Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 393(2): 227-235, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25064185

RESUMEN

Muscle spindles are complex stretch-sensitive mechanoreceptors. They consist of specialized skeletal muscle fibers, called intrafusal fibers, which are innervated in the central (equatorial) region by afferent sensory axons and in both polar regions by efferent γ-motoneurons. We show that AChRs are concentrated at the γ-motoneuron endplate as well as in the equatorial region where they colocalize with the sensory nerve ending. In addition to the AChRs, the contact site between sensory nerve ending and intrafusal muscle fiber contains a high concentration of choline acetyltransferase, vesicular acetylcholine transporter and the AChR-associated protein rapsyn. Moreover, bassoon, a component of the presynaptic cytomatrix involved in synaptic vesicle exocytosis, is present in γ-motoneuron endplates but also in the sensory nerve terminal. Finally, we demonstrate that during postnatal development of the γ-motoneuron endplate, the AChR subunit stoichiometry changes from the γ-subunit-containing fetal AChRs to the ε-subunit-containing adult AChRs, similar and approximately in parallel to the postnatal subunit maturation at the neuromuscular junction. In contrast, despite the onset of ε-subunit expression during postnatal development the γ-subunit remains detectable in the equatorial region by subunit-specific antibodies as well as by analysis of muscle spindles from mice with genetically-labeled AChR γ-subunits. These results demonstrate an unusual maturation of the AChR subunit composition at the annulospiral endings and suggest that in addition to the recently described glutamatergic secretory system, the sensory nerve terminals are also specialized for cholinergic synaptic transmission, synaptic vesicle storage and exocytosis.


Asunto(s)
Desarrollo de Músculos , Husos Musculares/embriología , Receptores Colinérgicos/metabolismo , Sinapsis/metabolismo , Animales , Colina O-Acetiltransferasa/farmacocinética , Exocitosis/fisiología , Proteínas Fluorescentes Verdes , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Placa Motora/metabolismo , Neuronas Motoras gamma/fisiología , Proteínas Musculares/farmacocinética , Proteínas del Tejido Nervioso/farmacocinética , Unión Neuromuscular/fisiología , Transmisión Sináptica/fisiología , Proteínas de Transporte Vesicular de Acetilcolina/farmacocinética
2.
Nat Genet ; 20(1): 87-91, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9731539

RESUMEN

Muscle spindles are skeletal muscle sensory organs that provide axial and limb position information (proprioception) to the central nervous system. Spindles consist of encapsulated muscle fibers (intrafusal fibers) that are innervated by specialized motor and sensory axons. Although the molecular mechanisms involved in spindle ontogeny are poorly understood, the innervation of a subset of developing myotubes (type I) by peripheral sensory afferents (group Ia) is a critical event for inducing intrafusal fiber differentiation and subsequent spindle formation. The Egr family of zinc-finger transcription factors, whose members include Egr1 (NGFI-A), Egr2 (Krox-20), Egr3 and Egr4 (NGFI-C), are thought to regulate critical genetic programs involved in cellular growth and differentiation (refs 4-8, and W.G.T. et al., manuscript submitted). Mice deficient in Egr3 were generated by gene targeting and had gait ataxia, increased frequency of perinatal mortality, scoliosis, resting tremors and ptosis. Although extrafusal skeletal muscle fibers appeared normal, Egr3-deficient animals lacked muscle spindles, a finding that is consistent with their profound gait ataxia. Egr3 was highly expressed in developing muscle spindles, but not in Ia afferent neurons or their terminals during developmental periods that coincided with the induction of spindle morphogenesis by sensory afferent axons. These results indicate that type I myotubes are dependent upon Egr3-mediated transcription for proper spindle development.


Asunto(s)
Ataxia/genética , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica , Husos Musculares/anomalías , Propiocepción/genética , Factores de Transcripción/fisiología , Animales , Encéfalo/anomalías , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz , Ganglios Espinales/metabolismo , Inmunohistoquímica , Ratones , Ratones Noqueados , Husos Musculares/embriología , Husos Musculares/metabolismo , Neuronas Aferentes/metabolismo , Parvalbúminas/metabolismo , Escoliosis/genética , Médula Espinal/anomalías , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Cell Biol ; 169(2): 257-68, 2005 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-15837802

RESUMEN

Vertebrate muscle spindle stretch receptors are important for limb position sensation (proprioception) and stretch reflexes. The structurally complex stretch receptor arises from a single myotube, which is transformed into multiple intrafusal muscle fibers by sensory axon-dependent signal transduction that alters gene expression in the contacted myotubes. The sensory-derived signal transduction pathways that specify the fate of myotubes are very poorly understood. The zinc finger transcription factor, early growth response gene 3 (Egr3), is selectively expressed in sensory axon-contacted myotubes, and it is required for normal intrafusal muscle fiber differentiation and spindle development. Here, we show that overexpression of Egr3 in primary myotubes in vitro leads to the expression of a particular repertoire of genes, some of which we demonstrate are also regulated by Egr3 in developing intrafusal muscle fibers within spindles. Thus, our results identify a network of genes that are regulated by Egr3 and are involved in intrafusal muscle fiber differentiation. Moreover, we show that Egr3 mediates myotube fate specification that is induced by sensory innervation because skeletal myotubes that express Egr3 independent of other sensory axon regulation are transformed into muscle fibers with structural and molecular similarities to intrafusal muscle fibers. Hence, Egr3 is a target gene that is regulated by sensory innervation and that mediates gene expression involved in myotube fate specification and intrafusal muscle fiber morphogenesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/fisiología , Husos Musculares/embriología , Unión Neuromuscular/genética , Factores de Transcripción/genética , Animales , Axones/fisiología , Diferenciación Celular/genética , Proteína 3 de la Respuesta de Crecimiento Precoz , Perfilación de la Expresión Génica , Ratones , Ratones Noqueados , Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Unión Neuromuscular/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos
4.
J Neurosci ; 28(9): 2131-46, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-18305247

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) regulates multiple aspects of spinal motoneuron (MN) development, including gene expression, target selection, survival, and synapse elimination, and mice lacking either GDNF or its receptors GDNF family receptor alpha1 (GFRalpha1) and Ret exhibit a 25% reduction of lumbar MNs at postnatal day 0 (P0). Whether this loss reflects a generic trophic role for GDNF and thus a reduction of all MN subpopulations, or a more restricted role affecting only specific MN subpopulations, such as those innervating individual muscles, remains unclear. We therefore examined MN number and innervation in mice in which Ret, GFRalpha1, or GDNF was deleted and replaced by reporter alleles. Whereas nearly all hindlimb muscles exhibited normal gross innervation, intrafusal muscle spindles displayed a significant loss of innervation in most but not all muscles at P0. Furthermore, we observed a dramatic and restricted loss of small myelinated axons in the lumbar ventral roots of adult mice in which the function of either Ret or GFRalpha1 was inactivated in MNs early in development. Finally, we demonstrated that the period during which spindle-innervating MNs require GDNF for survival is restricted to early neonatal development, because mice in which the function of Ret or GFRalpha1 was inactivated after P5 failed to exhibit denervation of muscle spindles or MN loss. Therefore, although GDNF influences several aspects of MN development, the survival-promoting effects of GDNF during programmed cell death are mostly confined to spindle-innervating MNs.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Neuronas Motoras/clasificación , Neuronas Motoras/fisiología , Médula Espinal/citología , Animales , Animales Recién Nacidos , Caspasa 3/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/deficiencia , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/deficiencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Miembro Posterior/embriología , Miembro Posterior/crecimiento & desarrollo , Miembro Posterior/inervación , Ratones , Ratones Noqueados , Husos Musculares/embriología , Husos Musculares/crecimiento & desarrollo , Husos Musculares/metabolismo , Músculo Esquelético/metabolismo , Mutación Puntual , Proteínas Proto-Oncogénicas c-ret/deficiencia , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
5.
Neuron ; 36(6): 1035-49, 2002 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-12495620

RESUMEN

The maturation of synaptic structures depends on inductive interactions between axons and their prospective targets. One example of such an interaction is the influence of proprioceptive sensory axons on the differentiation of muscle spindles. We have monitored the expression of three transcription factors, Egr3, Pea3, and Erm, that delineate early muscle spindle development in an assay of muscle spindle-inducing signals. We provide genetic evidence that Neuregulin1 (Nrg1) is required for proprioceptive afferent-evoked induction of muscle spindle differentiation in the mouse. Ig-Nrg1 isoforms are preferentially expressed by proprioceptive sensory neurons and are sufficient to induce muscle spindle differentiation in vivo, whereas CRD-Nrg1 isoforms are broadly expressed in sensory and motor neurons but are not required for muscle spindle induction.


Asunto(s)
Diferenciación Celular/genética , Husos Musculares/embriología , Músculo Esquelético/embriología , Músculo Esquelético/inervación , Neurregulina-1/deficiencia , Neuronas Aferentes/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz , Femenino , Feto , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ganglios Espinales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Husos Musculares/citología , Husos Musculares/metabolismo , Músculo Esquelético/citología , Mutación/genética , Neurregulina-1/genética , Neuronas Aferentes/citología , Propiocepción/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Neuron ; 38(3): 403-16, 2003 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-12741988

RESUMEN

To study the role of NT3 in directing axonal projections of proprioceptive dorsal root ganglion (DRG) neurons, NT3(-/-) mice were crossed with mice carrying a targeted deletion of the proapoptotic gene Bax. In Bax(-/-)/NT3(-/-) mice, NT3-dependent neurons survived and expressed the proprioceptive neuronal marker parvalbumin. Initial extension and collateralization of proprioceptive axons into the spinal cord occurred normally, but proprioceptive axons extended only as far as the intermediate spinal cord. This projection defect is similar to the defect in mice lacking the ETS transcription factor ER81. Few if any DRG neurons from Bax(-/-)/NT3(-/-) mice expressed ER81 protein. Expression of a NT3 transgene in muscle restored DRG ER81 expression in NT3(-/-) mice. Finally, addition of NT3 to DRG explant cultures resulted in induction of ER81 protein. Our data indicate that NT3 mediates the formation of proprioceptive afferent-motor neuron connections via regulation of ER81.


Asunto(s)
Vías Aferentes/embriología , Proteínas de Unión al ADN/deficiencia , Ganglios Espinales/embriología , Neuronas Aferentes/metabolismo , Neurotrofina 3/deficiencia , Propiocepción/fisiología , Proteínas Proto-Oncogénicas c-bcl-2 , Factores de Transcripción/deficiencia , Vías Aferentes/crecimiento & desarrollo , Vías Aferentes/metabolismo , Animales , Animales Recién Nacidos , Tipificación del Cuerpo/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Femenino , Feto , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Masculino , Ratones , Ratones Noqueados , Husos Musculares/embriología , Husos Musculares/crecimiento & desarrollo , Husos Musculares/metabolismo , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/inervación , Neuronas Aferentes/citología , Neurotrofina 3/genética , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Transducción de Señal/genética , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Factores de Transcripción/genética , Proteína X Asociada a bcl-2
7.
J Neurosci ; 27(52): 14515-24, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18160659

RESUMEN

Mice heterozygous for the radiation-induced Sprawling (Swl) mutation display an early-onset sensory neuropathy with muscle spindle deficiency. The lack of an H reflex despite normal motor nerve function in the hindlimbs of these mutants strongly suggests defective proprioception. Immunohistochemical analyses reveal that proprioceptive sensory neurons are severely compromised in the lumbar dorsal root ganglia of newborn Swl/+ mice, whereas motor neuron numbers remain unaltered even in aged animals. We have used positional cloning to identify a nine base-pair deletion in the cytoplasmic dynein heavy chain 1 gene (Dync1h1) in this mutant. Furthermore, we demonstrate that Loa/+ mice, which have previously been shown to carry a missense point mutation in Dync1h1 that results in late-onset motor neuron loss, also present with a severe, early-onset proprioceptive sensory neuropathy. Interestingly, in contrast to the Loa mutation, the Swl mutation does not delay disease progression in a motor neuron disease mouse model overexpressing a human mutant superoxide dismutase (SOD1(G93A)) transgene. Together, we provide in vivo evidence that distinct mutations in cytoplasmic dynein can either result in a pure sensory neuropathy or in a sensory neuropathy with motor neuron involvement.


Asunto(s)
Dineínas/genética , Mutación/genética , Trastornos Somatosensoriales/genética , Trastornos Somatosensoriales/fisiopatología , Animales , Animales Recién Nacidos , Conducta Animal/fisiología , Recuento de Células/métodos , Colágeno Tipo IV/metabolismo , Dineínas Citoplasmáticas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Ganglios Espinales/patología , Reflejo H/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Husos Musculares/embriología , Husos Musculares/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Conducción Nerviosa/genética , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Trastornos Somatosensoriales/patología
8.
Curr Opin Neurobiol ; 13(1): 96-102, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12593987

RESUMEN

Significant advances have been made during the past few years in our understanding of how the spinal monosynaptic reflex develops. Transcription factors in the Neurogenin, Runt, ETS, and LIM families control sequential steps of the specification of various subtypes of dorsal root ganglia sensory neurons. The initiation of muscle spindle differentiation requires neuregulin 1, derived from Ia afferent sensory neurons, and signaling through ErbB receptors in intrafusal muscle fibers. Several retrograde signals from the periphery are important for the establishment of late connectivity in the reflex circuit. Finally, neurotrophin 3 released from muscle spindles regulates the strength of sensory-motor connections within the spinal cord postnatally.


Asunto(s)
Vías Aferentes/embriología , Células del Asta Anterior/embriología , Vías Eferentes/embriología , Ganglios Espinales/embriología , Husos Musculares/embriología , Músculo Esquelético/embriología , Músculo Esquelético/inervación , Neuronas Aferentes/citología , Reflejo Monosináptico/genética , Vías Aferentes/citología , Vías Aferentes/metabolismo , Animales , Células del Asta Anterior/citología , Células del Asta Anterior/metabolismo , Diferenciación Celular/genética , Vías Eferentes/citología , Vías Eferentes/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Husos Musculares/citología , Husos Musculares/metabolismo , Músculo Esquelético/citología , Neuronas Aferentes/metabolismo , Transducción de Señal/genética
10.
FEBS Lett ; 335(2): 239-42, 1993 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-8253204

RESUMEN

At least four myosin heavy chain (MHC) isoforms were separated by SDS-PAGE in extracts of intrafusal fibers isolated by microdissection from human lumbrical muscles. The fastest migrating MHC represents a slow isoform. The slowest migrating MHC was identified as the embryonic MHCemb. A faint band, moving slightly faster than MHCemb, most likely represents a neonatal/fetal MHC isoform. A prominent band, moving between the latter and the slow isoform is suggested to represent a hitherto unidentified, spindle-specific MHC isoform, MHCif.


Asunto(s)
Husos Musculares/química , Miosinas/análisis , Adulto , Electroforesis en Gel de Poliacrilamida , Feto/química , Humanos , Inmunohistoquímica , Husos Musculares/embriología
11.
J Comp Neurol ; 432(2): 244-58, 2001 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-11241389

RESUMEN

To investigate the effects of neurotrophin-3 (NT-3) on postnatal proprioceptive neurons and their targets, transgenic mice were generated that use the myosin light chain 1 (mlc) promoter to overexpress NT-3 in skeletal muscle. Ribonuclease protection assays revealed that NT-3 overexpression in hindlimb skeletal muscle began at embryonic day 14 (E14) and continued throughout adulthood. Overexpression of NT-3 during late embryogenesis resulted in increased numbers of large sensory and small fusimotor axons. Within a week of birth, mlc/NT-3 mice retract their limbs to the torso when lifted by the tail. Footprint analysis revealed that mlc/NT-3 mice had significant abnormalities in their gait compared with wild-types. Beam walking and rotorod analysis confirmed the poor limb control by mlc/NT-3 mice. These locomotive deficits progressively worsened with age and were likely related to the formation of morphologically abnormal muscle spindles. The most common spindle anomaly was the presence of excessive intrafusal bag fibers within individual muscle spindles. To assess the role of NT-3 in recovery from nerve injury, sciatic nerve crushes were performed in young adult mice. Two days after injury, mlc/NT-3 mice displayed significantly improved sciatic functional indexes and a significant increase in muscle spindles that remained associated with axons. The latter finding suggests that excess NT-3 in muscle may retard the degeneration of proprioceptive axons after nerve crush. Long-term survival after nerve injury in mlc/NT-3 mice did not induce further changes in spindle number or morphology. These findings demonstrate that, in addition to promoting embryonic proprioceptive neuron survival, postnatal overexpression of NT-3 in muscle leads to abnormal spindle formation and deficits in locomotive control. However, our results also show that NT-3 may be therapeutic for proprioceptive axons immediately after nerve injury by delaying axon degeneration.


Asunto(s)
Extremidades/fisiología , Husos Musculares/metabolismo , Neuronas/metabolismo , Neurotrofina 3/metabolismo , Propiocepción/fisiología , Animales , Extremidades/embriología , Femenino , Marcha/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Husos Musculares/embriología , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Embarazo , Nervio Ciático/lesiones
12.
Neuroscience ; 63(4): 1125-35, 1994 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-7700514

RESUMEN

The expression of neurotrophin-3 messenger RNA was studied by in situ hybridization in rat muscle spindles from the first embryonic stages of their formation until their mature appearance in adult animals. The first expression of neurotrophin-3 messenger RNA in developing muscles was observed at E19 in the firstly formed intrafusal fiber, the nuclear bag2 fiber. High levels of neurotrophin messenger RNA were found in the equatorial region of these intrafusal fibers in thin lines of cytoplasma around and between the packed-up nuclei. From E21 on, neurotrophin-3 messenger RNA was also present in the nuclear bag1 type intrafusal fiber. The expression of neurotrophin-3 messenger RNA in nuclear chain fibers, which were found in muscle spindles from day 6 after birth, was low and insignificant in comparison to the expression in the nuclear bag fibers. After completion of muscle spindle formation around the third week after birth, high levels of neurotrophin-3 messenger RNA remained present in the intrafusal fibers throughout life. During the entire period of muscle formation, examined from E15 on, as well as in mature muscles, no neurotrophin-3 messenger RNA could be detected in extrafusal fibers by in situ hybridization. The exclusive intramuscular expression of neurotrophin-3 messenger RNA in intrafusal fibers during development as well as in mature stages suggests the involvement of neurotrophin-3 in the formation and the maintenance of muscle spindles.


Asunto(s)
Husos Musculares/metabolismo , Factores de Crecimiento Nervioso/biosíntesis , ARN Mensajero/biosíntesis , Animales , Desmina/metabolismo , Extremidades/embriología , Femenino , Inmunohistoquímica , Hibridación in Situ , Husos Musculares/embriología , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Neurotrofina 3 , Embarazo , Ratas , Ratas Wistar
13.
Brain Res ; 642(1-2): 185-98, 1994 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-8032879

RESUMEN

In this paper we have studied the structural and functional development of hindlimb muscle receptors and the connections of their afferent fibres in fetal sheep (n = 26) from 67-143 days of gestation (term = 146 days). By recording extracellular discharges in dorsal root ganglia (L7, S1) we have shown that muscle spindle afferents first respond to a ramp-and-hold stretch at mid-gestation (approximately 75 days). Silver-stained preparations of muscle spindles revealed that afferent fibres are just beginning to form annulospiral windings at this age. It therefore appears that the annulospiral formation is not a necessary requirement for the generation of the response. By 87-92 days some receptors had developed a discharge at resting muscle length. Discharges were generally more robust and easier to elicit and static and dynamic components could be identified in the response to stretch. Although static sensitivity was generally low it was more evident than dynamic sensitivity. By 107-115 days it was possible to clearly distinguish between muscle and tendon afferents and to tentatively classify muscle responses as originating from primary or secondary afferent spindle endings. With increasing gestational age there was a progressive increase in the length and complexity of the spindle innervation in parallel with the maturation of functional activity. Biocytin injections into the dorsal root ganglia revealed afferent projections to the motoneuron pools by 67 days. Silver-staining of muscles showed that innervation of extrafusal fibres was also present by this age. We therefore conclude that the neural pathways necessary for reflex activity involving muscle spindles are present and functional from early in gestation and could contribute to early fetal movements.


Asunto(s)
Husos Musculares/embriología , Fibras Nerviosas/fisiología , Ovinos/embriología , Vías Aferentes/fisiología , Animales , Desarrollo Embrionario y Fetal/fisiología , Ganglios Espinales/fisiología , Edad Gestacional , Miembro Posterior , Lisina/análogos & derivados , Ovinos/fisiología , Tinción con Nitrato de Plata
14.
J Morphol ; 242(2): 157-65, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10521875

RESUMEN

Chicken leg muscles were examined to calculate the percentages of slow myosin heavy chain (MHC)-positive fibers in spindles and in adjacent extrafusal fascicles, and to clarify how the encapsulated portions of muscle spindles are positioned relative to these fascicles. Unlike mammals, in chicken leg muscles slow-twitch MHC and slow-tonic MHC are expressed in intrafusal fibers and in extrafusal fibers, suggesting a close developmental connection between the two fiber populations. In 8-week-old muscles the proportions of slow MHC-positive extrafusal fibers that ringed muscle spindles ranged from 0-100%. In contrast, proportions of slow MHC-positive intrafusal fibers in spindles ranged from 0-57%. Similar proportions in fiber type composition between intrafusal fibers and surrounding extrafusal fibers were apparent at embryonic days 15 and 16, demonstrating early divergence of extrafusal and intrafusal fibers. Muscle spindles were rarely located within single fascicles. Instead, they were commonly placed where several fascicles converged. The frequent extrafascicular location of spindles suggests migration of intrafusal myoblasts from developing clusters of extrafusal fibers toward the interstitium, perhaps along a neurotrophic gradient established by sensory axons that are advancing in the connective tissue matrix that separates adjoining fascicles.


Asunto(s)
Fibras Musculares Esqueléticas/química , Husos Musculares/química , Cadenas Pesadas de Miosina/análisis , Animales , Embrión de Pollo/crecimiento & desarrollo , Embrión de Pollo/metabolismo , Pollos , Fasciculación , Husos Musculares/embriología , Husos Musculares/crecimiento & desarrollo
15.
Anat Embryol (Berl) ; 186(1): 1-25, 1992.
Artículo en Inglés | MEDLINE | ID: mdl-1387513

RESUMEN

The literature on the morphology and physiology of the avian muscle spindle is reviewed, with emphasis placed on the period from 1960 to 1991. Traits similar to or different from mammalian spindles are recognized. Apart from receptors with low intrafusal fiber counts, bird spindles contain two or three types of intrafusal fiber. Unlike that of mammals, the equatorial fiber structure in birds does not lend itself to classification into nuclear bag and nuclear chain types. Avian intrafusal fibers are separable into types based on differences in myosin heavy chain composition and motor innervation, but apportionment of these fiber types to individual spindles is more variable in birds than in mammals. There is morphological evidence in birds for the existence of both gamma and beta innervation; however, confirmation of these systems by physiological experiments is at best sketchy. A general lack of physiological data is currently the greatest drawback to a better understanding of how the avian receptor works, and what role it plays in sensorimotor integration.


Asunto(s)
Aves/anatomía & histología , Husos Musculares/fisiología , Músculos/inervación , Animales , Aves/fisiología , Microscopía Electrónica , Husos Musculares/embriología , Husos Musculares/ultraestructura , Músculos/fisiología , Músculos/ultraestructura , Neuronas Aferentes/fisiología , Neuronas Eferentes/fisiología
16.
Anat Embryol (Berl) ; 192(2): 149-58, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7486011

RESUMEN

S46, a monoclonal antibody (mAb) specific for the SM-1 and SM-2 isoforms of avian slow myosin heavy chains (MHC), was used to study the earliest stages of development of intrafusal fibers in muscle spindles of the rat hindlimb. Spindles formed only in the regions of fetal muscles that contained primary myotubes reactive to mAb S46, such as the axial region of the tibialis anterior muscle. The first intrafusal fiber to form, the nuclear bag2 fiber, originated from within the population of S46-reactive primary myotubes. Binding of mAb S46 by myotubes giving rise to the bag2 fibers preceded the appearance of encapsulated spindles in the muscles by electron microscopy. However, reactivity to S46 intensified in the myotubes transforming into bag2 fibers after the innervation of the fibers by afferents, and dissipated in myotubes differentiating into slow-twitch (type I) extrafusal fibers. Thus, afferents may enhance intrafusal expression of the MHC isoform reactive to mAb S46. The pattern of S46 binding to nuclear bag and chain intrafusal fibers in both developing and adult spindles was the same as that reported for the mAb ALD19, suggesting that both antibodies bind to the same MHC isoform. This isoform is probably a developmental form of slow myosin, because it was transiently expressed during the development of type I extrafusal fibers. The origin of bag2 intrafusal and type I extrafusal fibers from a bipotential subpopulation of primary myotubes reactive to mAb S46 correlates with the location of muscle spindles in the slow regions of muscles in adult rat hindlimbs.


Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas/química , Husos Musculares/crecimiento & desarrollo , Músculo Esquelético/crecimiento & desarrollo , Cadenas Pesadas de Miosina/análisis , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales , Axones/ultraestructura , Femenino , Feto , Miembro Posterior/embriología , Miembro Posterior/crecimiento & desarrollo , Inmunohistoquímica , Masculino , Microscopía Electrónica , Morfogénesis , Husos Musculares/química , Husos Musculares/embriología , Husos Musculares/ultraestructura , Músculo Esquelético/embriología , Músculo Esquelético/inervación , Fibras Nerviosas/ultraestructura , Embarazo , Ratas , Ratas Sprague-Dawley
17.
Anat Embryol (Berl) ; 190(3): 273-86, 1994 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-7818097

RESUMEN

A rat muscle spindle typically contains four intrafusal fibers-one nuclear bag2, one nuclear bag1 and two nuclear chain fibers. We compared the sequence of formation of the three intrafusal fiber types among the tibialis anterior (TA), soleus (SOL) and medial gastrocnemius (MG) muscles using immunocytochemistry of spindle-specific myosin heavy chain isoforms. Spindles of the TA began to differentiate earlier and acquired the full complement of intrafusal fibers sooner than spindles of the SOL or MG muscles. At the onset of spindle assembly, the intrafusal myotubes expressed myosin heavy chains similar to those expressed by extrafusal myotubes. The first intrafusal myotube then differentiated into the bag2 fiber regardless of the muscle. However, the fate of the second-forming intrafusal myotube varied among the muscles studied. It usually differentiated into a chain fiber in the TA, into a bag1 fiber in the SOL, and into either a bag1 or a chain in the MG. The fate of the third-forming intrafusal myotube was reciprocal to that of the second; i.e. in those spindles in which the bag1 fiber was second to form, a chain was third, and vice versa. The fourth and last intrafusal myotube gave rise to a chain fiber. The inter- and intramuscular variability in the fate of intrafusal myotubes of the second and third generation argues against the existence of a program intrinsic to the myotubes that would mandate their differentiation along specific paths. Rather, an extrinsic regulatory factor, probably associated with the primary afferent neuron, may govern differentiation of pluripotential myotubes into particular types of intrafusal fiber. The fate of the intrafusal myotubes might then depend on the timing of the regulatory effect of afferents relative to the stage of development of the intrafusal bundle.


Asunto(s)
Miembro Posterior/crecimiento & desarrollo , Desarrollo de Músculos , Fibras Musculares Esqueléticas/ultraestructura , Husos Musculares/crecimiento & desarrollo , Músculo Esquelético/crecimiento & desarrollo , Miosinas/análisis , Animales , Animales Recién Nacidos , Miembro Posterior/embriología , Miembro Posterior/ultraestructura , Inmunohistoquímica , Microscopía Electrónica , Fibras Musculares Esqueléticas/química , Husos Musculares/química , Husos Musculares/embriología , Husos Musculares/ultraestructura , Músculo Esquelético/química , Músculo Esquelético/embriología , Músculo Esquelético/ultraestructura , Ratas , Ratas Sprague-Dawley
18.
Neurol India ; 49(4): 355-9, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11799407

RESUMEN

The proprioceptive inputs from the cervical musculature play an important role in head-eye co-ordination and postural processes. Deep cervical muscles in humans are shown to have high spindle content. The density, distribution and morphology of muscle spindles were studied in superior oblique capitis, inferior oblique capitis and rectus capitis posterior major and minor three small suboccipital muscles. The muscles were obtained, post-mortem from stillborn human foetus. The spindle density was calculated as the ratio of mean spindle content to the mean wet weight of that muscle in grams. The distribution and arrangement of spindles within the muscle and their arrangement was studied. The spindle density of superior oblique muscle was found to be 190, that of inferior oblique was 242 and the rectus capitis posterior contained 98 spindles per gram of muscle. No tendon organs were seen. The serial transverse sections of inferior oblique muscle revealed muscle spindles of varying sizes, length varying between 100-650 microns and, diameter 50-250 microns. A complex parallel arrangements of group of large spindles were seen in the belly of the inferior oblique muscle, while the polar regions contain few small isolated spindles. The relevance of such high spindle receptor content in these tiny muscles is discussed.


Asunto(s)
Feto/anatomía & histología , Husos Musculares/embriología , Músculos del Cuello/embriología , Humanos , Hueso Occipital/embriología
19.
Folia Morphol (Warsz) ; 50(1-2): 65-70, 1991.
Artículo en Inglés | MEDLINE | ID: mdl-1844579

RESUMEN

The muscle spindles were counted in 16 sternocleidomastoid muscles of human fetuses aged 12-18 weeks. The greatest number of muscle spindles were noted in the middle of the sternocleidomastoid muscle.


Asunto(s)
Desarrollo Embrionario y Fetal/fisiología , Husos Musculares/embriología , Músculos del Cuello/embriología , Humanos
20.
Folia Morphol (Warsz) ; 51(1): 55-9, 1992.
Artículo en Inglés | MEDLINE | ID: mdl-1478563

RESUMEN

Muscle spindles were investigated in 19 human fetuses, aged 11 to 17 weeks. First spindles were observed in 11th week. The number of muscle spindles increases with advancement of the development being highest in the omohyoid muscle.


Asunto(s)
Husos Musculares/embriología , Músculos del Cuello/embriología , Desarrollo Embrionario y Fetal/fisiología , Humanos , Hueso Hioides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA