Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Muscle Nerve ; 67(3): 244-251, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36533970

RESUMEN

INTRODUCTION/AIMS: Although therapeutic electrical stimulation (TES) of injured peripheral nerve promotes axon regeneration and functional recovery, clinical applications of this therapy are limited to the intraoperative timeframe. Implantable, thin-film wireless nerve stimulators offer a potential solution to this problem by enabling delivery of electrical stimuli to an injured nerve over a period of several days post-surgery. The aim of this study was to determine the optimal time course of stimulation for maximizing functional recovery in a rat sciatic nerve isograft repair model. METHODS: Adult male Lewis rats underwent thin-film wireless nerve stimulator implantation following sciatic nerve transection and 40 mm nerve isograft repair. Immediately after surgery, animals began a daily regimen of TES for up to 12 consecutive days. Functional recovery was assessed by compound muscle action potential (CMAP), evoked muscle force, wet muscle mass, and axon counting. RESULTS: Serial CMAP measurements increased in amplitude over the course of the study, yet no significant difference between cohorts for serial or terminal CMAPs was observed. Axon counts and wet muscle mass measurements were greatest in the 6-day stimulation group, which correlated with a significant increase in evoked muscle force for the 6-day stimulation group at the terminal time point. DISCUSSION: Six daily sessions of TES were found to be most effective for augmenting functional recovery compared to other time courses of stimulation. Future studies should incorporate additional subjects and track axonal sprouting or measure neurotrophin levels during the therapeutic window to further elucidate the mechanisms behind, and ideal amount of, TES.


Asunto(s)
Terapia por Estimulación Eléctrica , Músculo Esquelético , Ratas , Masculino , Animales , Músculo Esquelético/fisiología , Axones , Isoinjertos , Regeneración Nerviosa/fisiología , Ratas Endogámicas Lew , Nervio Ciático/cirugía , Recuperación de la Función/fisiología , Estimulación Eléctrica
2.
Transpl Int ; 35: 10057, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35497886

RESUMEN

Objectives: Cold ischemia and subsequent reperfusion injury are non-immunologic cornerstones in the development of graft injury after heart transplantation. The nitric oxide donor S-nitroso-human-serum-albumin (S-NO-HSA) is known to attenuate myocardial ischemia-reperfusion (I/R)-injury. We assessed whether donor preservation with S-NO-HSA affects isograft injury and myocardial expression of GATA2 as well as miR-126-3p, which are considered protective against vascular and endothelial injury. Methods: Donor C57BL/6 mice received intravenous (0.1 µmol/kg/h) S-NO-HSA (n = 12), or 0.9% saline (control, n = 11) for 20 min. Donor hearts were stored in cold histidine-tryptophan-α-ketoglutarate-N solution for 12 h and underwent heterotopic, isogenic transplantation, except 5 hearts of each group, which were analysed immediately after preservation. Fibrosis was quantified and expression of GATA2 and miR-126-3p assessed by RT-qPCR after 60 days or immediately after preservation. Results: Fibrosis was significantly reduced in the S-NO-HSA group (6.47% ± 1.76 vs. 11.52% ± 2.16; p = 0.0023; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX). Expression of miR-126-3p was downregulated in all hearts after ischemia compared to native myocardium, but the effect was significantly attenuated when donors received S-NO-HSA (1 ± 0.27 vs. 0.33 ± 0.31; p = 0.0187; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX; normalized expression to U6 snRNA). Conclusion: Donor pre-treatment with S-NO-HSA lead to reduced fibrosis and preservation of myocardial miR-126-3p and GATA2 levels in murine cardiac isografts 60 days after transplantation.


Asunto(s)
Trasplante de Corazón , MicroARNs , Animales , Fibrosis , Humanos , Isoinjertos , Ratones , Ratones Endogámicos C57BL , Miocardio , Albúmina Sérica Humana , Donantes de Tejidos
3.
J Immunol ; 203(4): 825-834, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31292216

RESUMEN

Extracellular vesicles (EV) are candidates for cancer immunotherapy because of their capacity to stimulate tumor-specific activity in vivo. However, clinical trials using peptide-loaded autologous EVs have so far only showed moderate T cell responses, suggesting a need for optimization of EV-induced immunity in humans. We previously demonstrated that induction of Ag-specific CD8+ T cells and antitumor responses to whole Ag were independent of MHC class I on EVs and hypothesized that multiple injections of allogeneic EVs could potentiate Ag-specific responses. In this study, we show that the allogeneic EV from mouse bone marrow-derived dendritic cells enhances Ag-specific CD8+ T cell, follicular helper T cell, and Ag-specific Ab responses. EV-injected mice demonstrated Ag-specific memory after 4 mo, with the highest Ab avidity in mice receiving double allogeneic EV injections. Reduced B16mOVA melanoma tumor growth was shown in all EV-injected groups. Our findings support the application of allogeneic EVs for therapeutic use in clinical studies in which an adaptive immune response is desired.


Asunto(s)
Vesículas Extracelulares/trasplante , Memoria Inmunológica/inmunología , Inmunoterapia/métodos , Melanoma Experimental/inmunología , Aloinjertos , Animales , Células de la Médula Ósea/inmunología , Células Dendríticas/inmunología , Vesículas Extracelulares/inmunología , Isoinjertos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
4.
Microsurgery ; 41(2): 157-164, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32949430

RESUMEN

INTRODUCTION: In the last years, limb salvage has become the gold standard treatment over amputation. Today, 90% of extremity osteogenic sarcomas can be treated with limb salvage surgery. However, these reconstructions are not exempt from complications. Massive allografts have been associated to high risk of nonunion (12-57%), fracture (7-30%) and infection (5-21%). Association of vascularized periosteum flap to a massive bone allograft (MBA) has shown to halve the average time of allograft union in clinical series, even compared to vascularized fibular flap. Creeping substitution process has been reported in massive allograft when periosteum flap was associated. However, we have little data about whether it results into allograft revitalization. We hypothesize that the association of a periosteum flap to a bone isograft promotes isograft revitalization, defined as the colonization of the devitalized bone by new-form vessels and viable osteocytes, turning it vital. MATERIALS AND METHODS: Forty-four New Zealand white male rabbits underwent a 10 mm segmental radial bone defect. In 24 rabbits the bone excision included the periosteum (controls); in 20 rabbits (periosteum group) bone excision was performed carefully detaching periosteum in order to preserve it. Cryopreserved bone isograft from another rabbit was trimmed and placed to the defect gap and was fixed with a retrograde intramedullar 0.6 mm Kirschner wire. Rabbits were randomized and distributed in 3 subgroups depending on the follow-up (control group: 5 rabbits in 5-week follow up group, 8 rabbits in 10-week follow-up group, 7 rabbits in 20-week follow-up group; periosteum group: 5 rabbits in 5-week follow up group, 7 rabbits in 10-week follow-up group, 7 rabbits in 20-week follow-up group). Fluoroscopic images of rabbit forelimb were taken after sacrifice to address union. Each specimen was blindly evaluated in optical microscope (magnification, ×4) after hematoxylin and eosin staining to qualitative record: presence of new vessels and osteocytes in bone graft lacunae (yes/no) to address revitalization, presence of callus (yes/no) and woven bone and cartilage tissue area (mm2 ) to address remodeling (osteoclast resorption of old bone and substitution by osteoblastic new bone formation). RESULTS: No isograft revitalization occurred in any group, but it was observed bone graft resorption and substitution by new-formed bone in periosteum group. This phenomenon was accelerated in 5-week periosteum group (control group: 49.5 ± 9.6 mm2 vs. periosteum group: 34.9 ± 10.4 mm2 ; p = .07). Remodeled lamellar bone was observed in both 20-week groups (control group: 6.1 ± 6.3 mm2 vs. periosteum group: 5.8 ± 3.0 mm2 , p = .67). Periosteum group showed complete integration and graft substitution, whereas devitalized osteons were still observed in 20-week controls. All periosteum group samples showed radiographic union through a bone callus, whereas controls showed nonunion in eight specimens (Union rate: control group 60% vs. periosteum group 100%, p = .003). CONCLUSIONS: Association of vascularized periosteum to a massive bone isograft has shown to accelerate bone graft substitution into a newly formed bone, thus, no bone graft revitalization occurs.


Asunto(s)
Isoinjertos , Periostio , Animales , Masculino , Conejos , Trasplante Óseo , Osteogénesis , Colgajos Quirúrgicos
5.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526987

RESUMEN

Recent advances in the development of new methods of cancer immunotherapy require the production of complex cancer animal models that reliably reflect the complexity of the tumor and its microenvironment. Mice are good animals to create tumor models because they are low cost, have a short reproductive cycle, exhibit high tumor growth rates, and can be easily genetically modified. However, the obvious problem of these models is the high failure rate observed in human clinical trials after promising results obtained in mouse models. In order to increase the reliability of the results obtained in mice, the tumor model should reflect the heterogeneity of the tumor, contain components of the tumor microenvironment, in particular immune cells, to which the action of immunotherapeutic drugs are directed. This review discusses the current immunocompetent and immunocompromised mouse models of human tumors that are used to evaluate the effectiveness of immunotherapeutic agents, in particular chimeric antigen receptor (CAR) T-cells and immune checkpoint inhibitors.


Asunto(s)
Inmunoterapia/métodos , Neoplasias Experimentales/etiología , Neoplasias Experimentales/terapia , Animales , Carcinógenos/toxicidad , Humanos , Huésped Inmunocomprometido , Isoinjertos , Ratones , Ratones Mutantes , Ratones Transgénicos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899865

RESUMEN

The immune checkpoint blockade represents a revolution in cancer therapy, with the potential to increase survival for many patients for whom current treatments are not effective. However, response rates to current immune checkpoint inhibitors vary widely between patients and different types of cancer, and the mechanisms underlying these varied responses are poorly understood. Insights into the antitumor activities of checkpoint inhibitors are often obtained using syngeneic mouse models, which provide an in vivo preclinical basis for predicting efficacy in human clinical trials. Efforts to establish in vitro syngeneic mouse equivalents, which could increase throughput and permit real-time evaluation of lymphocyte infiltration and tumor killing, have been hampered by difficulties in recapitulating the tumor microenvironment in laboratory systems. Here, we describe a multiplex in vitro system that overcomes many of the deficiencies seen in current static histocultures, which we applied to the evaluation of checkpoint blockade in tumors derived from syngeneic mouse models. Our system enables both precision-controlled perfusion across biopsied tumor fragments and the introduction of checkpoint-inhibited tumor-infiltrating lymphocytes in a single experiment. Through real-time high-resolution confocal imaging and analytics, we demonstrated excellent correlations between in vivo syngeneic mouse and in vitro tumor biopsy responses to checkpoint inhibitors, suggesting the use of this platform for higher throughput evaluation of checkpoint efficacy as a tool for drug development.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Isoinjertos/inmunología , Isoinjertos/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Modelos Biológicos , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral/inmunología
7.
Breast Cancer Res ; 21(1): 94, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409375

RESUMEN

BACKGROUND: Human epidermal growth factor receptor-2 (HER2)-targeted therapies prolong survival in HER2-positive breast cancer patients. Benefit stems primarily from improved control of systemic disease, but up to 50% of patients progress to incurable brain metastases due to acquired resistance and/or limited permeability of inhibitors across the blood-brain barrier. Neratinib, a potent irreversible pan-tyrosine kinase inhibitor, prolongs disease-free survival in the extended adjuvant setting, and several trials evaluating its efficacy alone or combination with other inhibitors in early and advanced HER2-positive breast cancer patients are ongoing. However, its efficacy as a first-line therapy against HER2-positive breast cancer brain metastasis has not been fully explored, in part due to the lack of relevant pre-clinical models that faithfully recapitulate this disease. Here, we describe the development and characterisation of a novel syngeneic model of spontaneous HER2-positive breast cancer brain metastasis (TBCP-1) and its use to evaluate the efficacy and mechanism of action of neratinib. METHODS: TBCP-1 cells were derived from a spontaneous BALB/C mouse mammary tumour and characterised for hormone receptors and HER2 expression by flow cytometry, immunoblotting and immunohistochemistry. Neratinib was evaluated in vitro and in vivo in the metastatic and neoadjuvant setting. Its mechanism of action was examined by transcriptomic profiling, function inhibition assays and immunoblotting. RESULTS: TBCP-1 cells naturally express high levels of HER2 but lack expression of hormone receptors. TBCP-1 tumours maintain a HER2-positive phenotype in vivo and give rise to a high incidence of spontaneous and experimental metastases in the brain and other organs. Cell proliferation/viability in vitro is inhibited by neratinib and by other HER2 inhibitors, but not by anti-oestrogens, indicating phenotypic and functional similarities to human HER2-positive breast cancer. Mechanistically, neratinib promotes a non-apoptotic form of cell death termed ferroptosis. Importantly, metastasis assays demonstrate that neratinib potently inhibits tumour growth and metastasis, including to the brain, and prolongs survival, particularly when used as a neoadjuvant therapy. CONCLUSIONS: The TBCP-1 model recapitulates the spontaneous spread of HER2-positive breast cancer to the brain seen in patients and provides a unique tool to identify novel therapeutics and biomarkers. Neratinib-induced ferroptosis provides new opportunities for therapeutic intervention. Further evaluation of neratinib neoadjuvant therapy is warranted.


Asunto(s)
Neoplasias Encefálicas/prevención & control , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ferroptosis/efectos de los fármacos , Quinolinas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Biología Computacional/métodos , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Inmunohistoquímica , Isoinjertos , Ratones , Terapia Molecular Dirigida , Terapia Neoadyuvante , Quinolinas/uso terapéutico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
8.
Am J Transplant ; 19(6): 1652-1662, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30549427

RESUMEN

Stem cell-based approaches have the potential to address the organ shortage in transplantation. Whereas both embryonic stem cells and induced pluripotent stem cells have been utilized as cellular sources for differentiation and lineage specification, their relative ability to be recognized by immune effector cells is unclear. We determined the expression of immune recognition molecules on hepatocyte-like cells (HLC) generated from murine embryonic stem cells and induced pluripotent stem cells, compared to adult hepatocytes, and we evaluated the impact on recognition by natural killer (NK) cells. We report that HLC lack MHC class I expression, and that embryonic stem cell-derived HLC have higher expression of the NK cell activating ligands Rae1, H60, and Mult1 than induced pluripotent stem cell-derived HLC and adult hepatocytes. Moreover, the lack of MHC class I renders embryonic stem cell-derived HLC, and induced pluripotent stem cell-derived HLC, susceptible to killing by syngeneic and allogeneic NK cells. Both embryonic stem cell-derived HLC, and induced pluripotent stem cell-derived HLC, are killed by NK cells at higher levels than adult hepatocytes. Finally, we demonstrate that the NK cell activation receptor, NKG2D, plays a key role in NK cell cytotoxicity of embryonic stem cell-derived HLC, but not induced pluripotent stem cell-derived HLC.


Asunto(s)
Células Madre Embrionarias/inmunología , Hepatocitos/inmunología , Hepatocitos/trasplante , Células Madre Pluripotentes Inducidas/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Aloinjertos , Animales , Diferenciación Celular , Trasplante de Células/métodos , Citotoxicidad Inmunológica , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Perfilación de la Expresión Génica , Hepatocitos/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Isoinjertos , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos , Modelos Animales , Subfamilia K de Receptores Similares a Lectina de Células NK/deficiencia , Subfamilia K de Receptores Similares a Lectina de Células NK/genética
9.
Genes Cells ; 23(7): 580-589, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29749672

RESUMEN

Jellyfish green fluorescent protein (GFP) and firefly luciferase can serve as versatile tracking markers for identification and quantification of transplanted cancer cells in vivo. However, immune reactions against these markers can hamper the formation of syngraft tumors and metastasis that follows. Here, we report two transgenic (Tg) mouse lines that express nonfunctional mutant marker proteins, namely modified firefly luciferase (Luc2) or enhanced GFP (EGFP). These mice, named as Tg-mLuc2 and Tg-mEGFP, turned out to be immunologically tolerant to the respective tracking markers and thus efficiently accepted syngeneic cancer cells expressing the active forms of the markers. We then injected intrarectally the F1 hybrid Tg mice (BALB/c × C57BL/6J) with Colon-26 (C26) colon cancer cells that originated from a BALB/c mouse. Even when C26 cells expressed active Luc2 or EGFP, they formed primary tumors in the Tg mice with only 104 cells per mouse compared with more than 106 cells required in the nontransgenic BALB/c hosts. Furthermore, we detected metastatic foci of C26 cells in the liver and lungs of the Tg mice by tracking the specific reporter activities. These results show the usefulness of the Tg mouse lines as recipients for transplantation experiments with the non-self tracking marker-expressing cells.


Asunto(s)
Isoinjertos/metabolismo , Trasplante de Neoplasias/métodos , Animales , Proteínas Fluorescentes Verdes , Luciferasas , Proteínas Luminiscentes , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos/fisiología , Neoplasias
10.
BMC Cancer ; 19(1): 718, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31331301

RESUMEN

BACKGROUND: Mouse clinical trials (MCTs) are becoming wildly used in pre-clinical oncology drug development, but a statistical framework is yet to be developed. In this study, we establish such as framework and provide general guidelines on the design, analysis and application of MCTs. METHODS: We systematically analyzed tumor growth data from a large collection of PDX, CDX and syngeneic mouse tumor models to evaluate multiple efficacy end points, and to introduce statistical methods for modeling MCTs. RESULTS: We established empirical quantitative relationships between mouse number and measurement accuracy for categorical and continuous efficacy endpoints, and showed that more mice are needed to achieve given accuracy for syngeneic models than for PDXs and CDXs. There is considerable disagreement between methods on calling drug responses as objective response. We then introduced linear mixed models (LMMs) to describe MCTs as clustered longitudinal studies, which explicitly model growth and drug response heterogeneities across mouse models and among mice within a mouse model. Case studies were used to demonstrate the advantages of LMMs in discovering biomarkers and exploring drug's mechanisms of action. We introduced additive frailty models to perform survival analysis on MCTs, which more accurately estimate hazard ratios by modeling the clustered mouse population. We performed computational simulations for LMMs and frailty models to generate statistical power curves, and showed that power is close for designs with similar total number of mice. Finally, we showed that MCTs can explain discrepant results in clinical trials. CONCLUSIONS: Methods proposed in this study can make the design and analysis of MCTs more rational, flexible and powerful, make MCTs a better tool in oncology research and drug development.


Asunto(s)
Ensayos Clínicos como Asunto/métodos , Desarrollo de Medicamentos/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neoplasias/tratamiento farmacológico , Animales , Biomarcadores de Tumor , Biopsia , Línea Celular Tumoral , Simulación por Computador , Modelos Animales de Enfermedad , Humanos , Isoinjertos , Modelos Lineales , Oncología Médica , Ratones , Neoplasias/patología , Supervivencia sin Progresión , Proyectos de Investigación , Ensayos Antitumor por Modelo de Xenoinjerto
11.
BMC Cancer ; 19(1): 700, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311517

RESUMEN

BACKGROUND: Multiple myeloma (MM), characterized by cancerous proliferation of plasmablasts (PB) and plasma cells (PC), remains incurable in many patients. Differentially expressed molecules between MM PCs and healthy PCs have been explored in order to identify novel targets for treating MM. In the present study, we searched for novel MM therapeutic targets by comparing mRNA expression patterns between the Mus musculus myeloma plasmablast-like SP 2/0 cell line and LPS-induced PB/PC. METHODS: Gene expression profiles of LPS-induced PB/PC and SP 2/0 cells were determined using RNA-sequencing. A predicted gene (Gm40600) was found to be expressed at a low level in SP 2/0 cells. To study the role of Gm40600 in malignant PC, Gm40600 cDNA was cloned into a lentiviral vector (LV201) containing a puromycin selectable marker that was then transfected into SP 2/0 cells. Stable Gm40600-expressing SP 2/0 cells were selected using puromycin. The effect of Gm40600 on SP 2/0 cell proliferation, cell cycle/apoptosis, and tumor progression was assessed by cell counting kit-8 (CCK8), flow cytometry (FACS), and the SP 2/0 isograft mouse model, respectively. The effect of Gm40600 on mRNA and protein expression was evaluated by RNA-sequencing and western blotting, respectively. RESULTS: We found that SP 2/0 cells expressed lower level of Gm40600 mRNA as compared to LPS-induced PB/PC. Overexpression of Gm40600 significantly suppressed SP 2/0 cell proliferation and isograft tumor progression in an isograft mouse model by promoting apoptosis. In addition, Gm40600 overexpression suppressed transcription of the gene encoding Bcl2. Gm40600 overexpression also reduced the expression of PC-associated transcription factors Blimp1 and Xbp1, which promote transcription of the gene that encodes Bcl2. CONCLUSIONS: Gm40600 reduced SP 2/0 cell proliferation and isograft tumor growth and progression by suppressing Blimp1 and Xbp1-mediated Bcl2 transcription to induce apoptosis. Thus, regulation of a human homolog of Gm40600, or associated factors, may be a potential therapeutic approach for treating MM.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Proteína 1 de Unión a la X-Box/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Isoinjertos , Ratones , Ratones Transgénicos , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/genética , Proteína 1 de Unión a la X-Box/metabolismo
12.
J Hand Surg Am ; 44(5): 419.e1-419.e10, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30172450

RESUMEN

PURPOSE: Processed acellular nerve allograft (PNA) has been suggested as a convenient tool for overcoming short and medium nerve defects. Although the clinical implications are unclear, animal data suggest that PNA becomes less effective at longer lengths. Although reverse or supercharging end-to-side nerve transfer may improve the neurotrophic potential in chronically denervated nerve tissue, the application of this strategy to long acellular nerve allograft has not been previously investigated. We hypothesized that supercharging acellular nerve allograft would increase its effective length. METHODS: Sprague-Dawley and Thy1-green fluorescent protein Sprague-Dawley rats underwent transection of the tibial nerve, followed by immediate repair with 20-, 40-, or 60-mm acellular nerve allografts processed identically to commercially available human acellular nerve allograft (AxoGen, Inc., Alachua, FL) or isograft. Half of the allograft group was supercharged with a reverse end-to-side transfer from the ipsilateral peroneal nerve. At 10 weeks, the reconstructed nerve in the Thy1-green fluorescent rat groups were exposed and examined under a fluorescence-enabled microscope. At 20 weeks, the remaining rats underwent motor testing and tissue harvest for morphological examination. RESULTS: In comparison with a nonenhanced allograft, supercharging had a statistically significant positive impact on the reinnervated muscle normalized force generation and distal axon counts for all graft sizes. Muscles in the supercharged group were heavier than those in the allograft group for the 40-mm-length grafts and G-ratio measurements were higher in the supercharged allograft group for 60-mm-length grafts only. CONCLUSIONS: This study supports that hypothesis that supercharging nerve transfer improves axon regeneration within PNA. CLINICAL RELEVANCE: When an appropriate donor nerve is available, supercharging nerve transfer may improve nerve regeneration in PNA across long nerve defects.


Asunto(s)
Transferencia de Nervios/métodos , Nervio Peroneo/cirugía , Nervio Tibial/cirugía , Aloinjertos , Animales , Axones , Recuento de Células , Isoinjertos , Microscopía , Modelos Animales , Músculo Esquelético/inervación , Músculo Esquelético/patología , Regeneración Nerviosa , Ratas Sprague-Dawley , Nervio Tibial/lesiones
13.
Nano Lett ; 18(11): 7092-7103, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30339018

RESUMEN

Sophisticated self-assembly may endow materials with a variety of unique functions that are highly desirable for therapeutic nanoplatform. Herein, we report the coassembly of two structurally defined telodendrimers, each comprised of hydrophilic linear PEG and hydrophobic cholic acid cluster as a basic amphiphilic molecular subunit. One telodendrimer has four added indocyanine green derivatives, leading to excellent photothermal properties; the other telodendrimer has four sulfhydryl groups designed for efficient intersubunit cross-linking, contributing to superior stability during circulation. The coassembled nanoparticle (CPCI-NP) possesses superior photothermal conversion efficiency as well as efficient encapsulation and controlled release of cytotoxic molecules and immunomodulatory agents. CPCI-NP loaded with doxorubicin has proven to be a highly efficacious combination photothermal/chemotherapeutic nanoplatform against orthotopic OSC-3 oral cancer xenograft model. When loaded with imiquimod, a potent small molecule immunostimulant, CPCI-NP is found to be highly effective against 4T1 syngeneic murine breast cancer model, particularly when photothermal/immuno-therapy is given in combination with PD-1 checkpoint blockade antibody. Such triple therapy not only eradicates the light-irradiated primary tumors, but also activates systemic antitumor immunoactivity, causing tumor death at light-unexposed distant tumor sites. This coassembled multifunctional, versatile, and easily scalable photothermal immuno-nanoplatform shows great promise for clinical translation.


Asunto(s)
Portadores de Fármacos , Imiquimod , Factores Inmunológicos , Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Nanopartículas , Fotoquimioterapia/métodos , Animales , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Femenino , Xenoinjertos , Humanos , Imiquimod/química , Imiquimod/farmacología , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Isoinjertos , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Ratones , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Nanopartículas/química , Nanopartículas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Neurochem ; 140(1): 170-182, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27787897

RESUMEN

Targeting the vascular endothelial growth factor signaling axis in glioblastoma inevitably leads to tumor recurrence and a more aggressive phenotype. Therefore, other angiogenic pathways, like the angiopoietin/tunica interna endothelial cell kinase (TIE) signaling axis, have become additional targets for therapeutic intervention. Here, we explored whether targeting the receptor tyrosine kinase TIE-2 using a novel, highly potent, orally available small molecule TIE-2 inhibitor (BAY-826) improves tumor control in syngeneic mouse glioma models. BAY-826 inhibits TIE-2 phosphorylation in vitro and in vivo as demonstrated by suppression of Angiopoietin-1- or Na3 VO4 -induced TIE-2 phosphorylation in glioma cells or extracts of lungs from BAY-826-treated mice. There was a trend toward prolonged survival upon single-agent treatment in two of four models (SMA-497 and SMA-540) and there was a significant survival benefit in one model (SMA-560). Co-treatment with BAY-826 and irradiation was ineffective in one model (SMA-497), but provided synergistic prolongation of survival in another (SMA-560). Decreased vessel densities and increased leukocyte infiltration were observed, but might be independent processes as the effect was also observed in single treatment modalities. These data demonstrate that TIE-2 inhibition may improve tumor response to treatment in highly vascularized tumors such as glioblastoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/enzimología , Modelos Animales de Enfermedad , Glioma/enzimología , Receptor TIE-2/antagonistas & inhibidores , Receptor TIE-2/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Glioma/tratamiento farmacológico , Isoinjertos , Ratones , Ratones Endogámicos C57BL , Resultado del Tratamiento , Carga Tumoral
15.
Pathobiology ; 84(5): 237-242, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28486225

RESUMEN

The potential effects of 2 types of fatty acids on colorectal cancer (CRC) were assessed using cancer stromal cells. Linoleic acid (LA; C-18, n-6 unsaturated fatty acid) and elaidic acid (EA; C-18, trans acid), both known to affect colon carcinogenesis and cancer progression, were administered by gavage to BALB/c mice, which were inoculated with CT26 syngeneic colon cancer cells in the back. Both EA and LA treatments enhanced tumor growth and metastasis. EA and LA also increased the number of CD133-positive stromal cells in the tumor capsule. Importantly, those cancer cells at the tumor periphery, physically attached to CD133-positive stromal cells, also expressed CD133. These findings suggest that EA and LA might induce stemness in cancer cells through physical association and promote cancer metastasis.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Neoplasias del Colon/patología , Ácido Linoleico/administración & dosificación , Ácido Oléico/administración & dosificación , Células del Estroma/efectos de los fármacos , Antígeno AC133/genética , Antígeno AC133/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Movimiento Celular , Modelos Animales de Enfermedad , Ácidos Grasos , Proteínas de Unión al GTP , Isoinjertos , Ácido Linoleico/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácido Oléico/farmacología , Ácidos Oléicos , Proteínas de Unión al ARN
16.
Nano Lett ; 16(5): 3268-77, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27057591

RESUMEN

One of the major challenges in applying nanomedicines to cancer therapy is their low interstitial diffusion in solid tumors. Although the modification of nanocarrier surfaces with enzymes that degrade extracellular matrix is a promising strategy to improve nanocarrier diffusion in tumors, it remains challenging to apply this strategy in vivo via systemic administration of nanocarriers due to biological barriers, such as reduced blood circulation time of enzyme-modified nanocarriers, loss of enzyme function in vivo, and life-threatening side effects. Here, we report the conjugation of recombinant human hyaluronidase PH20 (rHuPH20), which degrades hyaluronic acid, on the surfaces of poly(lactic-co-glycolic acid)-b-polyethylene glycol (PLGA-PEG) nanoparticles followed by anchoring a relatively low density layer of PEG, which reduces the exposure of rHuPH20 for circumventing rHuPH20-mediated clearance. Despite the extremely short serum half-life of rHuPH20, our unique design maintains the function of rHuPH20 and avoids its effect on shortening nanocarrier blood circulation. We also show that rHuPH20 conjugated on nanoparticles is more efficient than free rHuPH20 in facilitating nanoparticle diffusion. The facile surface modification quadruples the accumulation of conventional PLGA-PEG nanoparticles in 4T1 syngeneic mouse breast tumors and enable their uniform tumor distribution. The rHuPH20-modified nanoparticles encapsulating doxorubicin efficiently inhibit the growth of aggressive 4T1 tumors under a low drug dose. Thus, our platform technology may be valuable to enhance the clinical efficacy of a broad range of drug nanocarriers. This study also provides a general strategy to modify nanoparticles with enzymes that otherwise may reduce nanoparticle circulation or lose function in the blood.


Asunto(s)
Antineoplásicos/química , Portadores de Fármacos/química , Hialuronoglucosaminidasa/química , Nanopartículas/química , Poliésteres/química , Polietilenglicoles/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Liberación de Fármacos , Matriz Extracelular/metabolismo , Femenino , Humanos , Isoinjertos , Neoplasias Mamarias Animales/tratamiento farmacológico , Ratones Endogámicos BALB C , Tamaño de la Partícula , Proteínas Recombinantes/química , Distribución Tisular
17.
J Vasc Surg ; 64(5): 1444-1449, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26432280

RESUMEN

BACKGROUND: The production of growth factors from several experimental arterial conduits was determined. METHODS: We implanted 105 experimental arterial grafts that were 1 cm long in the abdominal aorta of Lewis rats (average weight, 250 g). Five different types of grafts were analyzed: arterial isografts, vein grafts, arterial allografts, and polytetrafluoroethylene (PTFE) grafts with normal or decreased compliance. Animals were killed humanely 4 weeks after surgery and the production of platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), transforming growth factor-ß, tumor necrosis factor-α, and interleukin-1 was analyzed. RESULTS: Myointimal hyperplasia (MH) was evident in vein grafts, arterial allografts, and PTFE grafts, but not in arterial isografts. Growth factor production was increased for grafts prone to develop MH like vein, PTFE grafts, and arterial allografts. PDGF and bFGF were increased significantly for PTFE and vein grafts, but not for arterial allografts. The importance of bFGF and PGDF was confirmed by the capability of antibody to PDGF and to bFGF to reduce the mitogenic activity of smooth muscle cells, in vivo and in vitro, for PTFE and vein grafts, but not for arterial allografts, in which a predominant role was played by interleukin-1 and tumor necrosis factor-α. CONCLUSIONS: Agents able to neutralize this increased production of growth factors, either directly or by competition with their receptors, can prevent MH formation.


Asunto(s)
Aorta Abdominal/cirugía , Arterias/trasplante , Implantación de Prótesis Vascular/instrumentación , Prótesis Vascular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Venas/trasplante , Aloinjertos , Animales , Aorta Abdominal/metabolismo , Aorta Abdominal/patología , Arterias/metabolismo , Arterias/patología , Proliferación Celular , Células Cultivadas , Medios de Cultivo Condicionados/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Hiperplasia , Interleucina-1/metabolismo , Isoinjertos , Modelos Animales , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/trasplante , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/trasplante , Neointima , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Politetrafluoroetileno , Diseño de Prótesis , Ratas Endogámicas Lew , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Venas/metabolismo , Venas/patología
18.
Muscle Nerve ; 54(2): 319-21, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27144718

RESUMEN

INTRODUCTION: Nerve regeneration across nerve constructs, such as acellular nerve allografts (ANAs), is inferior to nerve auto/isografts especially in the case of long defect lengths. Vascularization may contribute to poor regeneration. The time course of vascular perfusion within long grafts and constructs was tracked to determine vascularization. METHODS: Male Lewis rat sciatic nerves were transected and repaired with 6 cm isografts or ANAs. At variable days following grafting, animals were perfused with Evans Blue albumin, and grafts were evaluated for vascular perfusion by a blinded observer. RESULTS: Vascularization at mid-graft was re-established within 3-4 days in 6 cm isografts, while it was established after 10 days in 6 cm ANAs. CONCLUSIONS: Vascular perfusion is reestablished over a shorter time course in long isografts when compared with long ANAs. The differences in vascularization of long ANAs compared with auto/isografts suggest regenerative outcomes across ANAs could be affected by vascularization rates. Muscle Nerve 54: 319-321, 2016.


Asunto(s)
Neovascularización Patológica/fisiopatología , Regeneración Nerviosa/fisiología , Neuropatía Ciática/cirugía , Trasplante Homólogo/métodos , Animales , Modelos Animales de Enfermedad , Isoinjertos/fisiología , Masculino , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ratas , Ratas Endogámicas Lew , Factores de Tiempo
19.
J Surg Res ; 200(2): 707-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26375503

RESUMEN

BACKGROUND: Allograft arteriopathy is still a leading cause of late organ failure. The aortic allograft model in mice has been used to study chronic rejection and has given useful information in the development of graft arteriosclerosis. However, the technical difficulties of small vessel anastomoses still continue to limit its widespread use. We introduce a new simple method for aortic transplantation in mice. METHODS: The descending aorta or infrarenal aorta from the donor mouse was anastomosed to the infrarenal aorta using a cuff technique. Aortic transplantation was performed in 30 mice, 10 isografts and 20 allografts. No immunosuppression was administered, and the recipients were sacrificed at day 28. The grafts were histologically analyzed. RESULTS: Implantation of grafts could be completed in an average of 23 min. There was no technical failure in all 60 anastomoses. The overall survival rate was 93.3%. Histology of aortas revealed typical aspects of chronic rejection in the allografts at day 28. No significant lesion was observed in isografts. CONCLUSIONS: We have developed an innovative, stable, and simple aortic transplantation model in mice, which is useful for vascular research in transplantation and beyond.


Asunto(s)
Aorta Abdominal/trasplante , Aorta Torácica/trasplante , Ratones Endogámicos BALB C/cirugía , Ratones Endogámicos C57BL/cirugía , Modelos Animales , Aloinjertos/patología , Aloinjertos/trasplante , Anastomosis Quirúrgica , Animales , Aorta Abdominal/patología , Aorta Torácica/patología , Rechazo de Injerto/patología , Isoinjertos/patología , Isoinjertos/trasplante , Masculino , Ratones , Trasplante Homólogo/métodos , Trasplante Isogénico/métodos
20.
Mol Ther ; 23(10): 1630-40, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26112079

RESUMEN

There is evidence that viral oncolysis is synergistic with immune checkpoint inhibition in cancer therapy but the underlying mechanisms are unclear. Here, we investigated whether local viral infection of malignant tumors is capable of overcoming systemic resistance to PD-1-immunotherapy by modulating the spectrum of tumor-directed CD8 T-cells. To focus on neoantigen-specific CD8 T-cell responses, we performed transcriptomic sequencing of PD-1-resistant CMT64 lung adenocarcinoma cells followed by algorithm-based neoepitope prediction. Investigations on neoepitope-specific T-cell responses in tumor-bearing mice demonstrated that PD-1 immunotherapy was insufficient whereas viral oncolysis elicited cytotoxic T-cell responses to a conserved panel of neoepitopes. After combined treatment, we observed that PD-1-blockade did not affect the magnitude of oncolysis-mediated antitumoral immune responses but a broader spectrum of T-cell responses including additional neoepitopes was observed. Oncolysis of the primary tumor significantly abrogated systemic resistance to PD-1-immunotherapy leading to improved elimination of disseminated lung tumors. Our observations were confirmed in a transgenic murine model of liver cancer where viral oncolysis strongly induced PD-L1 expression in primary liver tumors and lung metastasis. Furthermore, we demonstrated that combined treatment completely inhibited dissemination in a CD8 T-cell-dependent manner. Therefore, our results strongly recommend further evaluation of virotherapy and concomitant PD-1 immunotherapy in clinical studies.


Asunto(s)
Neoplasias/etiología , Neoplasias/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Infecciones Tumorales por Virus , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Antineoplásicos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Modelos Animales de Enfermedad , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Expresión Génica , Inmunoterapia , Isoinjertos , Ligandos , Ratones , Ratones Transgénicos , Mutación , Neoplasias/patología , Neoplasias/terapia , Viroterapia Oncolítica , Virus Oncolíticos/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA