Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
Más filtros

Intervalo de año de publicación
1.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284547

RESUMEN

The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in Caenorhabditis elegans, Drosophila and rodents, but its mechanism is not well defined. Here, we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril-hypersensitive mutants. We identified a missense mutation that causes a partial loss of function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNA interference promoted dauer larvae formation, suggesting that acn-1 is a daf gene. Captopril-mediated lifespan extension was abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 influence lifespan by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control.


Asunto(s)
Proteínas de Caenorhabditis elegans , Captopril , Animales , Humanos , Ratones , Captopril/farmacología , Captopril/metabolismo , Caenorhabditis elegans/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Envejecimiento , Longevidad/fisiología , Receptor de Insulina/metabolismo , Mutación/genética , Mamíferos/metabolismo
2.
Arch Biochem Biophys ; 751: 109851, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065251

RESUMEN

In diabetes, increased oxidative stress and impaired trace element metabolism play an important role in the pathogenesis of diabetic nephropathy. The objective of this research was to examine the outcomes of blocking the renin-angiotensin system, using either the angiotensin-converting enzyme inhibitor (ACEI), perindopril, or the angiotensin II type 1 (AT1) receptor blocker, irbesartan, on oxidative stress and trace element levels such as Zn, Mg, Cu, and Fe in the kidneys of diabetic rats that had been induced with streptozotocin. Thirty-two Wistar albino male rats were equally divided into four groups. The first group was used as a control. The second group of rats developed diabetes after receiving a single intraperitoneal dose of STZ. The third and fourth groups of rats had STZ-induced diabetes and received daily dosages of irbesartan (15 mg/kg b.w/day) and perindopril (6 mg/kg b.w/day) treatment, respectively. Biochemical analysis of the kidneys showed a distinct increase in oxidative stress, indicated by heightened levels of malondialdehyde (MDA) and decreased superoxide dismutase (SOD) activities, as well as reduced glutathione (GSH) levels in the kidneys of diabetic rats. In the kidneys of diabetic rats, the mean levels of Fe and Cu were found to be significantly higher than those of the control group. Additionally, the mean levels of Zn and Mg were significantly lower in the diabetic rats compared to the control rats. Both perindopril and irbesartan decreased significantly MDA content and increased SOD activities and GSH levels in the kidneys of rats with diabetes. The Zn and Mg concentrations in the kidneys of diabetic rats treated with perindopril and irbesartan were markedly higher than in untreated STZ-diabetic rats, while the Cu and Fe concentrations were significantly lower. The urinary excretion of rats treated with perindopril and irbesartan showed a pronounced increase in Cu levels, along with a significant reduction in Zn and Mg levels. Although diabetic rats demonstrated degenerative morphological alterations in their kidneys, both therapies also improved diabetes-induced histopathological modifications in the kidneys. Finally, the present results suggest that manipulating the levels of Zn, Mg, Cu, and Fe - either through ACE inhibition or by blocking AT1 receptors - could be advantageous in reducing lipid peroxidation and increasing antioxidant concentration in the kidneys of diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Oligoelementos , Ratas , Animales , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Irbesartán/metabolismo , Irbesartán/farmacología , Irbesartán/uso terapéutico , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Perindopril/metabolismo , Perindopril/farmacología , Perindopril/uso terapéutico , Estreptozocina/metabolismo , Estreptozocina/farmacología , Estreptozocina/uso terapéutico , Ratas Wistar , Diabetes Mellitus Experimental/metabolismo , Oligoelementos/metabolismo , Oligoelementos/farmacología , Oligoelementos/uso terapéutico , Riñón/patología , Nefropatías Diabéticas/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
3.
Amino Acids ; 56(1): 40, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847939

RESUMEN

Pelodiscus sinensis meat is a nutritional food and tonic with angiotensin-converting enzyme (ACE) inhibitory activities. To identify the bioactive substances responsible, several bioinformatics methods were integrated to enable a virtual screening for bioactive peptides in proteins identified within a water-soluble protein fraction of Pelodiscus sinensis meat by Shotgun proteomics. The peptides were generated from the identified proteins by in silico proteolysis using six proteases. A comparison of the numbers of proteins suitable for digestion with each enzyme and the iBAQ (intensity-based absolute quantification) values for these proteins revealed that bromelain and papain were the most suitable proteases for this sample. Next, the water solubility, toxicity, and ADMET (absorption/distribution/metabolism/excretion/toxicity) properties of these peptides were evaluated in silico. Finally, a novel ACE inhibitory peptide IEWEF with an IC50 value of 41.33 µM was identified. The activity of the synthesized peptide was verified in vitro, and it was shown to be a non-competitive ACE inhibitor. Molecular docking revealed that IEWEF could tightly bind to C-ACE, and N-ACE with energies less than 0 kJ mol-1, and the peptide IEWEF can form hydrogen bonds with C-ACE and N-ACE respectively. These results provide evidence that bioactive peptides in the water-soluble protein fraction account for (at least) some of the ACE inhibitory activities observed in Pelodiscus sinensis meat. Furthermore, our research provides a workflow for the efficient identification of novel ACE inhibitory peptides from complex protein mixtures.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Simulación del Acoplamiento Molecular , Péptidos , Hidrolisados de Proteína , Solubilidad , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Animales , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Agua/química , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Papaína/metabolismo , Papaína/antagonistas & inhibidores , Papaína/química , Proteínas de Peces/química , Proteínas de Peces/metabolismo
4.
Bioorg Chem ; 150: 107602, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959647

RESUMEN

The binding affinities and interactions between eight drug candidates, both commercially available (candesartan; losartan; losartan carboxylic acid; nirmatrelvir; telmisartan) and newly synthesized benzimidazole-N-biphenyltetrazole (ACC519T), benzimidazole bis-N,N'-biphenyltetrazole (ACC519T(2) and 4-butyl-N,N-bis([2-(2H-tetrazol-5-yl)biphenyl-4-yl]) methyl (BV6), and the active site of angiotensin-converting enzyme-2 (ACE2) were evaluated for their potential as inhibitors against SARS-CoV-2 and regulators of ACE2 function through Density Functional Theory methodology and enzyme activity assays, respectively. Notably, telmisartan and ACC519T(2) exhibited pronounced binding affinities, forming strong interactions with ACE2's active center, favorably accepting proton from the guanidinium group of arginine273. The ordering of candidates by binding affinity and reactivity descriptors, emerged as telmisartan > ACC519T(2) > candesartan > ACC519T > losartan carboxylic acid > BV6 > losartan > nirmatrelvir. Proton transfers among the active center amino acids revealed their interconnectedness, highlighting a chain-like proton transfer involving tyrosine, phenylalanine, and histidine. Furthermore, these candidates revealed their potential antiviral abilities by influencing proton transfer within the ACE2 active site. Furthermore, through an in vitro pharmacological assays we determined that candesartan and the BV6 derivative, 4-butyl-N,N0-bis[20-2Htetrazol-5-yl)bipheyl-4-yl]methyl)imidazolium bromide (BV6(K+)2) also contain the capacity to increase ACE2 functional activity. This comprehensive analysis collectively underscores the promise of these compounds as potential therapeutic agents against SARS-CoV-2 by targeting crucial protein interactions.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Enzima Convertidora de Angiotensina 2 , Teoría Funcional de la Densidad , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Humanos , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/química , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/química , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , COVID-19/virología , Relación Estructura-Actividad , Estructura Molecular , Bencimidazoles/farmacología , Bencimidazoles/química , Tetrazoles/farmacología , Tetrazoles/química , Tetrazoles/síntesis química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Tratamiento Farmacológico de COVID-19
5.
J Enzyme Inhib Med Chem ; 39(1): 2293639, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38153110

RESUMEN

The Libyan Strawberry, Arbutus pavarii Pampan (ARB), is an endemic Jebel Akhdar plant used for traditional medicine. This study presents the antioxidant and hepatoprotective properties of ARB fruit-extract. ARB phytochemical analysis indicated the presence of 354.54 GAE and 36.2 RE of the phenolics and flavonoids. LC-MS analysis identified 35 compounds belonging to phenolic acids, procyanidins, and flavonoid glycosides. Gallic acid, procyanidin dimer B3, ß-type procyanidin trimer C, and quercetin-3-O-glucoside were the major constituents of the plant extract. ARB administration to paracetamol (PAR)-intoxicated rats reduced serum ALT, AST, bilirubin, hepatic tissue MDA and proinflammatory markers; TNF-α and IL-6 with an increase in tissue GSH level and SOD activity. Histological and immunohistochemical studies revealed that ARB restored the liver histology and significantly reduced the tissue expression of caspase 3, IL-1B, and NF-KB in PAR-induced liver damage. Docking analysis disclosed good binding affinities of some compounds with XO, COX-1, 5-LOX, and PI3K.


Asunto(s)
Antioxidantes , Frutas , Ratas , Animales , Antioxidantes/química , Antagonistas de Receptores de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hígado/metabolismo , Flavonoides/farmacología , Estrés Oxidativo
6.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201758

RESUMEN

The average content of casein in yak milk is 40.2 g/L. Casein can be degraded by enzymatic digestion or food processing to produce abundant degradation peptides. International researchers have studied the degradation peptides of yak milk casein by using multiple techniques and methods, such as in vitro activity tests, cellular experiments, proteomics, bioinformatics, etc., and found that the degradation peptides have a wide range of functional activities that are beneficial to the human body, such as angiotensin-converting enzyme (ACE) inhibitory, antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancer, and immunomodulatory activities, etc., and it has been proved that the types and strengths of functional activities are closely related to the structural characteristics of the peptides. This paper describes the characteristics of yak milk proteins, the functional activities, and mechanism of action of degraded peptides. Based on the types of functional activities of yak milk casein degradation peptides, we classified and elucidated the effects of structural factors, such as peptide molecular weight, peptide length, amino acid sequence, physicochemical properties, electrical charge, hydrophobicity, spatial conformation, chain length, and the type of enzyme on these activities. It reveals the great potential of yak milk casein degradation peptides as functional active peptide resources and as auxiliary treatments for diseases. It also provides important insights for analyzing yak casein degradation peptide activity and exploring high-value utilization.


Asunto(s)
Caseínas , Leche , Péptidos , Caseínas/química , Caseínas/metabolismo , Animales , Leche/química , Bovinos , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Secuencia de Aminoácidos , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Proteolisis
7.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000571

RESUMEN

Hypertension is a major controllable risk factor associated with cardiovascular disease (CVD) and overall mortality worldwide. Most people with hypertension must take medications that are effective in blood pressure management but cause many side effects. Thus, it is important to explore safer antihypertensive alternatives to regulate blood pressure. In this study, peanut protein concentrate (PPC) was hydrolyzed with 3-5% Alcalase for 3-10 h. The in vitro angiotensin-converting enzyme (ACE) and renin-inhibitory activities of the resulting peanut protein hydrolysate (PPH) samples and their fractions of different molecular weight ranges were determined as two measures of their antihypertensive potentials. The results show that the crude PPH produced at 4% Alcalase for 6 h of hydrolysis had the highest ACE-inhibitory activity with IC50 being 5.45 mg/mL. The PPH samples produced with 3-5% Alcalase hydrolysis for 6-8 h also displayed substantial renin-inhibitory activities, which is a great advantage over the animal protein-derived bioactive peptides or hydrolysate. Remarkably higher ACE- and renin-inhibitory activities were observed in fractions smaller than 5 kDa with IC50 being 0.85 and 1.78 mg/mL. Hence, the PPH and its small molecular fraction produced under proper Alcalase hydrolysis conditions have great potential to serve as a cost-effective anti-hypertensive ingredient for blood pressure management.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Arachis , Peptidil-Dipeptidasa A , Proteínas de Plantas , Hidrolisados de Proteína , Renina , Subtilisinas , Subtilisinas/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Arachis/química , Renina/metabolismo , Renina/antagonistas & inhibidores , Hidrólisis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/química , Antihipertensivos/farmacología , Antihipertensivos/química , Humanos
8.
Brain Behav Immun ; 108: 255-268, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36535607

RESUMEN

The metabolic syndrome has been associated to chronic peripheral inflammation and related with neuroinflammation and neurodegeneration, including Parkinson's disease. However, the responsible mechanisms are unclear. Previous studies have involved the brain renin-angiotensin system in progression of Parkinson's disease and the angiotensin receptor type 1 (AT1) has been recently revealed as a major marker of dopaminergic vulnerability in humans. Dysregulation of tissue renin-angiotensin system is a key common mechanism for all major components of metabolic syndrome. Circulating AT1 agonistic autoantibodies have been observed in several inflammation-related peripheral processes, and activation of AT1 receptors of endothelial cells, dopaminergic neurons and glial cells have been observed to disrupt endothelial blood -brain barrier and induce neurodegeneration, respectively. Using a rat model, we observed that metabolic syndrome induces overactivity of nigral pro-inflammatory renin-angiotensin system axis, leading to increase in oxidative stress and neuroinflammation and enhancing dopaminergic neurodegeneration, which was inhibited by treatment with AT1 receptor blockers (ARBs). In rats, metabolic syndrome induced the increase in circulating levels of LIGHT and other major pro-inflammatory cytokines, and 27-hydroxycholesterol. Furthermore, the rats showed a significant increase in serum levels of proinflammatory AT1 and angiotensin converting enzyme 2 (ACE2) autoantibodies, which correlated with levels of several metabolic syndrome parameters. We also found AT1 and ACE2 autoantibodies in the CSF of these rats. Effects of circulating autoantibodies were confirmed by chronic infusion of AT1 autoantibodies, which induced blood-brain barrier disruption, an increase in the pro-inflammatory renin-angiotensin system activity in the substantia nigra and a significant enhancement in dopaminergic neuron death in two different rat models of Parkinson's disease. Observations in the rat models, were analyzed in a cohort of parkinsonian and non-parkinsonian patients with or without metabolic syndrome. Non-parkinsonian patients with metabolic syndrome showed significantly higher levels of AT1 autoantibodies than non-parkinsonian patients without metabolic syndrome. However, there was no significant difference between parkinsonian patients with metabolic syndrome or without metabolic syndrome, which showed higher levels of AT1 autoantibodies than non-parkinsonian controls. This is consistent with our recent studies, showing significant increase of AT1 and ACE2 autoantibodies in parkinsonian patients, which was related to dopaminergic degeneration and neuroinflammation. Altogether may lead to a vicious circle enhancing the progression of the disease that may be inhibited by strategies against production of these autoantibodies or AT1 receptor blockers (ARBs).


Asunto(s)
Síndrome Metabólico , Enfermedad de Parkinson , Animales , Humanos , Ratas , Angiotensina II/metabolismo , Angiotensina II/farmacología , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Autoanticuerpos/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Síndrome Metabólico/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo
9.
Circ Res ; 128(7): 1062-1079, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793331

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associates with a considerable high rate of mortality and represents currently the most important concern in global health. The risk of more severe clinical manifestation of COVID-19 is higher in males and steeply raised with age but also increased by the presence of chronic comorbidities. Among the latter, early reports suggested that arterial hypertension associates with higher susceptibility to SARS-CoV-2 infection, more severe course and increased COVID-19-related deaths. Furthermore, experimental studies suggested that key pathophysiological hypertension mechanisms, such as activation of the renin-angiotensin system (RAS), may play a role in COVID-19. In fact, ACE2 (angiotensin-converting-enzyme 2) is the pivotal receptor for SARS-CoV-2 to enter host cells and provides thus a link between COVID-19 and RAS. It was thus anticipated that drugs modulating the RAS including an upregulation of ACE2 may increase the risk for infection with SARS-CoV-2 and poorer outcomes in COVID-19. Since the use of RAS-blockers, ACE inhibitors or angiotensin receptor blockers, represents the backbone of recommended antihypertensive therapy and intense debate about their use in the COVID-19 pandemic has developed. Currently, a direct role of hypertension, independent of age and other comorbidities, as a risk factor for the SARS-COV-2 infection and COVID-19 outcome, particularly death, has not been established. Similarly, both current experimental and clinical studies do not support an unfavorable effect of RAS-blockers or other classes of first line blood pressure lowering drugs in COVID-19. Here, we review available data on the role of hypertension and its management on COVID-19. Conversely, some aspects as to how the COVID-19 affects hypertension management and impacts on future developments are also briefly discussed. COVID-19 has and continues to proof the critical importance of hypertension research to address questions that are important for global health.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/epidemiología , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antihipertensivos/metabolismo , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , COVID-19/metabolismo , Humanos , Hipertensión/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Factores de Riesgo
10.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003732

RESUMEN

Peritubular capillary rarefaction is a recurrent aspect of progressive nephropathies. We previously found that peritubular capillary density was reduced in BTBR ob/ob mice with type 2 diabetic nephropathy. In this model, we searched for abnormalities in the ultrastructure of peritubular capillaries, with a specific focus on the endothelial glycocalyx, and evaluated the impact of treatment with an angiotensin-converting enzyme inhibitor (ACEi). Mice were intracardially perfused with lanthanum to visualise the glycocalyx. Transmission electron microscopy analysis revealed endothelial cell abnormalities and basement membrane thickening in the peritubular capillaries of BTBR ob/ob mice compared to wild-type mice. Remodelling and focal loss of glycocalyx was observed in lanthanum-stained diabetic kidneys, associated with a reduction in glycocalyx components, including sialic acids, as detected through specific lectins. ACEi treatment preserved the endothelial glycocalyx and attenuated the ultrastructural abnormalities of peritubular capillaries. In diabetic mice, peritubular capillary damage was associated with an enhanced tubular expression of heparanase, which degrades heparan sulfate residues of the glycocalyx. Heparanase was also detected in renal interstitial macrophages that expressed tumor necrosis factor-α. All these abnormalities were mitigated by ACEi. Our findings suggest that, in experimental diabetic nephropathy, preserving the endothelial glycocalyx is important in order to protect peritubular capillaries from damage and loss.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Capilares/patología , Glicocálix/metabolismo , Lantano , Riñón/patología , Ratones Endogámicos
11.
Am J Physiol Gastrointest Liver Physiol ; 322(4): G446-G456, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35138187

RESUMEN

Angiotensin receptor blockers have been reported to be beneficial to liver fibrosis, but the relevant molecular and cellular mechanisms remain unclear. We herein investigated whether low-dose angiotensin receptor blocker alleviated liver fibrosis through mechanotransduction regulation. Hydrostatic pressure-induced liver fibrosis model was established in mice by ligating partially the inferior vena cava, and then randomly received a very low dose of losartan (0.5 mg/kg) or placebo treatment for 8 weeks. We found that losartan administration interfered the expression of several mechanotransductive molecules, and effectively alleviated liver fibrosis. Using a commercial device, we further confirmed that ex vivo loading of hepatic stellate cells to 50 mmHg hydrostatic pressure for 24 h significantly upregulated RhoA, ROCK, AT1R, and p-MLC2, which was effectively attenuated by adding 10 nM losartan in medium. Our in vivo and ex vivo experimental data suggest that low-dose angiotensin receptor blockers may alleviate hydrostatic pressure-induced liver fibrosis by altering the mechanotransduction properties of hepatic stellate cells.NEW & NOTEWORTHY Our ex vivo and in vivo experiments clearly indicated that low-dose losartan alleviated liver fibrosis, likely by modulating the mechanotransduction properties of HSCs. Uncovering the biomechanical signaling pathway of ARB treatment on liver fibrosis will be helpful to develop novel molecular targeting therapy for liver diseases.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Células Estrelladas Hepáticas , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Losartán/farmacología , Losartán/uso terapéutico , Mecanotransducción Celular , Ratones
12.
J Sci Food Agric ; 102(3): 1095-1104, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34312867

RESUMEN

BACKGROUND: Angiotensin-converting enzyme (ACE) inhibitory peptides are potential alternatives to the synthetic ACE inhibitory drugs, but the in vivo antihypertensive effects of most of them have not been confirmed. The tripeptide Leu-Pro-Pro (LPP) is one of the few peptides that have been proved clinically effective in reducing the blood pressure of hypertensive patients and casein is currently its major source. LPP is contained in multiple fractions of zein, and corn gluten meal (CGM) is hence a potential new source of LPP. For this purpose, CGM was fermented with a Lactobacillus helveticus strain and the medium composition was optimized; the decoloration of the resultant hydrolysate was investigated as well. RESULTS: LPP could be successfully released from CGM by fermentation with the strain Lactobacillus helveticus CICC 22536. The highest LPP content and protein recovery of 561 mg kg-1 and 14.92% occurred in the medium containing 20 g L-1 glucose, 15 g L-1 beef extract, 60 g L-1 CGM, 10 g L-1 CaCO3 , 0.5 g L-1 NaCl, and inoculation amount 6%. The supplementation of Flavourzyme® further improved the two parameters to 662 mg kg-1 and 36.94%, respectively. The permeate of the hydrolysate after ultrafiltration through a 5 kDa membrane could be effectively decolored by the macroporous resin XAD-16 without notable protein loss, and its LPP content was further boosted to 743 mg kg-1 . CONCLUSION: CGM is a potential new source of LPP and its ultrafiltered and decolored hydrolysate could be used to develop new antihypertensive functional foods. © 2021 Society of Chemical Industry.


Asunto(s)
Glútenes/metabolismo , Lactobacillus helveticus/metabolismo , Oligopéptidos/metabolismo , Zea mays/química , Zea mays/microbiología , Inhibidores de la Enzima Convertidora de Angiotensina/análisis , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Antihipertensivos/análisis , Antihipertensivos/aislamiento & purificación , Antihipertensivos/metabolismo , Fermentación , Glútenes/análisis , Oligopéptidos/análisis , Oligopéptidos/aislamiento & purificación
13.
J Clin Rheumatol ; 28(7): 349-353, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35662232

RESUMEN

BACKGROUND/OBJECTIVES: Endothelial dysfunction and reduced number of endothelial progenitor cells (EPCs) in peripheral blood are contributing factors to cardiovascular disease in systemic lupus erythematosus (SLE) patients. Endothelial progenitor cell proliferation is regulated by vascular endothelial growth factor (VEGF). Angiotensin-converting enzyme inhibitors reduce cardiovascular mortality in patients with coronary heart disease. METHODS: This was a randomized trial including 37 female SLE patients without cardiovascular risk factors allocated into 2 groups: 19 patients received ramipril 10 mg/d for 12 weeks (IG) and 18 patients maintained without ramipril (CG). Endothelial function was assessed by brachial artery ultrasound measuring flow-mediated dilation, and EPCs were quantified by flow cytometry and cell culture, at baseline and after 12 weeks. Serum VEGF levels were measured by enzyme-linked immunosorbent assay. Statistical analysis was intention to treat. p < 0.05 was considered significant. RESULTS: After 12 weeks, higher flow-mediated dilation (6.17% vs. 11.14%, p < 0.001) was observed in IG, without change in CG (5.37% vs. 5.02%, p = 0.630). Higher number of EPC colony-forming units was also observed in IG (21.3 ± 10.4 vs. 31.6 ± 8.5, p < 0.001), without difference in CG ( p = 0.714). No difference was found in EPCs evaluated by flow cytometry. Vascular endothelial growth factor level increased after 12 weeks in IG ( p = 0.048), with no difference in CG ( p = 0.661). CONCLUSION: Ramipril improved endothelial function and increased the numbers of EPCs evaluated by cell culture and VEGF levels in SLE patients without cardiovascular risk factors. These data suggest that angiotensin-converting enzyme inhibitor bring an extra benefit beyond the hypotensive action and should be considered as a preferred antihypertensive drug in SLE patients.


Asunto(s)
Células Progenitoras Endoteliales , Lupus Eritematoso Sistémico , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antihipertensivos , Endotelio Vascular/metabolismo , Femenino , Humanos , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Ramipril/metabolismo , Ramipril/farmacología , Ramipril/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 321(4): H728-H734, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34477463

RESUMEN

Hypertension is characterized by systemic microvascular endothelial dysfunction, in part due to a functional absence of hydrogen sulfide (H2S)-mediated endothelium-dependent dilation. Treatment with a sulfhydryl-donating ACE inhibitor (SH-ACE inhibitor) improves endothelial function in preclinical models of hypertension. To date, no studies have directly assessed the effects of SH-ACE-inhibitor treatment on H2S-dependent vasodilation in humans with hypertension. We hypothesized that SH-ACE-inhibitor treatment would improve H2S-mediated endothelium-dependent vasodilation. Ten adults with hypertension [1 woman and 9 men; 56 ± 9 yr; systolic blood pressure (SBP): 141 ± 8.5 mmHg; diastolic blood pressure (DBP): 90.3 ± 6 mmHg] were treated (16 wk) with the SH-ACE-inhibitor captopril. Red blood cell flux (laser-Doppler flowmetry) was measured continuously during graded intradermal microdialysis perfusion of the endothelium-dependent agonist acetylcholine (ACh; 10-10 to 10-1 M) alone (control) and in combination with an inhibitor of enzymatic H2S production [10-3 M aminooxyacetate (AOAA)] preintervention and postintervention. Cutaneous vascular conductance (CVC; flux/mmHg) was calculated and normalized to the site-specific maximal CVC (0.028 M sodium nitroprusside and local heat to 43°C). Area under the curve was calculated using the trapezoid method. The 16-wk SH-ACE-inhibitor treatment resulted in a reduction of blood pressure (systolic BP: 129 ± 10 mmHg; diastolic BP: 81 ± 9 mmHg, both P < 0.05). Preintervention, inhibition of H2S production had no effect on ACh-induced vasodilation (316 ± 40 control vs. 322 ± 35 AU AOAA; P = 0.82). Captopril treatment improved ACh-induced vasodilation (316 ± 40 pre vs. 399 ± 55 AU post; P = 0.04) and increased the H2S-dependent component of ACh-induced vasodilation (pre: -6.6 ± 65.1 vs. post: 90.2 ± 148.3 AU, P = 0.04). These data suggest that SH-ACE-inhibitor antihypertensive treatment improves cutaneous microvascular endothelium-dependent vasodilation in adults with hypertension, in part via H2S-dependent mechanisms.NEW & NOTEWORTHY This is the first study to prospectively assess the effects of sulfhydryl antihypertensive treatment on microvascular endothelial function in adults with hypertension. Our data suggest that 16 wk of SH-ACE-inhibitor antihypertensive treatment improves cutaneous microvascular endothelium-dependent vasodilation in middle-aged adults with hypertension, in part via H2S-dependent mechanisms.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Captopril/uso terapéutico , Sulfuro de Hidrógeno/metabolismo , Hipertensión/tratamiento farmacológico , Microcirculación/efectos de los fármacos , Piel/irrigación sanguínea , Vasodilatación/efectos de los fármacos , Anciano , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Antihipertensivos/metabolismo , Captopril/metabolismo , Femenino , Humanos , Hipertensión/diagnóstico , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Prueba de Estudio Conceptual , Estudios Prospectivos , Factores de Tiempo , Resultado del Tratamiento
15.
Phys Chem Chem Phys ; 23(11): 6685-6694, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33710217

RESUMEN

Angiotensin-converting enzyme (ACE) is a well-known zinc metalloenzyme whose physiological functions are vital to blood pressure regulation and management of hypertension. The development of more efficient peptide inhibitors is of great significance for the prevention and treatment of hypertension. In this research, molecular dynamics (MD) simulations were implemented to study the specific binding mechanism and interaction between human ACE (hACE) and tetrapeptides, YIHP, YKHP, YLVR, and YRHP. The calculation of relative binding free energy on the one hand verified that YLVR, an experimentally identified inhibitor, has a stronger inhibitory effect and, on the other hand, indicated that YRHP is the "best" inhibitor with the strongest binding affinity. Inspection of atomic interactions discriminated the specific binding mode of each tetrapeptide inhibitor with hACE and explained the difference of their affinity. Moreover, in-depth analysis of the MD production trajectories, including clustering, principal component analysis, and dynamic network analysis, determined the dynamic correlation between tetrapeptides and hACE and obtained the communities' distribution of a protein-ligand complex. The present study provides essential insights into the binding mode and interaction mechanism of the hACE-peptide complex, which paves a path for designing effective anti-hypertensive peptides.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/química , Simulación de Dinámica Molecular , Oligopéptidos/química , Peptidil-Dipeptidasa A/química , Secuencia de Aminoácidos , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Sitios de Unión , Humanos , Oligopéptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Termodinámica
16.
Biochem J ; 477(7): 1241-1259, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32195541

RESUMEN

Angiotensin-converting enzyme (ACE) is best known for its formation of the vasopressor angiotensin II that controls blood pressure but is also involved in other physiological functions through the hydrolysis of a variety of peptide substrates. The enzyme contains two catalytic domains (nACE and cACE) that have different affinities for ACE substrates and inhibitors. We investigated whether nACE inhibitor backbones contain a unique property which allows them to take advantage of the hinging of nACE. Kinetic analysis showed that mutation of unique nACE residues, in both the S2 pocket and around the prime subsites (S') to their C-domain counterparts, each resulted in a decrease in the affinity of nACE specific inhibitors (SG6, 33RE and ketoACE-13) but it required the combined S2_S' mutant to abrogate nACE-selectivity. However, this was not observed with the non-domain-selective inhibitors enalaprilat and omapatrilat. High-resolution structures were determined for the minimally glycosylated nACE with the combined S2_S' mutations in complex with the ACE inhibitors 33RE (1.8 Å), omapatrilat (1.8 Å) and SG6 (1.7 Å). These confirmed that the affinities of the nACE-selective SG6, 33RE and ketoACE-13 are not only affected by direct interactions with the immediate environment of the binding site, but also by more distal residues. This study provides evidence for a more general mechanism of ACE inhibition involving synergistic effects of not only the S2, S1' and S2' subsites, but also residues involved in the sub-domain interface that effect the unique ways in which the two domains stabilize active site loops to favour inhibitor binding.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Dominio Catalítico , Metaloendopeptidasas/química , Metaloendopeptidasas/metabolismo , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Presión Sanguínea/fisiología , Cristalografía por Rayos X , Glicosilación , Humanos , Cinética , Ligandos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación , Peptidil-Dipeptidasa A/genética , Unión Proteica , Conformación Proteica en Lámina beta/genética , Sistema Renina-Angiotensina/fisiología
17.
Mar Drugs ; 19(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807119

RESUMEN

Angiotensin-I-converting enzyme (ACE) inhibitory peptides derived from marine organism have shown a blood pressure lowering effect with no side effects. A new affinity medium of Fe3O4@ZIF-90 immobilized ACE (Fe3O4@ZIF-90-ACE) was prepared and used in the purification of ACE inhibitory peptides from Wakame (Undaria pinnatifida) protein hydrolysate (<5 kDa). The Fe3O4@ZIF-90 nanoparticles were prepared by a one-pot synthesis and crude ACE extract from pig lung was immobilized onto it, which exhibited excellent stability and reusability. A novel ACE inhibitory peptide, KNFL (inhibitory concentration 50, IC50 = 225.87 µM) was identified by affinity purification using Fe3O4@ZIF-90-ACE combined with reverse phase-high performance liquid chromatography (RP-HPLC) and MALDI-TOF mass spectrometry. Lineweaver-Burk analysis confirmed the non-competitive inhibition pattern of KNFL, and molecular docking showed that it bound at a non-active site of ACE via hydrogen bonds. This demonstrates that affinity purification using Fe3O4@ZIF-90-ACE is a highly efficient method for separating ACE inhibitory peptides from complex protein mixtures and the purified peptide KNFL could be developed as a functional food ingredients against hypertension.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Cromatografía de Afinidad , Péptidos/aislamiento & purificación , Peptidil-Dipeptidasa A/metabolismo , Undaria/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Enlace de Hidrógeno , Hidrólisis , Simulación del Acoplamiento Molecular , Péptidos/metabolismo , Péptidos/farmacología , Unión Proteica , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Ecotoxicol Environ Saf ; 209: 111791, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33360211

RESUMEN

A recently isolated osmo-tolerant yeast Candida tropicalis A1, which could decolorize various azo dyes under high-salinity conditions, was systematically characterized in the present study. Stimulating dye-decolorization effectiveness and osmo-tolerance of the yeast by static magnetic field (SMF) was investigated and transcriptomic responses of the yeast to SMF was analyzed to propose possible mechanisms. The results demonstrated that the yeast A1 effectively decolorized (≥ 97.50% within 12 h) and detoxified (from high toxicity to low toxicity within 24 h) 70 mg/L Acid Red B (ARB) under the optimized conditions through a series of steps including naphthalene-amidine bond cleavage, reductive or oxidative deamination/desulfurization, open-loop of hydroxy-substituted naphthalene or benzene and TCA cycle. Moreover, dye decolorization performance and osmo-tolerance of the yeast A1 were further improved by 24.6 mT SMF. Genes encoding high-affinity hexose/glucose transporter proteins and NADH-ubiquinone oxidoreductase were up-regulated by 24.6 mT SMF, which might be responsible for the increase of dye decolorization. Significant up-regulation of glycerol-3-phosphate dehydrogenase and cell wall protein RHD3 suggested that osmo-tolerance was enhanced by 24.6 mT SMF through promoting production and intracellular accumulation of glycerol as compatible solute, as well as regulation of cell wall component. In conclusion, 24.6 mT SMF led to the up-regulation of related genes resulting in enhanced dye biodegradation efficiency and osmo-tolerance of the yeast A1.


Asunto(s)
Compuestos Azo/metabolismo , Biodegradación Ambiental , Candida tropicalis/fisiología , Antagonistas de Receptores de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Compuestos Azo/química , Candida tropicalis/metabolismo , Colorantes/química , Naftalenosulfonatos , Transcriptoma
19.
J Sci Food Agric ; 101(7): 3049-3055, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33179311

RESUMEN

BACKGROUND: The main objective of this study was to evaluate the safety and antihypertensive activity of rapeseed peptides and to investigate their potential synergy with captopril. RESULTS: The peptides were nontoxic with the maximum tolerated dose exceeding 25 g kg-1 BW d-1 for mice and they had angiotensin converting enzyme (ACE) inhibitory activity with IC50 value of 1.27 mg mL-1 . Rapeseed peptides did not have a synergistic effect with captopril on inhibiting ACE activity in simulated digestion tests in vitro. But in vivo they could synergistically augment the amplitude range of lowering blood pressure with captopril by approximately 9% and prolong the antihypertensive effect duration time by over 20% in antihypertension tests of spontaneously hypertensive rats. In addition, the inhibiting effect of rapeseed peptides on ACE activity was noticeable in some rat organs in vivo. Nevertheless, when compared to captopril group, the potential synergy of rapeseed peptides with captopril did not cause a further decrease in ACE activity in the organs but their synergy further improved levels of NO (12.7%) and endothelial nitric oxide synthase (74.1%) in rat serum. Further studies of some peptides identified from rapeseed peptides showed that some of the rapeseed peptides (Cys-Leu, Val-Ala-Pro) could markedly increase contents of NO and endothelial nitric oxide synthase. CONCLUSIONS: Rapeseed peptides have antihypertensive activity and they showed potential synergy with captopril in antihypertensive performance in vivo. The synergy was not from ACE inhibition but from other pathways, like improvement in endogenous vasodilator contents. © 2020 Society of Chemical Industry.


Asunto(s)
Antihipertensivos/administración & dosificación , Brassica napus/química , Hipertensión/tratamiento farmacológico , Péptidos/administración & dosificación , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Captopril/administración & dosificación , Sinergismo Farmacológico , Humanos , Hipertensión/enzimología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Endogámicos ICR , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Proteínas de Plantas/química , Ratas , Ratas Endogámicas SHR
20.
Phys Chem Chem Phys ; 22(48): 28434-28439, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33305304

RESUMEN

The sudden arrival of novel coronavirus disease 2019 (COVID-19) has stunned the world with its rapidly spreading virus. Remdesivir, a broad spectrum anti-viral drug, is now under in vitro and in vivo investigation as a potential agent against SARS-CoV-2. However, the results of this therapy were recently equivocal due to no significant benefit in the clinical trial. Herein, combination molecular docking with dissipative particle dynamics (DPD) simulations is used to theoretically design angiotensin-converting enzyme inhibitor (ACEI)-containing remdesivir-loaded PLGA nanoparticles (NPs) for anti-SARS-CoV-2 therapy. Based on the therapeutic and lung protective effect of ACEI, the classical lisinopril molecule covalently grafted onto PLGA (L-PLGA) has been used to encapsulate remdesivir. A binding model is used to confirm the interactions between lisinopril and ACE on the surface of cells, as well as remdesivir and its intracellular targeting protein (RNA-dependent RNA polymerase (RdRp)). Furthermore, DPD simulations are applied to study the nano-aggregation of drug-free L-PLGA, and remdesivir loaded in L-PLGA. The lisinopril molecules were directly demonstrated to be on the surface of L-PLGA NPs. Molecular docking proved that hydrogen bonding was decisive for the encapsulation of remdesivir. With an increase in concentration, remdesivir loaded L-PLGA formed spherical NPs, and then underwent precipitation. Similar to the above conditions, high remdesivir loading was also observed to cause precipitation formation. Thus, the optimized remdesivir NPs in our study give insights into a rational platform for formulation design against this global pandemic.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Antivirales/metabolismo , Portadores de Fármacos/química , Lisinopril/metabolismo , Nanopartículas/química , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Alanina/química , Alanina/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/química , Antivirales/química , Sinergismo Farmacológico , Humanos , Lisinopril/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA