Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 475
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mol Recognit ; 37(4): e3090, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38803118

RESUMEN

Bioactive peptides derived from foods provide physiological health benefits beyond nutrition. This study focused on profiling small peptide inhibitors against two key serine proteases, dipeptidyl peptidase-IV (DPP-IV) and prolyl oligopeptidase (POP). DPP-IV is a well-known protein involved in diverse pathways regulating inflammation, renal, cardiovascular physiology, and glucose homeostasis. POP is yet another key target protein for neurodegenerative disorders. The study evaluated peptide libraries of buffalo colostrum whey and fat globule membrane proteins derived from pepsin and pepsin-pancreatin digestion through in silico web tools and structure-based analysis by molecular docking and binding free-energy estimation, followed by in vitro assay for DPP-IV inhibition for the lead peptides. The bioinformatic study indicated 49 peptides presented motifs with DPP-IV inhibition while 5 peptides with sequences for POP inhibition. In the molecular docking interactions study, 22 peptides interacted with active site residues of DPP-IV and 3 peptides with that of POP. The synthesized peptides, SFVSEVPEL and LTFQHNF inhibited DPP-IV in vitro with an IC50 of 193.5 µM and 1.782 mM, respectively. The study revealed the key residues for inhibition of DPP-IV and POP thus affirming the DPP-IV inhibitory potential of milk-derived peptides.


Asunto(s)
Búfalos , Calostro , Biología Computacional , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Simulación del Acoplamiento Molecular , Péptidos , Calostro/química , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Péptidos/química , Péptidos/farmacología , Prolil Oligopeptidasas/metabolismo , Prolil Oligopeptidasas/química , Humanos , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Simulación por Computador , Femenino
2.
J Chem Inf Model ; 64(19): 7650-7665, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39332821

RESUMEN

We present our efforts in computational drug design against dipeptidyl peptidase 4 (DPP4), DPP8 and DPP9. We applied cosolvent molecular dynamics (MD) simulations to these three protein targets of interest. Our primary motivation is the growing interest in DPP8 and DPP9 as emerging drug targets. Due to the high similarity between DPP4, DPP8 and DPP9, DPP4 was also included in these analyses. The cosolvent molecular dynamics simulations reproduce key ligand binding features and known binding pockets, while also highlighting interesting fragment positions for future ligand optimization. The resulting fragment maps from the cosolvent molecular dynamics are freely available for use in future research (https://github.com/UAMC-Olivier/DPP489_cosolvent_MD/). Detailed instructions for easy visualization of the fragment maps are provided, ensuring that the results are usable by both computational and medicinal chemists. Additionally, we used the fragment maps to search for the binding pockets with significant potential using an algorithmic approach combining top fragment locations. To discover novel binding scaffolds, a limited pharmacophore screening was performed, where the pharmacophores were based on the analyses of the cosolvent simulations. Unfortunately, inhibitory potencies were in the higher micromolar range, but we optimized the resulting scaffolds in silico using relative binding free energy calculations for future inhibitor design and synthesis.


Asunto(s)
Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Diseño de Fármacos , Simulación de Dinámica Molecular , Unión Proteica , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Humanos , Dipeptidasas/metabolismo , Dipeptidasas/química , Dipeptidasas/antagonistas & inhibidores , Solventes/química , Ligandos , Sitios de Unión
3.
Bioorg Chem ; 146: 107277, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493634

RESUMEN

Diabetes mellitus (DM) is one of the largest public health problems worldwide and in the last decades various therapeutic targets have been investigated. For the treatment of type-2 DM (T2DM), dipeptidyl peptidase-4 (DPP-4) is one of the well reported target and has established safety in terms of cardiovascular complexicity. Preclinical and clinical studies using DPP-4 inhibitors have demonstrated its safety and effectiveness and have lesser risk of associated hypoglycaemic effect making it suitable for elderly patients. FDA has approved a number of structurally diverse DPP-4 inhibitors for clinical use. The present manuscript aims to focus on the well reported hybrid and non-hybrid analogues and their structural activity relationship (SAR) studies. It aims to provide structural insights for this class of compounds pertaining to favourable applicability of selective DPP-4 inhibitors in the treatment of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Anciano , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Inhibidores de la Dipeptidil-Peptidasa IV/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Relación Estructura-Actividad
4.
Bioorg Chem ; 151: 107671, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39067419

RESUMEN

Diabetes mellitus type 2 (T2DM) can be managed by targeting dipeptidyl peptidase-4 (DPP-4), an enzyme that breaks down and deactivates peptides such as GIP and GLP-1. In this context, a new series of 2-(2-substituted hydrazineyl)thiazole derivatives 4, 5, 6, 8, 10, and 11 conjugated with the 2-hydroxy-5-(pyrrolidin-1-ylsulfonyl)benzylidene fragment were designed and synthesized. The virtual screening of the designed derivatives inside DPP-4 demonstrated good to moderate activity, with binding affinity ranging from -6.86 to -5.36 kcal/mol compared to Sitagliptin (S=-5.58 kcal/mol). These results encourage us to evaluate DPP-4 using in-vitro fluorescence-based assay. The in-vitro results exhibited inhibitory percentage (IP) values ranging from 40.66 to 75.62 % in comparison to Sitagliptin (IP=63.14 %) at 100 µM. Subsequently, the IC50 values were determined, and the 5-aryl thiazole derivatives 10 and 11 revealed strong potent IC50 values 2.75 ± 0.27 and 2.51 ± 0.27 µM, respectively, compared to Sitagliptin (3.32 ± 0.22 µM). The SAR study exhibited the importance of the substituents on the thiazole scaffold, especially with the hydrophobic fragment at C5 of the thiazole, which has a role in the activity. Compounds 10 and 11 were further assessed toward α-glucosidase and α-amylase enzymes and give promising results. Compound 10 showed good activity against α-glucosidase with IC50 value of 3.02 ± 0.23 µM compared to Acarbose 3.05 ± 0.22 µM and (11 = 3.34 ± 0.10 µM). On the other hand, for α-amylase, compound 11 was found to be most effective with IC50 value of 2.91 ± 0.23 µM compared to compound 10 = 3.30 ± 0.16 µM and Acarbose (2.99 ± 0.21 µM) indicating that these derivatives could reduce glucose by more than one target. The most active derivatives 10 and 11 attracted great interest as candidates for oral bioavailability and safe toxicity profiles compared to positive controls. The in-silico docking simulation was performed to understand the binding interactions inside the DPP-4, α-glucosidase, and α-amylase pockets, and it was found to be promising antidiabetic agents through a number of interactions.


Asunto(s)
Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Diseño de Fármacos , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Sulfonamidas , Tiazoles , alfa-Amilasas , alfa-Glucosidasas , Dipeptidil Peptidasa 4/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , alfa-Glucosidasas/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/síntesis química , Humanos , Relación Estructura-Actividad , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Estructura Molecular , Relación Dosis-Respuesta a Droga
5.
Bioorg Chem ; 147: 107363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657527

RESUMEN

Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.


Asunto(s)
Antioxidantes , Dipeptidil Peptidasa 4 , Hipoglucemiantes , Pirazoles , Triazoles , alfa-Amilasas , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , Relación Estructura-Actividad , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Estructura Molecular , Humanos , Relación Dosis-Respuesta a Droga , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/síntesis química , Simulación del Acoplamiento Molecular , Picratos/antagonistas & inhibidores , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Compuestos de Espiro/síntesis química , Oxindoles/farmacología , Oxindoles/química , Oxindoles/síntesis química , Benzopiranos , Nitrilos
6.
Mar Drugs ; 22(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667773

RESUMEN

The industrial processing of Argentine shortfin squid to obtain rings generates a significant amount of protein-rich waste, including the skin, which is rich in collagen and attached myofibrillar proteins. This waste is generally discarded. In this study, skin was used as a source of proteins that were hydrolysed using Trypsin, Esperase® or Alcalase®, which released peptides with antioxidant potential and, in particular, antihypertensive (ACE inhibition), hypoglycemic (DPP-IV inhibition) and/or nootropic (PEP inhibition) potential. Among the three enzymes tested, Esperase® and Alcalase produced hydrolysates with potent ACE-, DPP-IV- and PEP-inhibiting properties. These hydrolysates underwent chromatography fractionation, and the composition of the most bioactive fractions was analysed using HPLC-MS-MS. The fractions with the highest bioactivity exhibited very low IC50 values (16 and 66 µg/mL for ACE inhibition, 97 µg/mL for DPP-IV inhibition and 55 µg/mL for PEP inhibition) and were mainly derived from the hydrolysate obtained using Esperase®. The presence of Leu at the C-terminal appeared to be crucial for the ACE inhibitory activity of these fractions. The DPP-IV inhibitory activity of peptides seemed to be determined by the presence of Pro or Ala in the second position from the N-terminus, and Gly and/or Pro in the last C-terminal positions. Similarly, the presence of Pro in the peptides present in the best PEP inhibitory fraction seemed to be important in the inhibitory effect. These results demonstrate that the skin of the Argentine shortfin squid is a valuable source of bioactive peptides, suitable for incorporation into human nutrition as nutraceuticals and food supplements.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Decapodiformes , Inhibidores de la Dipeptidil-Peptidasa IV , Péptidos , Animales , Decapodiformes/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Péptidos/química , Péptidos/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Hidrólisis , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Piel , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Antioxidantes/farmacología , Antioxidantes/química
7.
Mar Drugs ; 22(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667768

RESUMEN

Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Glucosa , Hidrolisados de Proteína , Salmo salar , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/aislamiento & purificación , Inhibidores de la Dipeptidil-Peptidasa IV/química , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Glucosa/metabolismo , Humanos , Dipeptidil Peptidasa 4/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Proteínas de Peces/farmacología
8.
Mar Drugs ; 22(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39057406

RESUMEN

This study generated bioactive hydrolysates using the enzyme Alcalase and autolysis from mesopelagic fish, including Maurolicus muelleri and Benthosema glaciale. Generated hydrolysates were investigated for their bioactivities using in vitro bioassays, and bioactive peptides were identified using mass spectrometry in active hydrolysates with cyclooxygenase, dipeptidyl peptidase IV and antioxidant activities. In silico analysis was employed to rank identified peptide sequences in terms of overall bioactivity using programmes including Peptide Ranker, PrepAIP, Umami-MRNN and AntiDMPpred. Seven peptides predicted to have anti-inflammatory, anti-type 2 diabetes or Umami potential using in silico strategies were chemically synthesised, and their anti-inflammatory activities were confirmed using in vitro bioassays with COX-1 and COX-2 enzymes. The peptide QCPLHRPWAL inhibited COX-1 and COX-2 by 82.90% (+/-0.54) and 53.84%, respectively, and had a selectivity index greater than 10. This peptide warrants further research as a novel anti-inflammatory/pain relief peptide. Other peptides with DPP-IV inhibitory and Umami flavours were identified. These offer potential for use as functional foods or topical agents to prevent pain and inflammation.


Asunto(s)
Antiinflamatorios , Proteínas de Peces , Peces , Péptidos , Hidrolisados de Proteína , Animales , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Péptidos/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Proteínas de Peces/farmacología , Proteínas de Peces/química , Antioxidantes/farmacología , Antioxidantes/química , Ciclooxigenasa 2/metabolismo , Simulación por Computador , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/aislamiento & purificación , Ciclooxigenasa 1/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/química
9.
Mar Drugs ; 22(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39195477

RESUMEN

The inhibition of dipeptidyl peptidase-IV (DPP-IV) is a promising approach for regulating the blood glucose levels in patients with type 2 diabetes (T2D). Oysters, rich in functional peptides, contain peptides capable of inhibiting DPP-IV activity. This study aims to identify the hypoglycemic peptides from oysters and investigate their potential anti-T2D targets and mechanisms. This research utilized virtual screening for the peptide selection, followed by in vitro DPP-IV activity assays to validate the chosen peptide. Network pharmacology was employed to identify the potential targets, GO terms, and KEGG pathways. Molecular docking and molecular dynamics simulations were used to provide virtual confirmation. The virtual screening identified LRGFGNPPT as the most promising peptide among the screened oyster peptides. The in vitro studies confirmed its inhibitory effect on DPP-IV activity. Network pharmacology revealed that LRGFGNPPT exerts an anti-T2D effect through multiple targets and signaling pathways. The key hub targets are AKT1, ACE, and REN. Additionally, the molecular docking results showed that LRGFGNPPT exhibited a strong binding affinity with targets like AKT1, ACE, and REN, which was further confirmed by the molecular dynamics simulations showcasing a stable peptide-target interaction. This study highlights the potential of LRGFGNPPT as a natural anti-T2D peptide, providing valuable insights for potential future pharmaceutical or dietary interventions in T2D management.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Simulación del Acoplamiento Molecular , Péptidos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/aislamiento & purificación , Animales , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/química , Péptidos/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Humanos , Simulación de Dinámica Molecular , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Ostreidae/química , Farmacología en Red , Descubrimiento de Drogas
10.
Chem Biodivers ; 21(10): e202401227, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39001610

RESUMEN

Bis(benzimidazol-2-yl)amine scaffold is not present in dipeptidyl peptidase-4 (DPP-4) inhibitors published so far. Herein, the inhibitory potential of bis(benzimidazol-2-yl)amine derivatives against DPP-4 was evaluated. In non-competitive inhibition mode, three representatives 5, 6, and 7 inhibited DPP-4 in vitro with IC50 values below 50 µM. The assessed binding pocket of DPP-4 for these benzimidazoles includes the S2 extensive subsite's residues Phe357 and Arg358. None of the lead compounds showed cytotoxicity to human neuroblastoma SH-SY5Y cells at concentrations lower than 10 µM. None showed significant binding affinity at dopamine D2, D3, and histamine H1, H3 receptors, at concentrations lower than 10 µM, leading to preferable outcomes due to mutually opposite effects of these neurotransmitters on each other. The potential beneficial effects on dopamine synthesis and the survival of dopaminergic neurons could be mediated by DPP-4 inhibition. These effective noncompetitive DPP-4 inhibitors, with inhibitory potential better than reference diprotin A (relative inhibitory potency compared to diprotin A is 3.39 and 1.54 for compounds 7 and 5, respectively), with the absence of cytotoxicity to SH-SY5Y cells, are valuable candidates for further evaluation for the treatment of diabetes and associated disruption of neuronal homeostasis.


Asunto(s)
Bencimidazoles , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Aminas/química , Aminas/farmacología , Aminas/síntesis química , Bencimidazoles/farmacología , Bencimidazoles/química , Bencimidazoles/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/síntesis química , Relación Dosis-Respuesta a Droga , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Estructura Molecular , Relación Estructura-Actividad
11.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891918

RESUMEN

Dipeptidyl peptidase-IV (DPPIV) inhibitory peptides are a class of antihyperglycemic drugs used in the treatment of type 2 diabetes mellitus, a metabolic disorder resulting from reduced levels of the incretin hormone GLP-1. Given that DPPIV degrades incretin, a key regulator of blood sugar levels, various antidiabetic medications that inhibit DPPIV, such as vildagliptin, sitagliptin, and linagliptin, are employed. However, the potential side effects of these drugs remain a matter of debate. Therefore, we aimed to investigate food-derived peptides from Cannabis sativa (hemp) seeds. Our developed bioinformatics pipeline was used to identify the putative hydrolyzed peptidome of three highly abundant proteins: albumin, edestin, and vicilin. These proteins were subjected to in silico digestion by different proteases (trypsin, chymotrypsin, and pepsin) and then screened for DPPIV inhibitory peptides using IDPPIV-SCM. To assess potential adverse effects, several prediction tools, namely, TOXINpred, AllerCatPro, and HemoPred, were employed to evaluate toxicity, allergenicity, and hemolytic effects, respectively. COPID was used to determine the amino acid composition. Molecular docking was performed using GalaxyPepDock and HPEPDOCK, 3D visualizations were conducted using the UCSF Chimera program, and MD simulations were carried out with AMBER20 MD software. Based on the predictive outcomes, FNVDTE from edestin and EAQPST from vicilin emerged as promising candidates for DPPIV inhibitors. We anticipate that our findings may pave the way for the development of alternative DPPIV inhibitors.


Asunto(s)
Cannabis , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Hipoglucemiantes , Péptidos , Semillas , Humanos , Cannabis/química , Biología Computacional/métodos , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Hidrólisis , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Simulación del Acoplamiento Molecular , Péptidos/química , Proteínas de Plantas/química , Proteínas de Almacenamiento de Semillas/química , Semillas/química
12.
Int J Mol Sci ; 25(20)2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39456663

RESUMEN

The cloud forest (CF), a hugely biodiverse ecosystem, is a hotspot of unexplored plants with potential for discovering pharmacologically active compounds. Without sufficient ethnopharmacological information, developing strategies for rationally selecting plants for experimental studies is crucial. With this goal, a CF metabolites library was created, and a ligand-based virtual screening was conducted to identify molecules with potential hypoglycemic activity. From the most promising botanical families, plants were collected, methanolic extracts were prepared, and hypoglycemic activity was evaluated through in vitro enzyme inhibition assays on α-amylase, α-glucosidase, and dipeptidyl peptidase IV (DPP-IV). Metabolomic analyses were performed to identify the dominant metabolites in the species with the best inhibitory activity profile, and their affinity for the molecular targets was evaluated using ensemble molecular docking. This strategy led to the identification of twelve plants (in four botanical families) with hypoglycemic activity. Sida rhombifolia (Malvaceae) stood out for its DPP-IV selective inhibition versus S. glabra. A comparison of chemical profiles led to the annotation of twenty-seven metabolites over-accumulated in S. rhombifolia compared to S. glabra, among which acanthoside D and cis-tiliroside were noteworthy for their potential selective inhibition due to their specific intermolecular interactions with relevant amino acids of DPP-IV. The workflow used in this study presents a novel targeting strategy for identifying novel bioactive natural sources, which can complement the conventional selection criteria used in Natural Product Chemistry.


Asunto(s)
Productos Biológicos , Hipoglucemiantes , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Productos Biológicos/farmacología , Productos Biológicos/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Metabolómica/métodos , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Humanos
13.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792165

RESUMEN

The objective of this study was to identify multiple alkaloids in Coptis chinensis that demonstrate inhibitory activity against DPP-4 and systematically evaluate their activity and binding characteristics. A combined strategy that included molecular docking, a DPP-4 inhibition assay, surface plasmon resonance (SPR), and a molecular dynamics simulation technique was employed. The results showed that nine alkaloids in Coptis chinensis directly inhibited DPP-4, with IC50 values of 3.44-53.73 µM. SPR-based binding studies revealed that these alkaloids display rapid binding and dissociation characteristics when interacting with DPP-4, with KD values ranging from 8.11 to 29.97 µM. A molecular dynamics analysis revealed that equilibrium was rapidly reached by nine DPP-4-ligand systems with minimal fluctuations, while binding free energy calculations showed that the ∆Gbind values for the nine test compounds ranged from -31.84 to -16.06 kcal/mol. The most important forces for the binding of these alkaloids with DPP-4 are electrostatic interactions and van der Waals forces. Various important amino acid residues, such as Arg125, His126, Phe357, Arg358, and Tyr547, were involved in the inhibition of DPP-4 by the compounds, revealing a mechanistic basis for the further optimization of these alkaloids as DPP-4 inhibitors. This study confirmed nine alkaloids as direct inhibitors of DPP-4 and characterized their binding features, thereby providing a basis for further research and development on novel DPP-4 inhibitors.


Asunto(s)
Alcaloides , Coptis , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Alcaloides/química , Alcaloides/farmacología , Sitios de Unión , Coptis/química , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Descubrimiento de Drogas/métodos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Resonancia por Plasmón de Superficie
14.
Crit Rev Food Sci Nutr ; 63(19): 3452-3467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34652225

RESUMEN

Dietary polyphenols with great antidiabetic effects are the most abundant components in edible products. Dietary polyphenols have attracted attention as dipeptidyl peptidase-IV (DPP-IV) inhibitors and indirectly improve insulin secretion. The DPP-IV inhibitory activities of dietary polyphenols depend on their structural diversity. Screening methods that can be used to rapidly and accurately identify potential polyphenol DPP-IV inhibitors are urgently needed. This review focuses on the relationship between the structures of dietary polyphenols and their DPP-IV inhibitory effects. Different characterization methods used for polyphenols as DPP-IV inhibitors have been summarized and compared. We conclude that the position and number of hydroxyl groups, methoxy groups, glycosylated groups, and the extent of conjugation influence the efficiency of inhibition of DPP-IV. Various combinations of methods, such as in-vitro enzymatic inhibition, ex-vivo/in-vivo enzymatic inhibition, cell-based in situ, and in-silico virtual screening, are used to evaluate the DPP-IV inhibitory effects of dietary polyphenols. Further investigations of polyphenol DPP-IV inhibitors will improve the bioaccessibility and bioavailability of these bioactive compounds. Exploration of (i) dietary polyphenols derived from multiple targets, that can prevent diabetes, and (ii) actual binding interactions via multispectral analysis, to understand the binding interactions in the complexes, is required.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/farmacología , Relación Estructura-Actividad , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo
15.
J Nat Prod ; 86(7): 1824-1831, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37337963

RESUMEN

A set of 22 analogs of licochalcone A was designed and synthesized to explore their potentials as dipeptidyl peptidase 4 (DPP4) inhibitors with anti-inflammatory effects. The anti-DPP4 effects of these analogs were evaluated using the fluorescent substrate Gly-Pro-N-butyl-4-amino-1,8-naphthalimide (GP-BAN). The nitro-substituted analogue 27 exhibited the most potent activity (Ki = 0.96 µM). A structure-activity relationship investigation revealed that 4-hydroxyl and 5-chloro substituents are essential for DPP4 inhibition, while the 3'-nitro substituent improved both DPP4 inhibition and microsomal stability. Furthermore, compound 27 demonstrated good selectivity for DPP4 over other proteases, including dipeptidyl peptidase 9 (DPP9), thrombin, prolyl endopeptidase (PREP), and fibroblast activation protein (FAP). The cytotoxic effect of 27 was evaluated in cancer cell lines HepG-2 and Caco-2 and in somatic RAW264.7 cells and RPTECs. Compound 27 showed no toxicity to normal cells and weak toxicity to cancer cells. In a living cell imaging assay, 27 blocked the dipeptidase activity of DPP4 in both Caco-2 and HepG-2 cells. This compound also dose-dependently suppressed the expression levels of the chemokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß).


Asunto(s)
Chalconas , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Células CACO-2 , Chalconas/farmacología , Antiinflamatorios/farmacología
16.
Mol Divers ; 27(6): 2729-2740, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36534357

RESUMEN

A series of novel pyridazine-acetohydrazide hybrids were designed, synthesized, and evaluated for their in vitro and in vivo antihyperglycemic activity. In this context, pyridazine-acetohydrazides (6a-6p) were synthesized by coupling substituted aldehyde with 2-(5-cyano-6-oxo-3,4-diphenylpyridazine-1-6H-yl) acetohydrazide, which was prepared via the reaction of pyridazine ester with hydrazine hydrate. The molecular docking study was carried out to examine the binding affinities and interaction of designed compounds against the DPP-4 enzyme. Compounds 6e, 6f, 6l, and 6n exhibited interaction with active residue. In silico ADMET properties, and toxicity studies corroborated that compounds were found to have good bioavailability and less toxic. The synthesized compounds were further estimated for in vitro DPP-4 activity. Compounds 6e and 6l were found as the most effective DPP-4 inhibitor in this series with IC50 values (6.48, 8.22 nM) when compared with sitagliptin (13.02 nM). According to the toxicity assay compound, 6l showed very less toxicity at a higher concentration so further selected for the in vivo antihyperglycemic activity.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Piridazinas , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Ligandos , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Piridazinas/farmacología
17.
Chem Biodivers ; 20(2): e202200909, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36565063

RESUMEN

The dipeptidyl peptidase-IV (DPP-IV) inhibitory activity of Khaya senegalensis extracts was evaluated. The DPP-IV from a rat kidney was purified to a purification fold of 2.3. Among extracts from K. senegalensis, the hexane extract had the best DPP-IV inhibitory activity, with IC50 value of 1.56±0.61 µg/mL and was fractionated to eleven fractions (A-K). Fraction I had the best DPP-IV inhibition via uncompetitive pattern. GC-MS analysis of fraction I showed that the major bioactive compounds were 3-amino-3-hydroxyimino-N-phenylpropanamide (1) and 11-(2-cyclopenten-1-yl)undecanoic acid (2), with good binding affinities toward DPP-IV, based on molecular docking,. They were then subjected to molecular dynamic simulation using WEBGRO and utilizing a GROMACS system for 100 ns. The 3-amino-3-hydroxyimino-N-phenylpropanamide-DPP-IV complex was more stable and compact than the other complex. K. senegalensis contains compounds like 1 that might be used for the design of new DPP-IV inhibitors.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología
18.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570832

RESUMEN

This article sheds light on the various scaffolds that can be used in the designing and development of novel synthetic compounds to create DPP-4 inhibitors for the treatment of type 2 diabetes mellitus (T2DM). This review highlights a variety of scaffolds with high DPP-4 inhibition activity, such as pyrazolopyrimidine, tetrahydro pyridopyrimidine, uracil-based benzoic acid and esters, triazole-based, fluorophenyl-based, glycinamide, glycolamide, ß-carbonyl 1,2,4-triazole, and quinazoline motifs. The article further explains that the potential of the compounds can be increased by substituting atoms such as fluorine, chlorine, and bromine. Docking of existing drugs like sitagliptin, saxagliptin, and vildagliptin was done using Maestro 12.5, and the interaction with specific residues was studied to gain a better understanding of the active sites of DPP-4. The structural activities of the various scaffolds against DPP-4 were further illustrated by their inhibitory concentration (IC50) values. Additionally, various synthesis schemes were developed to make several commercially available DPP4 inhibitors such as vildagliptin, sitagliptin and omarigliptin. In conclusion, the use of halogenated scaffolds for the development of DPP-4 inhibitors is likely to be an area of increasing interest in the future.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Inhibidores de la Dipeptidil-Peptidasa IV/química , Hipoglucemiantes/química , Vildagliptina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fosfato de Sitagliptina , Relación Estructura-Actividad
19.
Molecules ; 28(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770672

RESUMEN

Recent research on dipeptidyl peptidase-IV (DPP-IV) inhibitors has made it feasible to treat type 2 diabetes mellitus (T2DM) with minimal side effects. Therefore, in the present investigation, we aimed to discover and develop some coumarin-based sulphonamides as potential DPP-IV inhibitors in light of the fact that molecular hybridization of many bioactive pharmacophores frequently results in synergistic activity. Each of the proposed derivatives was subjected to an in silico virtual screening, and those that met all of the criteria and had a higher binding affinity with the DPP-IV enzyme were then subjected to wet lab synthesis, followed by an in vitro biological evaluation. The results of the pre-ADME and pre-tox predictions indicated that compounds 6e, 6f, 6h, and 6m to 6q were inferior and violated the most drug-like criteria. It was observed that 6a, 6b, 6c, 6d, 6i, 6j, 6r, 6s, and 6t displayed less binding free energy (PDB ID: 5Y7H) than the reference inhibitor and demonstrated drug-likeness properties, hence being selected for wet lab synthesis and the structures being confirmed by spectral analysis. In the in vitro enzyme assay, the standard drug Sitagliptin had an IC50 of 0.018 µM in the experiment which is the most potent. All the tested compounds also displayed significant inhibition of the DPP-IV enzyme, but 6i and 6j demonstrated 10.98 and 10.14 µM IC50 values, respectively, i.e., the most potent among the synthesized compounds. Based on our findings, we concluded that coumarin-based sulphonamide derivatives have significant DPP-IV binding ability and exhibit optimal enzyme inhibition in an in vitro enzyme assay.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Inhibidores de la Dipeptidil-Peptidasa IV/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Simulación del Acoplamiento Molecular , Sulfonamidas/farmacología , Sulfonamidas/química , Dipeptidil Peptidasa 4/química , Pruebas de Enzimas
20.
Molecules ; 28(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37513175

RESUMEN

Current oral medications for type 2 diabetes target a single main physiological mechanism. They either activate or inhibit receptors to enhance insulin sensitivity, increase insulin secretion, inhibit glucose absorption, or inhibit glucose production. In advanced stages, combination therapy may be required because of the limited efficacy of single-target drugs; however, medications are becoming more costly, and there is also the risk of developing the combined side effects of each drug. Thus, identifying a multi-target drug may be the best strategy to improve treatment efficacy. This study sees the potential of 2657 Filipino phytochemicals as a source of natural inhibitors against four targets of diabetes: PTP1B, DPP-4, SGLT-2, and FBPase. Different computer-aided drug discovery techniques, including ADMET profiling, DFT optimization, molecular docking, MD simulations, and MM/PBSA energy calculations, were employed to elucidate the stability and determine the binding affinity of the candidate ligands. Through in silico methods, we have identified seven potential natural inhibitors against PTP1B, DPP-4, and FBPase, and ten against SGLT-2. Eight plants containing at least one natural inhibitor of each protein target were also identified. It is recommended to further investigate the plants' potential to be transformed into a safe and scientifically validated multi-target drug for diabetes therapies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Hipoglucemiantes/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Filipinas , Inhibidores de la Dipeptidil-Peptidasa IV/química , Glucosa/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA