Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.024
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 625(7993): 79-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38093013

RESUMEN

Raised peatlands, or bogs, are gently mounded landforms that are composed entirely of organic matter1-4 and store the most carbon per area of any terrestrial ecosystem5. The shapes of bogs are critically important because their domed morphology4,6,7 accounts for much of the carbon that bogs store and determines how they will respond to interventions8,9 to stop greenhouse gas emissions and fires after anthropogenic drainage10-13. However, a general theory to infer the morphology of bogs is still lacking4,6,7. Here we show that an equation based on the processes universal to bogs explains their morphology across biomes, from Alaska, through the tropics, to New Zealand. In contrast to earlier models of bog morphology that attempted to describe only long-term equilibrium shapes4,6,7 and were, therefore, inapplicable to most bogs14-16, our approach makes no such assumption and makes it possible to infer full shapes of bogs from a sample of elevations, such as a single elevation transect. Our findings provide a foundation for quantitative inference about the morphology, hydrology and carbon storage of bogs through Earth's history, as well as a basis for planning natural climate solutions by rewetting damaged bogs around the world.


Asunto(s)
Secuestro de Carbono , Carbono , Suelo , Humedales , Altitud , Carbono/metabolismo , Clima , Mapeo Geográfico , Calentamiento Global/prevención & control , Gases de Efecto Invernadero/metabolismo , Hidrología , Incendios Forestales
2.
Nature ; 631(8021): 577-582, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961286

RESUMEN

Current hypotheses of early tetrapod evolution posit close ecological and biogeographic ties to the extensive coal-producing wetlands of the Carboniferous palaeoequator with rapid replacement of archaic tetrapod groups by relatives of modern amniotes and lissamphibians in the late Carboniferous (about 307 million years ago). These hypotheses draw on a tetrapod fossil record that is almost entirely restricted to palaeoequatorial Pangea (Laurussia)1,2. Here we describe a new giant stem tetrapod, Gaiasia jennyae, from high-palaeolatitude (about 55° S) early Permian-aged (about 280 million years ago) deposits in Namibia that challenges this scenario. Gaiasia is represented by several large, semi-articulated skeletons characterized by a weakly ossified skull with a loosely articulated palate dominated by a broad diamond-shaped parasphenoid, a posteriorly projecting occiput, and enlarged, interlocking dentary and coronoid fangs. Phylogenetic analysis resolves Gaiasia within the tetrapod stem group as the sister taxon of the Carboniferous Colosteidae from Euramerica. Gaiasia is larger than all previously described digited stem tetrapods and provides evidence that continental tetrapods were well established in the cold-temperate latitudes of Gondwana during the final phases of the Carboniferous-Permian deglaciation. This points to a more global distribution of continental tetrapods during the Carboniferous-Permian transition and indicates that previous hypotheses of global tetrapod faunal turnover and dispersal at this time2,3 must be reconsidered.


Asunto(s)
Fósiles , Filogenia , Animales , Namibia , Cráneo/anatomía & histología , Conducta Predatoria , Historia Antigua , Cubierta de Hielo , Humedales
3.
Nature ; 626(7997): 111-118, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297171

RESUMEN

The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabs and marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of sea otter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.


Asunto(s)
Braquiuros , Estuarios , Nutrias , Conducta Predatoria , Erosión del Suelo , Humedales , Animales , Biomasa , Braquiuros/fisiología , Nutrias/fisiología , Estados Unidos , Plantas , Elevación del Nivel del Mar , Olas de Marea , Nutrientes/metabolismo , Cadena Alimentaria
4.
Nature ; 614(7947): 281-286, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755174

RESUMEN

Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9-3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16-23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.


Asunto(s)
Recursos Naturales , Análisis Espacio-Temporal , Humedales , Humanos , Biodiversidad , China , Europa (Continente) , Recursos Naturales/provisión & distribución , Estados Unidos , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI
5.
Nature ; 621(7977): 112-119, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648850

RESUMEN

Several coastal ecosystems-most notably mangroves and tidal marshes-exhibit biogenic feedbacks that are facilitating adjustment to relative sea-level rise (RSLR), including the sequestration of carbon and the trapping of mineral sediment1. The stability of reef-top habitats under RSLR is similarly linked to reef-derived sediment accumulation and the vertical accretion of protective coral reefs2. The persistence of these ecosystems under high rates of RSLR is contested3. Here we show that the probability of vertical adjustment to RSLR inferred from palaeo-stratigraphic observations aligns with contemporary in situ survey measurements. A deficit between tidal marsh and mangrove adjustment and RSLR is likely at 4 mm yr-1 and highly likely at 7 mm yr-1 of RSLR. As rates of RSLR exceed 7 mm yr-1, the probability that reef islands destabilize through increased shoreline erosion and wave over-topping increases. Increased global warming from 1.5 °C to 2.0 °C would double the area of mapped tidal marsh exposed to 4 mm yr-1 of RSLR by between 2080 and 2100. With 3 °C of warming, nearly all the world's mangrove forests and coral reef islands and almost 40% of mapped tidal marshes are estimated to be exposed to RSLR of at least 7 mm yr-1. Meeting the Paris agreement targets would minimize disruption to coastal ecosystems.


Asunto(s)
Calentamiento Global , Temperatura , Humedales , Avicennia/fisiología , Secuestro de Carbono , Arrecifes de Coral , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Animales
6.
Nature ; 621(7979): 530-535, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587344

RESUMEN

Methane (CH4) is a potent greenhouse gas and its concentrations have tripled in the atmosphere since the industrial revolution. There is evidence that global warming has increased CH4 emissions from freshwater ecosystems1,2, providing positive feedback to the global climate. Yet for rivers and streams, the controls and the magnitude of CH4 emissions remain highly uncertain3,4. Here we report a spatially explicit global estimate of CH4 emissions from running waters, accounting for 27.9 (16.7-39.7) Tg CH4 per year and roughly equal in magnitude to those of other freshwater systems5,6. Riverine CH4 emissions are not strongly temperature dependent, with low average activation energy (EM = 0.14 eV) compared with that of lakes and wetlands (EM = 0.96 eV)1. By contrast, global patterns of emissions are characterized by large fluxes in high- and low-latitude settings as well as in human-dominated environments. These patterns are explained by edaphic and climate features that are linked to anoxia in and near fluvial habitats, including a high supply of organic matter and water saturation in hydrologically connected soils. Our results highlight the importance of land-water connections in regulating CH4 supply to running waters, which is vulnerable not only to direct human modifications but also to several climate change responses on land.


Asunto(s)
Ecosistema , Metano , Ríos , Lagos/química , Metano/análisis , Metano/metabolismo , Ríos/química , Humedales , Calentamiento Global/estadística & datos numéricos , Actividades Humanas
7.
Nature ; 612(7941): 701-706, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450979

RESUMEN

Salt marshes provide ecosystem services such as carbon sequestration1, coastal protection2, sea-level-rise (SLR) adaptation3 and recreation4. SLR5, storm events6, drainage7 and mangrove encroachment8 are known drivers of salt marsh loss. However, the global magnitude and location of changes in salt marsh extent remains uncertain. Here we conduct a global and systematic change analysis of Landsat satellite imagery from the years 2000-2019 to quantify the loss, gain and recovery of salt marsh ecosystems and then estimate the impact of these changes on blue carbon stocks. We show a net salt marsh loss globally, equivalent to an area double the size of Singapore (719 km2), with a loss rate of 0.28% year-1 from 2000 to 2019. Net global losses resulted in 16.3 (0.4-33.2, 90% confidence interval) Tg CO2e year-1 emissions from 2000 to 2019 and a 0.045 (-0.14-0.115) Tg CO2e year-1 reduction of carbon burial. Russia and the USA accounted for 64% of salt marsh losses, driven by hurricanes and coastal erosion. Our findings highlight the vulnerability of salt marsh systems to climatic changes such as SLR and intensification of storms and cyclones.


Asunto(s)
Secuestro de Carbono , Carbono , Mapeo Geográfico , Internacionalidad , Humedales , Carbono/análisis , Elevación del Nivel del Mar , Imágenes Satelitales , Estados Unidos , Federación de Rusia , Tormentas Ciclónicas , Erosión del Suelo
8.
Nature ; 612(7940): 477-482, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517714

RESUMEN

Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts per billion per year in 2020 despite a probable decrease in anthropogenic methane emissions during COVID-19 lockdowns1. Here we quantify changes in methane sources and in its atmospheric sink in 2020 compared with 2019. We find that, globally, total anthropogenic emissions decreased by 1.2 ± 0.1 teragrams of methane per year (Tg CH4 yr-1), fire emissions decreased by 6.5 ± 0.1 Tg CH4 yr-1 and wetland emissions increased by 6.0 ± 2.3 Tg CH4 yr-1. Tropospheric OH concentration decreased by 1.6 ± 0.2 per cent relative to 2019, mainly as a result of lower anthropogenic nitrogen oxide (NOx) emissions and associated lower free tropospheric ozone during pandemic lockdowns2. From atmospheric inversions, we also infer that global net emissions increased by 6.9 ± 2.1 Tg CH4 yr-1 in 2020 relative to 2019, and global methane removal from reaction with OH decreased by 7.5 ± 0.8 Tg CH4 yr-1. Therefore, we attribute the methane growth rate anomaly in 2020 relative to 2019 to lower OH sink (53 ± 10 per cent) and higher natural emissions (47 ± 16 per cent), mostly from wetlands. In line with previous findings3,4, our results imply that wetland methane emissions are sensitive to a warmer and wetter climate and could act as a positive feedback mechanism in the future. Our study also suggests that nitrogen oxide emission trends need to be taken into account when implementing the global anthropogenic methane emissions reduction pledge5.


Asunto(s)
Atmósfera , Metano , Humedales , Humanos , Control de Enfermedades Transmisibles/estadística & datos numéricos , COVID-19/epidemiología , Metano/análisis , Ozono/análisis , Atmósfera/química , Actividades Humanas/estadística & datos numéricos , Factores de Tiempo , Historia del Siglo XXI , Temperatura , Humedad , Óxidos de Nitrógeno/análisis
9.
Nature ; 600(7887): 86-92, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34671161

RESUMEN

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Asunto(s)
Biota , ADN Antiguo/análisis , ADN Ambiental/análisis , Metagenómica , Animales , Regiones Árticas , Cambio Climático/historia , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Extinción Biológica , Sedimentos Geológicos , Pradera , Groenlandia , Haplotipos/genética , Herbivoria/genética , Historia Antigua , Humanos , Lagos , Mamuts , Mitocondrias/genética , Perisodáctilos , Hielos Perennes , Filogenia , Plantas/genética , Dinámica Poblacional , Lluvia , Siberia , Análisis Espacio-Temporal , Humedales
10.
Proc Natl Acad Sci U S A ; 121(25): e2314036121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857391

RESUMEN

Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.


Asunto(s)
Biomasa , Ecosistema , Hielos Perennes , Tibet , Humedales , Plantas/metabolismo , Cambio Climático , Temperatura , Ciclo del Carbono , Desarrollo de la Planta/fisiología , Suelo/química , Pradera
11.
Nature ; 588(7839): 625-630, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33328640

RESUMEN

Growing populations and agricultural intensification have led to raised riverine nitrogen (N) loads, widespread oxygen depletion in coastal zones (coastal hypoxia)1 and increases in the incidence of algal blooms.Although recent work has suggested that individual wetlands have the potential to improve water quality2-9, little is known about the current magnitude of wetland N removal at the landscape scale. Here we use National Wetland Inventory data and 5-kilometre grid-scale estimates of N inputs and outputs to demonstrate that current N removal by US wetlands (about 860 ± 160 kilotonnes of nitrogen per year) is limited by a spatial disconnect between high-density wetland areas and N hotspots. Our model simulations suggest that a spatially targeted increase in US wetland area by 10 per cent (5.1 million hectares) would double wetland N removal. This increase would provide an estimated 54 per cent decrease in N loading in nitrate-affected watersheds such as the Mississippi River Basin. The costs of this increase in area would be approximately 3.3 billion US dollars annually across the USA-nearly twice the cost of wetland restoration on non-agricultural, undeveloped land-but would provide approximately 40 times more N removal. These results suggest that water quality improvements, as well as other types of ecosystem services such as flood control and fish and wildlife habitat, should be considered when creating policy regarding wetland restoration and protection.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Nitratos/aislamiento & purificación , Nitratos/metabolismo , Humedales , Agricultura , Animales , Conservación de los Recursos Naturales/economía , Política Ambiental/economía , Política Ambiental/tendencias , Restauración y Remediación Ambiental/economía , Restauración y Remediación Ambiental/métodos , Eutrofización , Inundaciones/prevención & control , Mapeo Geográfico , Ríos , Estados Unidos , Calidad del Agua
12.
Proc Natl Acad Sci U S A ; 120(42): e2306870120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812714

RESUMEN

The Classic Maya (c. 250 to 900 CE) in the tropical southern lowlands of Central America dealt with water scarcity during annual dry seasons and periods of climate instability via sophisticated urban reservoir systems they relied on for over a thousand years. Surface water is limited because typically rain percolates through the karstic terrain. I posit that Maya reservoirs functioned as do constructed wetlands (CWs) at present. Still-water systems like CWs and Maya reservoirs can become stagnant and nonpotable due to the build-up of nutrients that promote algal growth. Stagnant waters also serve as breeding grounds for mosquitoes that spread endemic diseases. CWs keep water clean via certain aquatic plants since all plants uptake nutrients (e.g., nitrogen, phosphorus) and decomposing plant matter supports microbial biofilms that break down nutrients. CWs also support diverse zooplankton that prey on pathogens and bacteria that assist to denitrify water. CWs do not require the use of chemicals or fossil fuels and after the initial labor-intensive output become self-cleaning and self-sufficient with some maintenance. I posit that the Maya used a diverse array of aquatic plants and other biota to keep water clean in the same manner as do CWs, which I demonstrate using evidence from excavations and settlement maps, sediment cores and current wetlands, and the iconographic and hieroglyphic records. The next step is to combine what we know about ancient Maya reservoirs in conjunction with what is currently known about CWs to better address future water needs.


Asunto(s)
Agua , Humedales , Fitomejoramiento , Clima , Lluvia , Nitrógeno
13.
Proc Natl Acad Sci U S A ; 120(3): e2216024120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623188

RESUMEN

Seagrasses provide multiple ecosystem services and act as intense carbon sinks in coastal regions around the globe but are threatened by multiple anthropogenic pressures, leading to enhanced seagrass mortality that reflects in the spatial self-organization of the meadows. Spontaneous spatial vegetation patterns appear in such different ecosystems as drylands, peatlands, salt marshes, or seagrass meadows, and the mechanisms behind this phenomenon are still an open question in many cases. Here, we report on the formation of vegetation traveling pulses creating complex spatiotemporal patterns and rings in Mediterranean seagrass meadows. We show that these structures emerge due to an excitable behavior resulting from the coupled dynamics of vegetation and porewater hydrogen sulfide, toxic to seagrass, in the sediment. The resulting spatiotemporal patterns resemble those formed in other physical, chemical, and biological excitable media, but on a much larger scale. Based on theory, we derive a model that reproduces the observed seascapes and predicts the annihilation of these circular structures as they collide, a distinctive feature of excitable pulses. We show also that the patterns in field images and the empirically resolved radial profiles of vegetation density and sediment sulfide concentration across the structures are consistent with predictions from the theoretical model, which shows these structures to have diagnostic value, acting as a harbinger of the terminal state of the seagrass meadows prior to their collapse.


Asunto(s)
Ecosistema , Modelos Teóricos , Humedales , Secuestro de Carbono , Sulfuros
14.
Proc Natl Acad Sci U S A ; 120(14): e2209637120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996109

RESUMEN

The distribution of mangrove intra-specific biodiversity can be structured by historical demographic processes that enhance or limit effective population sizes. Oceanographic connectivity (OC) may further structure intra-specific biodiversity by preserving or diluting the genetic signatures of historical changes. Despite its relevance for biogeography and evolution, the role of oceanographic connectivity in structuring the distribution of mangrove's genetic diversity has not been addressed at global scale. Here we ask whether connectivity mediated by ocean currents explains the intra-specific diversity of mangroves. A comprehensive dataset of population genetic differentiation was compiled from the literature. Multigenerational connectivity and population centrality indices were estimated with biophysical modeling coupled with network analyses. The variability explained in genetic differentiation was tested with competitive regression models built upon classical isolation-by-distance (IBD) models considering geographic distance. We show that oceanographic connectivity can explain the genetic differentiation of mangrove populations regardless of the species, region, and genetic marker (significant regression models in 95% of cases, with an average R-square of 0.44 ± 0.23 and Person's correlation of 0.65 ± 0.17), systematically improving IBD models. Centrality indices, providing information on important stepping-stone sites between biogeographic regions, were also important in explaining differentiation (R-square improvement of 0.06 ± 0.07, up to 0.42). We further show that ocean currents produce skewed dispersal kernels for mangroves, highlighting the role of rare long-distance dispersal events responsible for historical settlements. Overall, we demonstrate the role of oceanographic connectivity in structuring mangrove intra-specific diversity. Our findings are critical for mangroves' biogeography and evolution, but also for management strategies considering climate change and genetic biodiversity conservation.


Asunto(s)
Bosques , Humedales , Humanos , Biodiversidad , Densidad de Población , Flujo Genético , Variación Genética
15.
PLoS Biol ; 20(10): e3001836, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36251664

RESUMEN

Mangroves have been converted and degraded for decades. Rates of loss have declined over the past decades, but achieving resilient coastlines requires both conservation and restoration. Here, we outline the challenges for the global restoration of mangroves and what actions could enhance restoration. Ambitious global targets for mangrove restoration, if successful, could deliver global benefits of carbon sequestration, fisheries production, biodiversity, and coastal protection. However, large-scale mangrove planting efforts have often failed, and smaller projects may not deliver landscape-scale benefits, even though they are more suited to community management. Solutions to achieving global targets include reducing risks of large projects and increasing the uptake and effectiveness of smaller projects. Sustainable mangrove restoration requires investment in capacity building in communities and institutions, and mechanisms to match restoration opportunities with prospective supporters and investors. Global reporting standards will support adaptive management and help fully understand and monitor the benefits of mangrove restoration.


Asunto(s)
Conservación de los Recursos Naturales , Humedales , Secuestro de Carbono , Ecosistema , Explotaciones Pesqueras , Estudios Prospectivos
16.
Nature ; 626(8001): 937, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383650
17.
Nature ; 627(8003): 458, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38467882
19.
Nature ; 567(7746): 91-95, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842636

RESUMEN

Coastal wetlands (mangrove, tidal marsh and seagrass) sustain the highest rates of carbon sequestration per unit area of all natural systems1,2, primarily because of their comparatively high productivity and preservation of organic carbon within sedimentary substrates3. Climate change and associated relative sea-level rise (RSLR) have been proposed to increase the rate of organic-carbon burial in coastal wetlands in the first half of the twenty-first century4, but these carbon-climate feedback effects have been modelled to diminish over time as wetlands are increasingly submerged and carbon stores become compromised by erosion4,5. Here we show that tidal marshes on coastlines that experienced rapid RSLR over the past few millennia (in the late Holocene, from about 4,200 years ago to the present) have on average 1.7 to 3.7 times higher soil carbon concentrations within 20 centimetres of the surface than those subject to a long period of sea-level stability. This disparity increases with depth, with soil carbon concentrations reduced by a factor of 4.9 to 9.1 at depths of 50 to 100 centimetres. We analyse the response of a wetland exposed to recent rapid RSLR following subsidence associated with pillar collapse in an underlying mine and demonstrate that the gain in carbon accumulation and elevation is proportional to the accommodation space (that is, the space available for mineral and organic material accumulation) created by RSLR. Our results suggest that coastal wetlands characteristic of tectonically stable coastlines have lower carbon storage owing to a lack of accommodation space and that carbon sequestration increases according to the vertical and lateral accommodation space6 created by RSLR. Such wetlands will provide long-term mitigating feedback effects that are relevant to global climate-carbon modelling.


Asunto(s)
Secuestro de Carbono , Carbono/metabolismo , Agua de Mar/análisis , Humedales , Carbono/análisis , Sedimentos Geológicos/química , Historia Antigua , Océanos y Mares
20.
Nature ; 575(7781): 185-189, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31659339

RESUMEN

Anatomically modern humans originated in Africa around 200 thousand years ago (ka)1-4. Although some of the oldest skeletal remains suggest an eastern African origin2, southern Africa is home to contemporary populations that represent the earliest branch of human genetic phylogeny5,6. Here we generate, to our knowledge, the largest resource for the poorly represented and deepest-rooting maternal L0 mitochondrial DNA branch (198 new mitogenomes for a total of 1,217 mitogenomes) from contemporary southern Africans and show the geographical isolation of L0d1'2, L0k and L0g KhoeSan descendants south of the Zambezi river in Africa. By establishing mitogenomic timelines, frequencies and dispersals, we show that the L0 lineage emerged within the residual Makgadikgadi-Okavango palaeo-wetland of southern Africa7, approximately 200 ka (95% confidence interval, 240-165 ka). Genetic divergence points to a sustained 70,000-year-long existence of the L0 lineage before an out-of-homeland northeast-southwest dispersal between 130 and 110 ka. Palaeo-climate proxy and model data suggest that increased humidity opened green corridors, first to the northeast then to the southwest. Subsequent drying of the homeland corresponds to a sustained effective population size (L0k), whereas wet-dry cycles and probable adaptation to marine foraging allowed the southwestern migrants to achieve population growth (L0d1'2), as supported by extensive south-coastal archaeological evidence8-10. Taken together, we propose a southern African origin of anatomically modern humans with sustained homeland occupation before the first migrations of people that appear to have been driven by regional climate changes.


Asunto(s)
Población Negra , Migración Humana/historia , Filogenia , Humedales , Población Negra/genética , Población Negra/historia , Clima , ADN Mitocondrial , Genoma Mitocondrial/genética , Haplotipos , Historia Antigua , Humanos , Densidad de Población , Lluvia , Estaciones del Año , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA