transcription and subsequent Ca2+ signaling and inflammatory gene expression. Finally, genetic variants affecting ROCKI expression were linked to a reduced risk of certain inflammatory and infectious disease in humans, including inflammatory bowel disease and tuberculosis. Collectively, these data highlight the importance of cis-acting lncRNAs in TLR signaling, innate immunity, and pathophysiological inflammation.


Asunto(s)
Regulación de la Expresión Génica , Inmunidad Innata/inmunología , Inflamación/inmunología , Macrófagos/inmunología , ARN Largo no Codificante/metabolismo , Infecciones Estreptocócicas/microbiología , Receptores Toll-Like/metabolismo , Células Cultivadas , Citocinas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Genoma Humano , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Humanos , Inflamación/genética , Inflamación/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/genética , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Infecciones Estreptocócicas/inmunología , Streptococcus agalactiae/aislamiento & purificación , Receptores Toll-Like/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA