Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621002

RESUMEN

The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state results in the loss of regenerative potential of the mammalian heart shortly after birth. Nonmuscle myosin IIB (NM IIB)-mediated actomyosin contractility regulates cardiomyocyte cytokinesis in the embryonic heart, and NM IIB levels decline after birth, suggesting a role for cellular tension in the regulation of cardiomyocyte cell cycle activity in the postnatal heart. To investigate the role of actomyosin contractility in cardiomyocyte cell cycle arrest, we conditionally activated ROCK2 kinase domain (ROCK2:ER) in the murine postnatal heart. Here, we show that α5/ß1 integrin and fibronectin matrix increase in response to actomyosin-mediated tension. Moreover, activation of ROCK2:ER promotes nuclear translocation of Yap, a mechanosensitive transcriptional co-activator, and enhances cardiomyocyte proliferation. Finally, we show that reduction of myocardial α5 integrin rescues the myocardial proliferation phenotype in ROCK2:ER hearts. These data demonstrate that cardiomyocytes respond to increased intracellular tension by altering their intercellular contacts in favor of cell-matrix interactions, leading to Yap nuclear translocation, thus uncovering a function for nonmuscle myosin contractility in promoting cardiomyocyte proliferation in the postnatal heart.


Asunto(s)
Actomiosina , Integrina alfa5 , Animales , Ratones , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Proliferación Celular , Integrina alfa5/metabolismo , Mamíferos/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(32): e2306731120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523555

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal disease affecting upper and lower motor neurons. Microglia directly interact with motor neurons and participate in the progression of ALS. Single-cell mass cytometry (CyTOF) analysis revealed prominent expression of α5 integrin in microglia and macrophages in a superoxide dismutase-1 G93A mouse model of ALS (SOD1G93A). In postmortem tissues from ALS patients with various clinical ALS phenotypes and disease duration, α5 integrin is prominent in motor pathways of the central and peripheral nervous system and in perivascular zones associated with the blood-brain barrier. In SOD1G93A mice, administration of a monoclonal antibody against α5 integrin increased survival compared to an isotype control and improved motor function on behavioral testing. Together, these findings in mice and in humans suggest that α5 integrin is a potential therapeutic target in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Corteza Motora , Ratones , Humanos , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Integrina alfa5/metabolismo , Ratones Transgénicos , Superóxido Dismutasa/metabolismo , Macrófagos/metabolismo , Modelos Animales de Enfermedad
3.
Exp Cell Res ; 441(1): 114151, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38992455

RESUMEN

PRELP is thought to be an inhibitor of the development and progression of a variety of malignancies. Metastasis is a major cause of death in patients with colorectal cancer, but the mechanism underlying the role of PRELP in colorectal cancer metastasis remains poorly understood. In this study, we found that PRELP was significantly higher in metastatic tissues than in non-metastatic tissues of colorectal cancer and was closely associated with poor prognosis of colorectal cancer patients. PRELP promotes growth and metastasis of colorectal cancer cells. PRELP reduces cell stiffness and adhesion. PRELP promoted EMT in colorectal cancer cells and that PRELP bind to integrin α5 to activate the integrin α5/FAK/AKT signaling pathway. In conclusion, we demonstrate that PRELP is upregulated in metastatic colorectal cancer, providing a potential prognostic marker and therapeutic target for the clinical management of metastatic colorectal cancer from a biomechanical perspective.


Asunto(s)
Adhesión Celular , Proliferación Celular , Neoplasias Colorrectales , Proteínas de la Matriz Extracelular , Glicoproteínas , Integrina alfa5 , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Movimiento Celular , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Integrina alfa5/metabolismo , Integrina alfa5/genética , Integrinas , Ratones Desnudos , Metástasis de la Neoplasia , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo
4.
Apoptosis ; 29(7-8): 1109-1125, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38796567

RESUMEN

Podocyte apoptosis or loss is the pivotal pathological characteristic of diabetic kidney disease (DKD). Insulin-like growth factor-binding protein 2 (IGFBP2) have a proinflammatory and proapoptotic effect on diseases. Previous studies have shown that serum IGFBP2 level significantly increased in DKD patients, but the precise mechanisms remain unclear. Here, we found that IGFBP2 levels obviously increased under a diabetic state and high glucose stimuli. Deficiency of IGFBP2 attenuated the urine protein, renal pathological injury and glomeruli hypertrophy of DKD mice induced by STZ, and knockdown or deletion of IGFBP2 alleviated podocytes apoptosis induced by high concentration of glucose or in DKD mouse. Furthermore, IGFBP2 facilitated apoptosis, which was characterized by increase in inflammation and oxidative stress, by binding with integrin α5 (ITGA5) of podocytes, and then activating the phosphorylation of focal adhesion kinase (FAK)-mediated mitochondrial injury, including membrane potential decreasing, ROS production increasing. Moreover, ITGA5 knockdown or FAK inhibition attenuated the podocyte apoptosis caused by high glucose or IGFBP2 overexpression. Taken together, these findings unveiled the insight mechanism that IGFBP2 increased podocyte apoptosis by mitochondrial injury via ITGA5/FAK phosphorylation pathway in DKD progression, and provided the potential therapeutic strategies for diabetic kidney disease.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Mitocondrias , Podocitos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Podocitos/metabolismo , Podocitos/patología , Animales , Ratones , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/genética , Masculino , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Estrés Oxidativo , Integrina alfa5/metabolismo , Integrina alfa5/genética , Ratones Endogámicos C57BL , Transducción de Señal , Fosforilación , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Ratones Noqueados , Integrinas
5.
Exp Dermatol ; 33(3): e15021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429832

RESUMEN

Langerhans cells (LCs) are mainly present in the epidermis and mucosa, and have important roles during skin infection. Migration of LCs to lymph nodes is essential for antigen presentation. However, due to the difficulties in isolating and culturing human LCs, it is not fully understood how LCs move and interact with the extracellular matrix (ECM) through their adhesion molecules such as integrin, during the immune responses. In this study, we aimed to investigate LC motility, cell shape and the role of integrin under inflammatory conditions using monocyte-derived Langerhans cells (moLCs) as a model. As a result, lipopolysaccharide (LPS) stimulation increased adhesion on fibronectin coated substrate and integrin α5 expression in moLCs. Time-lapse imaging of moLCs revealed that stimulation with LPS elongated cell shape, whilst decreasing their motility. Additionally, this decrease in motility was not observed when pre-treated with a neutralising antibody targeting integrin α5. Together, our data suggested that activation of LCs decreases their motility by promoting integrin α5 expression to enhance their affinity to the fibronectin, which may contribute to their migration during inflammation.


Asunto(s)
Integrina alfa5 , Células de Langerhans , Humanos , Fibronectinas/metabolismo , Inmunidad , Integrina alfa5/metabolismo , Integrinas/metabolismo , Lipopolisacáridos/farmacología , Monocitos
6.
Gerontology ; 70(8): 858-875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38824923

RESUMEN

INTRODUCTION: Hypertension can accelerate and aggravate the process of arterial ageing and calcification. However, the mechanism behind has yet to be well elucidated. METHODS: Here, we monitored the dynamic changes of fibronectin (FN)/α5 integrin, bone morphogenetic protein 2/matrix Gla protein (BMP2/MGP), and Runx2 in the aorta of spontaneously hypertensive rats (SHRs) and thoracic aortic vascular smooth muscle cells (VSMCs), also the phenotypic transformation of VSMCs during the process of arterial ageing and calcification. Further, study on arterial ageing and calcification through antagonist experiments at the molecular level was explored. RESULTS: We found extracellular FN and its α5 integrin receptor expressions were positively associated with arterial ageing and calcification in SHR during ageing, as well in VSMCs from SHR in vitro. Integrin receptor inhibitor of GRGDSP would delay this arterial ageing and calcification process. Moreover, the elevated FN and α5 integrin receptor expression evoked the disequilibrium of BMP2/MGP, where the expression of BMP2, a potent osteogenic inducer, increased while MGP, a calcification inhibitor, decreased. Furthermore, it was followed by the upregulation of Runx2 and the phenotypic transformation of VSMCs from the contractile phenotype into the osteoblast-like cells. Notably, BMP2 antagonist of rmNoggin was sufficient to ameliorate the ageing and calcification process of VSMCs and exogenous BMP2-adding accelerate and aggregate the process. CONCLUSION: Our study revealed that hypertension-associated arterial ageing and calcification might be a consequence that hypertension up-regulated FN and its high binding affinity integrin α5 receptor in the aortic wall, which in turn aggravated the imbalance of BMP2/MGP, promoted the transcription of Runx2, and induced the phenotypic transformation of VSMCs from the contractile phenotype into the osteoblast-like cells. Our study would provide insights into hypertension-associated arterial ageing and calcification and shed new light on the control of arterial calcification, especially for those with hypertension.


Asunto(s)
Envejecimiento , Proteína Morfogenética Ósea 2 , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Fibronectinas , Hipertensión , Proteína Gla de la Matriz , Músculo Liso Vascular , Fenotipo , Ratas Endogámicas SHR , Calcificación Vascular , Proteína Morfogenética Ósea 2/metabolismo , Animales , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Ratas , Fibronectinas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Calcificación Vascular/etiología , Masculino , Proteínas de la Matriz Extracelular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas de Unión al Calcio/metabolismo , Integrina alfa5/metabolismo , Integrina alfa5/genética , Células Cultivadas
7.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39063187

RESUMEN

Metastatic melanoma, a deadly form of skin cancer, often develops resistance to the BRAF inhibitor drug vemurafenib, highlighting the need for understanding the underlying mechanisms of resistance and exploring potential therapeutic strategies targeting integrins and TGF-ß signalling. In this study, the role of integrins and TGF-ß signalling in vemurafenib resistance in melanoma was investigated, and the potential of combining vemurafenib with cilengitide as a therapeutic strategy was investigated. In this study, it was found that the transcription of PAI1 and p21 was induced by acquired vemurafenib resistance, and ITGA5 levels were increased as a result of this resistance. The transcription of ITGA5 was mediated by the TGF-ß pathway in the development of vemurafenib resistance. A synergistic effect on the proliferation of vemurafenib-resistant melanoma cells was observed with the combination therapy of vemurafenib and cilengitide. Additionally, this combination therapy significantly decreased invasion and colony formation in these resistant cells. In conclusion, it is suggested that targeting integrins and TGF-ß signalling, specifically ITGA5, ITGB3, PAI1, and p21, may offer promising approaches to overcoming vemurafenib resistance, thereby improving outcomes for metastatic melanoma patients.


Asunto(s)
Resistencia a Antineoplásicos , Melanoma , Venenos de Serpiente , Vemurafenib , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Venenos de Serpiente/farmacología , Integrina beta3/metabolismo , Integrina beta3/genética , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Integrinas/metabolismo , Integrinas/antagonistas & inhibidores , Integrina alfa5/metabolismo , Integrina alfa5/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Indoles/farmacología , Indoles/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
8.
Gut ; 72(4): 710-721, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805487

RESUMEN

OBJECTIVE: Haematogenous dissemination is a prevalent route of colorectal cancer (CRC) metastasis. However, as the gatekeeper of vessels, the role of tumour pericytes (TPCs) in haematogenous metastasis remains largely unknown. Here, we aimed to investigate the heterogeneity of TPCs and their effects on CRC metastasis. DESIGN: TPCs were isolated from patients with CRC with or without liver metastases and analysed by single-cell RNA sequencing (scRNA-seq). Clinical CRC specimens were collected to analyse the association between the molecular profiling of TPCs and CRC metastasis. RNA-sequencing, chromatin immunoprecipitation-sequencing and bisulfite-sequencing were performed to investigate the TCF21-regulated genes and mechanisms underlying integrin α5 on TCF21 DNA hypermethylation. Pericyte-conditional Tcf21-knockout mice were constructed to investigate the effects of TCF21 in TPCs on CRC metastasis. Masson staining, atomic force microscopy, second-harmonic generation and two-photon fluorescence microscopy were employed to observe perivascular extracellular matrix (ECM) remodelling. RESULTS: Thirteen TPC subpopulations were identified by scRNA-seq. A novel subset of TCF21high TPCs, termed 'matrix-pericytes', was associated with liver metastasis in patients with CRC. TCF21 in TPCs increased perivascular ECM stiffness, collagen rearrangement and basement membrane degradation, establishing a perivascular metastatic microenvironment to instigate colorectal cancer liver metastasis (CRCLM). Tcf21 depletion in TPCs mitigated perivascular ECM remodelling and CRCLM, whereas the coinjection of TCF21high TPCs and CRC cells markedly promoted CRCLM. Mechanistically, loss of integrin α5 inhibited the FAK/PI3K/AKT/DNMT1 axis to impair TCF21 DNA hypermethylation in TCF21high TPCs. CONCLUSION: This study uncovers a previously unidentified role of TPCs in haematogenous metastasis and provides a potential diagnostic marker and therapeutic target for CRC metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/patología , ADN , Regulación Neoplásica de la Expresión Génica , Integrina alfa5/genética , Integrina alfa5/metabolismo , Neoplasias Hepáticas/patología , Metástasis de la Neoplasia , Pericitos/metabolismo , Pericitos/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Microambiente Tumoral
9.
Dev Biol ; 489: 122-133, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35732225

RESUMEN

Craniofacial skeletal elements are derived from cranial neural crest cells (CNCCs), which migrate along discrete paths and populate distinct pharyngeal arches, structures that are separated by the neighboring endodermal pouches (EPs). Interactions between the CNCCs and the endoderm are critical for proper craniofacial development. In zebrafish, integrin α5 (Itga5) functions in the endoderm to regulate formation of specifically the first EP (EP1) and the development of the hyoid cartilage. Here we show that fibronectin (Fn), a major component of the extracellular matrix (ECM), is also required for these developmental processes, and that the penetrance of defects in mutants is temperature-dependent. fn1a-/- embryos exhibited defects that are similar to, but much more severe than, those of itga5-/- embryos, and a loss of integrin av (itgav) function enhanced both endoderm and cartilage defects in itga5-/- embryos, suggesting that Itga5 and Itgav cooperate to transmit signals from Fn to regulate the development of endoderm and cartilage. Whereas the endodermal defects in itga5; itga5v-/- double mutant embryos were comparable to those of fn1a-/- mutants, the cartilage defects were much milder. Furthermore, Fn assembly was detected in migrating CNCCs, and the epithelial organization and differentiation of CNCC-derived arches were impaired in fn1a-/- embryos, indicating that Fn1 exerts functions in arch development that are independent of Itga5 and Itgav. Additionally, reduction of itga5 function in fn1a-/- embryos led to profound defects in body axis elongation, as well as in endoderm and cartilage formation, suggesting that other ECM proteins signal through Itga5 to regulate development of the endoderm and cartilage. Thus, our studies reveal that Fn1a and Itga5 have both overlapping and independent functions in regulating development of the pharyngeal endoderm and cartilage.


Asunto(s)
Endodermo , Integrina alfa5 , Animales , Región Branquial/metabolismo , Cartílago/metabolismo , Endodermo/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Integrina alfa5/genética , Integrina alfa5/metabolismo , Cresta Neural , Pez Cebra/genética , Pez Cebra/metabolismo
10.
J Biol Chem ; 298(1): 101459, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864055

RESUMEN

Respiratory silicosis is a preventable occupational disease that develops secondary to the aspiration of crystalline silicon dioxide (silica) into the lungs, activation of the NLRP3 inflammasome, and IL-1ß production. Cathepsin Z has been associated with the development of inflammation and IL-1ß production; however, the mechanism of how cathepsin Z leads to IL-1ß production is unknown. Here, the requirement for cathepsin Z in silicosis was determined using WT mice and mice deficient in cathepsin Z. The activation of the NLRP3 inflammasome in macrophages was studied using WT and cathepsin Z-deficient bone marrow-derived murine dendritic cells and the human monocytic cell line THP-1. The cells were activated with silica, and IL-1ß release was determined using enzyme-linked immunosorbent assay or IL-1ß bioassays. The relative contribution of the active domain or integrin-binding domain of cathepsin Z was studied using recombinant cathepsin Z constructs and the α5 integrin neutralizing antibody. We report that the lysosomal cysteine protease cathepsin Z potentiates the development of inflammation associated with respiratory silicosis by augmenting NLRP3 inflammasome-derived IL-1ß expression in response to silica. The secreted cathepsin Z functions nonproteolytically via the internal integrin-binding domain to impact caspase-1 activation and the production of active IL-1ß through integrin α5 without affecting the transcription levels of NLRP3 inflammasome components. This work reveals a regulatory pathway for the NLRP3 inflammasome that occurs in an outside-in fashion and provides a link between extracellular cathepsin Z and inflammation. Furthermore, it reveals a level of NLRP3 inflammasome regulation that has previously only been found downstream of extracellular pathogens.


Asunto(s)
Catepsina Z , Inflamasomas , Animales , Catepsina Z/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Integrina alfa5/metabolismo , Interleucina-1beta/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dióxido de Silicio/farmacología , Silicosis/metabolismo
11.
Development ; 147(12)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32540847

RESUMEN

In the developing neocortex, radially migrating neurons stop migration and form layers beneath the marginal zone (MZ). Reelin plays essential roles in these processes via its receptors, apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR). Although we recently reported that reelin causes neuronal aggregation via ApoER2, which is thought to be important for the subsequent layer formation, it remains unknown what effect reelin exerts via the VLDLR. Here, we found that ectopic reelin overexpression in the Vldlr-mutant mouse cortex causes neuronal aggregation, but without an MZ-like cell-sparse central region that is formed when reelin is overexpressed in the normal cortex. We also found that both the early-born and late-born Vldlr-deficient neurons invade the MZ and exhibit impaired dendrite outgrowth from before birth. Rescue experiments indicate that VLDLR suppresses neuronal invasion into the MZ via a cell-autonomous mechanism, possibly mediated by Rap1, integrin and Akt. These results suggest that VLDLR is not a prerequisite for reelin-induced neuronal aggregation and that the major role of VLDLR is to suppress neuronal invasion into the MZ during neocortical development.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Corteza Cerebral/metabolismo , Dendritas/metabolismo , Embrión de Mamíferos/metabolismo , Proteínas de la Matriz Extracelular/genética , Integrina alfa5/metabolismo , Proteínas Relacionadas con Receptor de LDL/deficiencia , Proteínas Relacionadas con Receptor de LDL/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Piramidales/metabolismo , Receptores de LDL/deficiencia , Receptores de LDL/genética , Proteína Reelina , Serina Endopeptidasas/genética , Proteínas de Unión al GTP rap1/metabolismo
12.
J Neuroinflammation ; 20(1): 5, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609298

RESUMEN

BACKGROUND: In response to brain injury or inflammation, astrocytes undergo hypertrophy, proliferate, and migrate to the damaged zone. These changes, collectively known as "astrogliosis", initially protect the brain; however, astrogliosis can also cause neuronal dysfunction. Additionally, these astrocytes undergo intracellular changes involving alterations in the expression and localization of many proteins, including αvß3 integrin. Our previous reports indicate that Thy-1, a neuronal glycoprotein, binds to this integrin inducing Connexin43 (Cx43) hemichannel (HC) opening, ATP release, and astrocyte migration. Despite such insight, important links and molecular events leading to astrogliosis remain to be defined. METHODS: Using bioinformatics approaches, we analyzed different Gene Expression Omnibus datasets to identify changes occurring in reactive astrocytes as compared to astrocytes from the normal mouse brain. In silico analysis was validated by both qRT-PCR and immunoblotting using reactive astrocyte cultures from the normal rat brain treated with TNF and from the brain of a hSOD1G93A transgenic mouse model. We evaluated the phosphorylation of Cx43 serine residue 373 (S373) by AKT and ATP release as a functional assay for HC opening. In vivo experiments were also performed with an AKT inhibitor (AKTi). RESULTS: The bioinformatics analysis revealed that genes of the PI3K/AKT signaling pathway were among the most significantly altered in reactive astrocytes. mRNA and protein levels of PI3K, AKT, as well as Cx43, were elevated in reactive astrocytes from normal rats and from hSOD1G93A transgenic mice, as compared to controls. In vitro, reactive astrocytes stimulated with Thy-1 responded by activating AKT, which phosphorylated S373Cx43. Increased pS373Cx43 augmented the release of ATP to the extracellular medium and AKTi inhibited these Thy-1-induced responses. Furthermore, in an in vivo model of inflammation (brain damage), AKTi decreased the levels of astrocyte reactivity markers and S373Cx43 phosphorylation. CONCLUSIONS: Here, we identify changes in the PI3K/AKT molecular signaling network and show how they participate in astrogliosis by regulating the HC protein Cx43. Moreover, because HC opening and ATP release are important in astrocyte reactivity, the phosphorylation of Cx43 by AKT and the associated increase in ATP release identify a potential therapeutic window of opportunity to limit the adverse effects of astrogliosis.


Asunto(s)
Lesiones Encefálicas , Conexina 43 , Animales , Ratones , Ratas , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Lesiones Encefálicas/metabolismo , Conexina 43/metabolismo , Gliosis/metabolismo , Inflamación/metabolismo , Integrina beta3/genética , Integrina beta3/metabolismo , Integrina beta3/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación hacia Arriba , Antígenos Thy-1/metabolismo , Integrina alfa5/metabolismo
13.
J Transl Med ; 21(1): 105, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765401

RESUMEN

BACKGROUND: The role of microRNA (miRNA) in modulating the function of cancer stem cells through diverse signaling pathway has been evidenced. We here identified a role of microRNA (miRNA) family, specifically miR-148/152, in gastric cancer and delineated its functional effects on gastric cancer stem cells. METHODS: Bioinformatics analysis was conducted to analyze expression of integrin α5 (ITGA5) which was verified through expression determination in clinical tissue samples. Next, the upstream regulatory factors of ITGA5 were determined. CD44+EpCAM (high) cells sorted from AGS cells subjected to gain-of-function experiments, followed by evaluation of their capacity of colony formation, generation of tumorosphere, cell migration and viability in vitro and xenograft tumor formation in vivo. RESULTS: ITGA5 was elevated in gastric cancer tissues and confirmed as a target gene of the miR-148/152 family members. The miR-148/152 family members were downregulated in gastric cancer tissues and cells. Decreased expression of miR-148/152 family members was also detected in gastric cancer stem cells. However, the raised expression led to reduced colony formation, tumorosphere, cell migration, cell viability, and drug resistance of CD44+EpCAM (high) AGS cells in vitro, and tumorigenesis in vitro. ITGA5 overexpression reversed the effect of the miR-148/152 family members. CONCLUSIONS: This study demonstrates that the miR-148/152 family members may prevent gastric cancer stem cell-like properties by targeting ITGA5, which can serve as an appealing target for gastric cancer treatment.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Regulación Neoplásica de la Expresión Génica , Integrina alfa5/genética , Integrina alfa5/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
14.
J Immunol ; 206(7): 1549-1560, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33637617

RESUMEN

Outside-in integrin signaling regulates cell fate decisions in a variety of cell types, including hematopoietic stem cells (HSCs). Our earlier published studies showed that interruption of periostin (POSTN) and integrin-αv (ITGAV) interaction induces faster proliferation in HSCs with developmental stage-dependent functional effects. In this study, we examined the role of POSTN-ITGAV axis in lymphohematopoietic activity in spleen that hosts a rare population of HSCs, the functional regulation of which is not clearly known. Vav-iCre-mediated deletion of Itgav in the hematopoietic system led to higher proliferation rates, resulting in increased frequency of primitive HSCs in the adult spleen. However, in vitro CFU-C assays demonstrated a poorer differentiation potential following Itgav deletion. This also led to a decrease in the white pulp area with a significant decline in the B cell numbers. Systemic deletion of its ligand, POSTN, phenocopied the effects noted in Vav-Itgav-/- mice. Histological examination of Postn-deficient spleen also showed an increase in the spleen trabecular areas. Importantly, these are the myofibroblasts of the trabecular and capsular areas that expressed high levels of POSTN within the spleen tissue. In addition, vascular smooth muscle cells also expressed POSTN. Through CFU-S12 assays, we showed that hematopoietic support potential of stroma in Postn-deficient splenic hematopoietic niche was defective. Overall, we demonstrate that POSTN-ITGAV interaction plays an important role in spleen lymphohematopoiesis.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Células Madre Hematopoyéticas/fisiología , Integrina alfa5/metabolismo , Linfocitos/fisiología , Miocitos del Músculo Liso/fisiología , Miofibroblastos/fisiología , Bazo/inmunología , Animales , Moléculas de Adhesión Celular/genética , Proliferación Celular , Técnicas de Silenciamiento del Gen , Hematopoyesis , Integrina alfa5/genética , Ratones , Ratones Noqueados , Transducción de Señal , Nicho de Células Madre
15.
J Am Soc Nephrol ; 33(3): 565-582, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35091451

RESUMEN

BACKGROUND: Endothelial cell injury is a common nidus of renal injury in patients and consistent with the high prevalence of AKI reported during the coronavirus disease 2019 pandemic. This cell type expresses integrin α5 (ITGA5), which is essential to the Tie2 signaling pathway. The microRNA miR-218-5p is upregulated in endothelial progenitor cells (EPCs) after hypoxia, but microRNA regulation of Tie2 in the EPC lineage is unclear. METHODS: We isolated human kidney-derived EPCs (hkEPCs) and surveyed microRNA target transcripts. A preclinical model of ischemic kidney injury was used to evaluate the effect of hkEPCs on capillary repair. We used a genetic knockout model to evaluate the effect of deleting endogenous expression of miR-218 specifically in angioblasts. RESULTS: After ischemic in vitro preconditioning, miR-218-5p was elevated in hkEPCs. We found miR-218-5p bound to ITGA5 mRNA transcript and decreased ITGA5 protein expression. Phosphorylation of 42/44 MAPK decreased by 73.6% in hkEPCs treated with miR-218-5p. Cells supplemented with miR-218-5p downregulated ITGA5 synthesis and decreased 42/44 MAPK phosphorylation. In a CD309-Cre/miR-218-2-LoxP mammalian model (a conditional knockout mouse model designed to delete pre-miR-218-2 exclusively in CD309+ cells), homozygotes at e18.5 contained avascular glomeruli, whereas heterozygote adults showed susceptibility to kidney injury. Isolated EPCs from the mouse kidney contained high amounts of ITGA5 and showed decreased migratory capacity in three-dimensional cell culture. CONCLUSIONS: These results demonstrate the critical regulatory role of miR-218-5p in kidney EPC migration, a finding that may inform efforts to treat microvascular kidney injury via therapeutic cell delivery.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Integrina alfa5/metabolismo , MicroARNs/fisiología , Lesión Renal Aguda/patología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor TIE-2/fisiología , Transducción de Señal/fisiología
16.
FASEB J ; 35(8): e21679, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34314542

RESUMEN

The ability to form a variety of cell-matrix connections is crucial for angiogenesis to take place. Without stable anchorage to the extracellular matrix (ECM), endothelial cells (ECs) are unable to sense, integrate and disseminate growth factor stimulated responses that drive growth of a vascular bed. Neuropilin-2 (NRP2) is a widely expressed membrane-bound multifunctional non-tyrosine kinase receptor, which has previously been implicated in influencing cell adhesion and migration by interacting with α5-integrin and regulating adhesion turnover. α5-integrin, and its ECM ligand fibronectin (FN) are both known to be upregulated during the formation of neo-vasculature. Despite being descriptively annotated as a candidate biomarker for aggressive cancer phenotypes, the EC-specific roles for NRP2 during developmental and pathological angiogenesis remain unexplored. The data reported here support a model whereby NRP2 actively promotes EC adhesion and migration by regulating dynamic cytoskeletal remodeling and by stimulating Rab11-dependent recycling of α5-integrin-p-FAK complexes to newly assembling adhesion sites. Furthermore, temporal depletion of EC-NRP2 in vivo impairs primary tumor growth by disrupting vessel formation. We also demonstrate that EC-NRP2 is required for normal postnatal retinal vascular development, specifically by regulating cell-matrix adhesion. Upon loss of endothelial NRP2, vascular outgrowth from the optic nerve during superficial plexus formation is disrupted, likely due to reduced FAK phosphorylation within sprouting tip cells.


Asunto(s)
Actinas/metabolismo , Células Endoteliales , Integrina alfa5/metabolismo , Pulmón/irrigación sanguínea , Neovascularización Patológica/metabolismo , Neuropilina-2/fisiología , Animales , Adhesión Celular , Línea Celular Tumoral , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Circ Res ; 127(8): 1074-1090, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32673515

RESUMEN

RATIONALE: Atherosclerosis preferentially occurs at specific sites of the vasculature where endothelial cells (ECs) are exposed to disturbed blood flow. Translocation of integrin α5 to lipid rafts promotes integrin activation and ligation, which is critical for oscillatory shear stress (OSS)-induced EC activation. However, the underlying mechanism of OSS promoted integrin α5 lipid raft translocation has remained largely unknown. OBJECTIVE: The objective of this study was to specify the mechanotransduction mechanism of OSS-induced integrin α5 translocation and subsequent EC activation. METHODS AND RESULTS: Mass spectrometry studies identified endothelial ANXA2 (annexin A2) as a potential carrier allowing integrin α5ß1 to traffic in response to OSS. Interference by siRNA of AnxA2 in ECs greatly decreased OSS-induced integrin α5ß1 translocation to lipid rafts, EC activation, and monocyte adhesion. Pharmacological and genetic inhibition of PTP1B (protein tyrosine phosphatase 1B) blunted OSS-induced integrin α5ß1 activation, which is dependent on Piezo1-mediated calcium influx in ECs. Furthermore, ANXA2 was identified as a direct substrate of activated PTP1B by mass spectrometry. Using bioluminescence resonance energy transfer assay, PTP1B-dephosphorylated ANXA2 at Y24 was found to lead to conformational freedom of the C-terminal core domain from the N-terminal domain of ANXA2. Immunoprecipitation assays showed that this unmasked ANXA2-C-terminal core domain specifically binds to an integrin α5 nonconserved cytoplasmic domain but not ß1. Importantly, ectopic lentiviral overexpression of an ANXA2Y24F mutant increased and shRNA against Ptp1B decreased integrin α5ß1 ligation, inflammatory signaling, and progression of plaques at atheroprone sites in apolipoprotein E (ApoE)-/- mice. However, the antiatherosclerotic effect of Ptp1B shRNA was abolished in AnxA2-/-ApoE-/- mice. CONCLUSIONS: Our data elucidate a novel endothelial mechanotransduction molecular mechanism linking atheroprone flow and activation of integrin α5ß1, thereby identifying a class of potential therapeutic targets for atherosclerosis. Graphic Abstract: An graphic abstract is available for this article.


Asunto(s)
Anexina A2/metabolismo , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Integrina alfa5/metabolismo , Integrina alfa5beta1/metabolismo , Microdominios de Membrana/metabolismo , Animales , Anexina A2/genética , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/patología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Integrina alfa5/genética , Integrina alfa5beta1/genética , Integrinas , Canales Iónicos/metabolismo , Masculino , Mecanotransducción Celular , Microdominios de Membrana/patología , Ratones Noqueados para ApoE , Placa Aterosclerótica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Flujo Sanguíneo Regional , Estrés Mecánico , Células THP-1
18.
Exp Cell Res ; 406(2): 112765, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34358523

RESUMEN

Nasopharyngeal carcinoma (NPC) originates in the nasopharynx epithelium. Although concurrent chemoradiation therapy followed by chemotherapy is considered as an effective treatment, there is substantial drug resistance in locally advanced NPC patients. One major contributor to the chemoresistance includes aberrant expression of cell adhesion molecules, such as integrin α and ß subunits, giving rise to cell adhesion-mediated drug resistance. Thus, the aim of this study was to investigate the effect of integrin α5 on the development of intrinsic cisplatin resistance in NPC and the associated underlying mechanisms using in vitro three-dimensional (3D) spheroid models, as well as induced cisplatin-resistant NPC (NPCcisR). We demonstrated that established 3D highly- (5-8F) and lowly- (6-10B) metastatic NPC spheroids overexpressed integrin α5 and aggravated their resistance to cisplatin. Besides, enhanced integrin α5 resulted in substantially reduced growth, corresponding to G0/G1 and G2/M cell cycle arrest. In addition, 5-8FcisR and 6-10BcisR cells in 3D forms synergistically strengthened endurance of their spheroids to cisplatin treatment as observed by increased resistance index (RI) and decreased apoptosis. Mechanistically, the aberrantly expressed integrin α5 decreased drug susceptibility in NPC spheroids by inactivating ERK and inhibition of caspase-3 inducing apoptosis. Furthermore, the effect of integrin α5 inducing intrinsic resistance was verified via treatment with ATN-161, a peptide inhibitor for integrin α5ß1. The results showed dramatic reduction in integrin α5 expression, reversal of ERK phosphorylation and caspase-3 cleavage, together with elevated cisplatin sensitivity, indicating regulation of innate drug resistance via integrin α5. Taken together, our findings suggest that integrin α5 could act as a promising target to enhance the chemotherapeutic sensitivity in NPC.


Asunto(s)
Apoptosis , Caspasa 3/química , Cisplatino/farmacología , Resistencia a Antineoplásicos , Integrina alfa5/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/química , Carcinoma Nasofaríngeo/patología , Esferoides Celulares/patología , Antineoplásicos/farmacología , Caspasa 3/genética , Caspasa 3/metabolismo , Técnicas de Cultivo de Célula , Puntos de Control del Ciclo Celular , Humanos , Integrina alfa5/genética , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/secundario , Fosforilación , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo
19.
Dev Biol ; 465(1): 46-57, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32628938

RESUMEN

Endocardium is critically important for proper function of the cardiovascular system. Not only does endocardium connect the heart to blood vasculature, it also plays an important role in heart morphogenesis, valve formation, and ventricular trabeculation. The extracellular protein Fibronectin (Fn1) promotes endocardial differentiation, but the signaling pathways downstream of Fn1 that regulate endocardial development are not understood. Here, we analyzed the role of the Fibronectin receptors Integrin alpha5 (Itga5) and Integrin alpha4 (Itga4) in zebrafish heart development. We show that itga5 mRNA is expressed in both endocardium and myocardium during early stages of heart development. Through analysis of both itga5 single mutants and itga4;itga5 double mutants, we show that loss of both itga5 and itga4 results in enhanced defects in endocardial differentiation and morphogenesis compared to loss of itga5 alone. Loss of both itga5 and itga4 results in cardia bifida and severe myocardial morphology defects. Finally, we find that loss of itga5 and itga4 results in abnormally narrow anterior endodermal sheet morphology. Together, our results support a model in which Itga5 and Itga4 cooperate to promote endocardial differentiation, medial migration of endocardial and myocardial cells, and morphogenesis of anterior endoderm.


Asunto(s)
Diferenciación Celular , Endocardio/embriología , Integrina alfa4/metabolismo , Integrina alfa5/metabolismo , Modelos Biológicos , Organogénesis , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Integrina alfa4/genética , Integrina alfa5/genética , Mutación , Pez Cebra/genética , Proteínas de Pez Cebra/genética
20.
Protein Expr Purif ; 185: 105893, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33933613

RESUMEN

MAP30 (Momordica antiviral protein 30kD) is a single-chain Ⅰ-type ribosome inactivating protein with a variety of biological activities, including anti-tumor ability. It was reported that MAP30 would serve as a novel and relatively safe agent for prophylaxis and treatment of liver cancer. To determine whether adding two tumor targeting peptides could improve the antitumor activities of MAP30, we genetically modified MAP30 with an RGD motif and a EGFRi motif, which is a ligand with high affinity for αvß3 integrins and with high affinity for EGFR. The recombinant protein ELRL-MAP30 (rELRL-MAP30) containing a GST-tag was expressed in E. coli. The rELRL-MAP30 was highly expressed in the soluble fraction after induction with 0.15 mM IPTG for 20 h at 16 °C. The purified rELRL-MAP30 appeared as a band on SDS-PAGE. It was identified by western blotting. Cytotoxicity of recombinant protein to HepG2, MDA-MB-231, HUVEC and MCF-7 cells was detected by MTT analysis. Half maximal inhibitory concentration (IC50) values were 54.64 µg/mL, 70.13 µg/mL, 146 µg/mL, 466.4 µg/mL, respectively. Proliferation inhibition assays indicated that rELRL-MAP30 could inhibit the growth of Human liver cancer cell HepG2 effectively. We found that rELRL-MAP30 significantly induced apoptosis in liver cancer cells, as evidenced by nuclear staining of DAPI. In addition, rELRL-MAP30 induced apoptosis in human liver cancer HepG2 cells by up-regulation of Bax as well as down-regulation of Bcl-2. Migration of cell line were markedly inhibited by rELRL-MAP30 in a dose-dependent manner compared to the recombinant MAP30 (rMAP30). In summary, the fusion protein displaying extremely potent cytotoxicity might be highly effective for tumor therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Momordica charantia/química , Péptidos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Inactivadoras de Ribosomas Tipo 2/genética , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Clonación Molecular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Integrina alfa5/genética , Integrina alfa5/metabolismo , Integrina beta3/genética , Integrina beta3/metabolismo , Células MCF-7 , Péptidos/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 2/metabolismo , Proteínas Inactivadoras de Ribosomas Tipo 2/farmacología , Proteína X Asociada a bcl-2/agonistas , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA